Skip to main content
Log in

Neue Aspekte zur Pathogenese der NASH

New aspects in the pathogenesis of NASH

  • Schwerpunkt
  • Published:
Der Gastroenterologe Aims and scope

Zusammenfassung

Die nichtalkoholische Fettlebererkrankung (NAFLD) und die nichtalkoholische Fettleberhepatitis (NASH) beschreiben ätiologisch nicht vollständig geklärte Krankheitsentitäten, für die keine gesicherte Therapie vorhanden ist. Dies ist eine medizinische Herausforderung, da ein progredienter Krankheitsverlauf von der einfachen Steatose zur Steatohepatitis mit Entwicklung einer Fibrose bis hin zur Zirrhose und zu eventueller Entstehung eines Leberzellkarzinoms beschrieben ist. Ein Überangebot von Fettsäuren, z. B. bei hochkalorischer Ernährung oder deren Freisetzung aus dem Fettgewebe, führen zur Triglyceridablagerung in den Lipidtröpfchen („lipid droplets“) der Hepatozyten. Gesättigte Fettsäuren bewirken dort ER-Stress, der über intrazelluläre Signalwege Insulinresistenz, Entzündung und Apoptose induziert (klinisches Bild der NASH). Die dafür verantwortliche intrazelluläre Schaltstelle ist das aktivierte JNK1. Die nachgeordnete Deaktivierung von FXR perpetuiert über Insulinresistenz die Lipidtröpfchenakkumulation, unterhält die Entzündung und führt zur Hyperglykämie. Apoptotischer Zelltod wird durch JNK1 unmittelbar oder durch Freisetzung von TNF-α (verstärkt durch Aktivierung von Entzündungszellen der Leber) mittelbar hervorgerufen. Neben den bekannten Signalkaskaden spielt die Aktivierung von mitochondrialer Phospholipase A2 (iPLA2) mit Freisetzung von Lysophosphatidylcholin bei der Apoptoseinduktion eine entscheidende Rolle. Zukünftige therapeutische Konzepte sollten deshalb auf Vermeidung von ER-Stress, Beibehaltung der FXR-Aktivierung und Hemmung der iPLA2 fokussieren.

Abstract

Non-alcoholic fatty liver disease (NAFLD) und non-alcoholic steatohepatitis (NASH) represent etiologically not completely understood disease entities for which an established therapy is not yet available. This is a challenge in medicine because a progressive course of the disorder from simple steatosis to steatohepatitis with development of fibrosis and finally cirrhosis with possible development of liver cancer has been described. Overload of fatty acids, e.g. by high caloric diet or release from adipose tissue, leads to triglyceride accumulation in lipid droplets of hepatocytes. Saturated fatty acids within lipid droplets cause endoplasmic reticulum (ER) stress which induces insulin resistance, inflammation and apoptosis by intracellular signal cascades (clinical features of NASH). The responsible intracellular switch is activated JNK1. The subsequent deactivation of FXR perpetuates the lipid droplet accumulation via insulin resistance, maintains inflammation and leads to hyperglycemia. Moreover, apoptotic cell death is triggered by JNK1 directly or indirectly by release of TNFα (amplified by activation of liver macrophages). Besides the involvement of defined signal cascades, the activation of mitochondrial phospholipase A2 (iPLA 2) resulting in release of lysophosphatidylcholine (LPC) is the key player for apoptosis induction. Thus, future therapeutic concepts should focus on prevention of ER stress, maintenance of FXR activation and inhibition of iPLA2 activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Ali R, Cusi K (2009) New diagnostic and treatment approaches in non-alcoholic fatty liver disease (NAFLD). Ann Med 41: 265–278

    Article  CAS  PubMed  Google Scholar 

  2. Choi SS, Diehl AM (2008) Hepatic triglyceride synthesis and nonalcoholic fatty liver disease. Curr Opin Lipidol 19: 295–300 (Review)

    Article  CAS  PubMed  Google Scholar 

  3. Bell M, Wang H, Chen H et al (2008) Consequences of lipid droplet coat protein downregulation in liver cells: abnormal lipid droplet metabolism and induction of insulin resistance. Diabetes 57: 2037–2045

