Skip to main content

Advertisement

Log in

Control of ER stress by a chemical chaperone counteracts apoptotic signals in IFN-γ-treated murine hepatocytes

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Apoptosis of hepatocytes plays a key role in the pathogenesis of immune-mediated hepatitis. However, the detailed mechanisms of apoptotic signaling remain unclear. In this study, we investigated the involvement of ER stress in a model of IFN-γ-induced apoptosis of hepatocytes in vitro, using a chemical chaperone reagent, glycerol. IFN-γ-induced apoptotic events (mitochondrial release of cytochrome c, enzymatic activation of caspase-3 and -9) were markedly inhibited by glycerol. Glycerol induced partial inhibition of cytotoxicity indicated by lactate dehydrogenase release from the cytosol but had no inhibitory effect on the induction of IRF-1 gene expression and reactive oxygen species, required for hepatocyte apoptosis by IFN-γ. Induction of caspase-4 and -12 gene expression, positively correlated with ER stress, was attenuated by glycerol. Gene analysis revealed that induction of ER stress-related genes, C/EBP homologue protein (CHOP/GADD153) and TRB3, was suppressed completely by glycerol treatment. These results suggest that ER stress plays a crucial role in mediating apoptosis of hepatocytes induced by IFN-γ, and a chemical chaperone is an effective inhibitor of the ER stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AG:

Aminoguanidine

CHOP:

C/EBP homologue protein

ER:

Endoplasmic reticulum

IFN-γ:

Interferon gamma

LDH:

Lactate dehydrogenase

4-PBA:

Sodium 4-phenylbutyrate

PDTC:

Pyrrolidinedithiocarbamate

ROS:

Reactive oxygen species

SERCA:

Sarcoplasmic/endoplasmic Ca2+-ATPase

TG:

Thapsigargin

UPR:

Unfold protein response

References

  1. Morita M, Watanabe Y, Akaike T (1995) Protective effect of hepatocyte growth factor on interferon-gamma-induced cytotoxicity in mouse hepatocytes. Hepatology 21:1585–1593

    PubMed  CAS  Google Scholar 

  2. McClain CJ, Cohen DA (1989) Increased tumor necrosis factor production by monocytes in alcoholic hepatitis. Hepatology 9:349–351. doi:10.1002/hep.1840090302

    Article  PubMed  CAS  Google Scholar 

  3. Ehlers S, Mielke ME, Blankenstein T et al (1992) Kinetic analysis of cytokine gene expression in the livers of naive and immune mice infected with Listeria monocytogenes. J Immunol 149:3016–3022

    PubMed  CAS  Google Scholar 

  4. Mizuhara H, Uno M, Seki N et al (1996) Critical involvement of interferon gamma in the pathogenesis of T-cell activation-associated hepatitis and regulatory mechanisms of interleukin-6 for the manifestations of hepatitis. Hepatology 23:1608–1615

    PubMed  CAS  Google Scholar 

  5. Car BD, Eng VM, Schnyder B et al (1994) Interferon gamma receptor deficient mice are resistant to endotoxic shock. J Exp Med 179:1437–1444. doi:10.1084/jem.179.5.1437

    Article  PubMed  CAS  Google Scholar 

  6. Tagawa Y, Sekikawa K, Iwakura Y (1997) Suppression of concanavalin A-induced hepatitis in IFN-γ−/− mice, but not in TNF-α−/− mice. Role for IFN-γ in activating apoptosis of hepatocytes. J Immunol 159:1418–1428

    PubMed  CAS  Google Scholar 

  7. Toyonaga T, Hino O, Sugai S et al (1994) Chronic active hepatitis in transgenic mice expressing interferon-γ in the liver. Proc Natl Acad Sci USA 91:614–618. doi:10.1073/pnas.91.2.614

    Article  PubMed  CAS  Google Scholar 

  8. Kano A, Watanabe Y, Takeda N et al (1997) Analysis of IFN-γ-induced cell cycle arrest and cell death in hepatocytes. J Biochem 121:677–683

    PubMed  CAS  Google Scholar 

  9. Ihle JN, Witthuhn BA, Quelle FW et al (1994) Signaling by the cytokine receptor superfamily: JAKs and STATs. Trends Biochem Sci 19:222–227. doi:10.1016/0968-0004(94)90026-4

    Article  PubMed  CAS  Google Scholar 

  10. Ihle JN, Kerr IM (1995) Jaks and Stats in signaling by the cytokine receptor superfamily. Trends Genet 11:69–74. doi:10.1016/S0168-9525(00)89000-9

    Article  PubMed  CAS  Google Scholar 

  11. Kano A, Haruyama T, Akaike T et al (1999) IRF-1 is an essential mediator in IFN-γ-induced cell cycle arrest and apoptosis of primary cultured hepatocytes. Biochem Biophys Res Commun 257:672–677. doi:10.1006/bbrc.1999.0276

    Article  PubMed  CAS  Google Scholar 

  12. Watanabe Y, Suzuki O, Haruyama T et al (2003) Interferon-γ induces reactive oxygen species and endoplasmic reticulum stress at the hepatic apoptosis. J Cell Biochem 89:244–253. doi:10.1002/jcb.10501

    Article  PubMed  CAS  Google Scholar 

  13. Sitia R, Braakman I (2003) Quality control in the endoplasmic reticulum protein factory. Nature 426:891–894. doi:10.1038/nature02262

    Article  PubMed  CAS  Google Scholar 

  14. Szegezdi E, Logue SE, Gorman AM et al (2006) Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep 7:880–885. doi:10.1038/sj.embor.7400779

    Article  PubMed  CAS  Google Scholar 

  15. Kaufman RJ (2002) Orchestrating the unfolded protein response in health and disease. J Clin Invest 110:1389–1398

    PubMed  CAS  Google Scholar 

  16. Gekko K, Timasheff SN (1981) Mechanism of protein stabilization by glycerol: preferential hydration in glycerol–water mixtures. Biochemistry 20:4667–4676. doi:10.1021/bi00519a023

    Article  PubMed  CAS  Google Scholar 

  17. Meng FG, Hong YK, He HW et al (2004) Osmophobic effect of glycerol on irreversible thermal denaturation of rabbit creatine kinase. Biophys J 87:2247–2254. doi:10.1529/biophysj.104.044784

    Article  PubMed  CAS  Google Scholar 

  18. Shearer AG, Hampton RY (2004) Structural control of endoplasmic reticulum-associated degradation: effect of chemical chaperones on 3-hydroxy-3-methylglutaryl-CoA reductase. J Biol Chem 279:188–196. doi:10.1074/jbc.M307734200

    Article  PubMed  CAS  Google Scholar 

  19. Tamarappoo BK, Verkman AS (1998) Defective aquaporin-2 trafficking in nephrogenic diabetes insipidus and correction by chemical chaperones. J Clin Invest 101:2257–2267. doi:10.1172/JCI2303

    Article  PubMed  CAS  Google Scholar 

  20. Morita M, Watanabe Y, Akaike T (1994) Inflammatory cytokines up-regulate intercellular adhesion molecule-1 