    Article  CAS  PubMed  Google Scholar 

  4. Marra F, Gastaldelli A, Svegliati Baroni G et al (2008) Molecular basis and mechanisms of progression of non-alcoholic steatohepatitis. Trends Mol Med 14: 72–81

    Article  CAS  PubMed  Google Scholar 

  5. Syn WK, Choi SS, Diehl AM (2009) Apoptosis and cytokines in non-alcoholic steatohepatitis. Clin Liver Dis 13: 565–580

    Article  PubMed  Google Scholar 

  6. Rinia HA, Burger KN, Bonn M, Müller M (2008) Quantitative label-free imaging of lipid composition and packing of individual cellular lipid droplets using multiplex CARS microscopy. Biophys J 95: 4908–4914

    Article  CAS  PubMed  Google Scholar 

  7. Ohsaki Y, Cheng J, Suzuki M et al (2008) Lipid droplets are arrested in the ER membrane by tight binding of lipidated apolipoprotein B-100. J Cell Sci 121: 2415–2422

    Article  CAS  PubMed  Google Scholar 

  8. Tauchi-Sato K, Ozeki S, Houjou T (2002) The surface of lipid droplets is a phospholipid monolayer with a unique fatty acid composition. J Biol Chem 277: 44507–44512

    Article  CAS  PubMed  Google Scholar 

  9. Gubern A, Casas J, Barceló-Torns M et al (2008) Group IVA phospholipase A2 is necessary for the biogenesis of lipid droplets. J Biol Chem 283: 27369–27382

    Article  CAS  PubMed  Google Scholar 

  10. Kanki K, Kawamura T, Watanabe Y (2009) Control of ER stress by a chemical chaperone counteracts apoptotic signals in IFN-gamma-treated murine hepatocytes. Apoptosis 14: 309–319

    Article  CAS  PubMed  Google Scholar 

  11. Karaskov E, Scott C, Zhang L et al (2006) Chronic palmitate but not oleate exposure induces endoplasmic reticulum stress, which may contribute to INS-1 pancreatic beta-cell apoptosis. Endocrinology 147: 3398–3407

    Article  CAS  PubMed  Google Scholar 

  12. Wei Y, Wang D, Topczewski F, Pagliassotti MJ (2006) Saturated fatty acids induce endoplasmic reticulum stress and apoptosis independently of ceramide in liver cells. Am J Physiol Endocrinol Metab 291: E275–E281

    Article  CAS  PubMed  Google Scholar 

  13. Pagliassotti MJ, Wei Y, Wang D (2007) Insulin protects liver cells from saturated fatty acid-induced apoptosis via inhibition of c-Jun NH2 terminal kinase activity. Endocrinology 148: 3338–3345

    Article  CAS  PubMed  Google Scholar 

  14. Cazanave SC, Mott JL, Elmi NA (2009) JNK1-dependent PUMA expression contributes to hepatocyte lipoapoptosis. J Biol Chem 284: 26591–26602

    Article  CAS  PubMed  Google Scholar 

  15. Kim H, Tu HC, Ren D et al (2009) Stepwise activation of BAX and BAK by tBID, BIM, and PUMA initiates mitochondrial apoptosis. Mol Cell 36: 487–499

    Article  CAS  PubMed  Google Scholar 

  16. Lei X, Zhang S, Bohrer A, Ramanadham S (2008) Calcium-independent phospholipase A2 (iPLA2 beta)-mediated ceramide generation plays a key role in the cross-talk between the endoplasmic reticulum (ER) and mitochondria during ER stress-induced insulin-secreting cell apoptosis. J Biol Chem 283: 34819–34832

    Article  CAS  PubMed  Google Scholar 

  17. Gubern A, Barceló-Torns M, Casas J et al (2009) Lipid droplet biogenesis induced by stress involves triacylglycerol synthesis that depends on group VIA phospholipase A2. J Biol Chem 284: 5697–5708

    Article  CAS  PubMed  Google Scholar 

  18. Brustovetsky T, Antonsson B, Jemmerson R et al (2005) Activation of calcium-independent phospholipase A (iPLA) in brain mitochondria and release of apoptogenic factors by BAX and truncated BID. J Neurochem 94: 980–994

    Article  CAS  PubMed  Google Scholar 

  19. Gadd ME, Broekemeier KM, Crouser ED et al (2006) Mitochondrial iPLA2 activity modulates the release of cytochrome c from mitochondria and influences the permeability transition. J Biol Chem 281: 6931–6939

    Article  CAS  PubMed  Google Scholar 

  20. Casas J, Gijón MA, Vigo AG et al (2006) Overexpression of cytosolic group IVA phospholipase A2 protects cells from Ca2+-dependent death. J Biol Chem 281: 6106–6116

    Article  CAS  PubMed  Google Scholar 

  21. Dhanasekaran A, Kotamraju S, Kalivendi SV et al (2004) Supplementation of endothelial cells with mitochondria-targeted antioxidants inhibit peroxide-induced mitochondrial iron uptake, oxidative damage, and apoptosis. J Biol Chem 279: 37575–37587

    Article  CAS  PubMed  Google Scholar 

  22. Singh R, Wang Y, Xiang Y et al (2009) Differential effects of JNK1 and JNK2 inhibition on murine steatohepatitis and insulin resistance. Hepatology 49: 87–96

    Article  CAS  PubMed  Google Scholar 

  23. Sabio G, Das M, Mora A et al (2008) A stress signaling pathway in adipose tissue regulates hepatic insulin resistance. Science 322(5907): 1539–1543

    Article  CAS  PubMed  Google Scholar 

  24. Kodama Y, Kisseleva T, Iwaisako K et al (2009) c-Jun N-terminal kinase-1 from hematopoietic cells mediates progression from hepatic steatosis to steatohepatitis and fibrosis in mice. Gastroenterology 137: 1467–1477

    Article  CAS  PubMed  Google Scholar 

  25. Senn JJ, Klover PJ, Nowak IA et al (2003) Suppressor of cytokine signaling-3 (SOCS-3), a potential mediator of interleukin-6-dependent insulin resistance in hepatocytes. J Biol Chem 278: 13740–13746

    Article  CAS  PubMed  Google Scholar 

  26. Ogawa W, Kasuga M (2008) Cell signaling. Fat stress and liver resistance. Science 322 (5907): 1483–1484

    Article  CAS  PubMed  Google Scholar 

  27. Zhang Y, Lee FY, Barrera G et al (2006) Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. Proc Natl Acad Sci USA 103: 1006–1011

    Article  CAS  PubMed  Google Scholar 

  28. Cipriani S, Mencarelli A, Palladino G, Fiorucci S (2009) FXR activation reverses insulin resistance and lipid abnormalities and protects against liver steatosis in Zucker (fa/fa) obese rats. J Lipid Res (Epub ahead of print)

  29. Lefebvre P, Cariou B, Lien F et al (2009) Role of bile acids and bile acid receptors in metabolic regulation. Physiol Rev 89: 147–191

    Article  CAS  PubMed  Google Scholar 

  30. Hylemon PB, Zhou H, Pandak WM et al (2009) Bile acids as regulatory molecules. J Lipid Res 50: 1509–1520

    Article  CAS  PubMed  Google Scholar 

  31. Zhao A, Yu J, Lew JL et al (2004) Polyunsaturated fatty acids are FXR ligands and differentially regulate expression of FXR targets. DNA Cell Biol 23: 519–526

    Article  CAS  PubMed  Google Scholar 

  32. Wang YD, Chen WD, Wang M et al (2008) Farnesoid X receptor antagonizes nuclear factor kappa B in hepatic inflammatory response. Hepatology 48: 1632–1643

    Article  CAS  PubMed  Google Scholar 

  33. Pellicciari R, Fiorucci S, Camaioni E et al (2002) 6alpha-ethyl-chenodeoxycholic acid (6-ECDCA), a potent and selective FXR agonist endowed with anticholestatic activity. J Med Chem 45: 3569–3572

    Article  CAS  PubMed  Google Scholar 

  34. Sanyal AJ, Mudaliar S, Henry RR et al (2009) Abstract 183 presented at AASLD The Liver Meeting 2009, Boston, USA

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Stremmel.

Additional information

Unterstützt aus Mitteln der Dietmar-Hopp-Stiftung und der DFG.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stremmel, W., Pathil-Warth, A. & Chamulitrat, W. Neue Aspekte zur Pathogenese der NASH. Gastroenterologe 5, 101–107 (2010). https://doi.org/10.1007/s11377-009-0373-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11377-009-0373-4

Schlüsselwörter

Keywords

Navigation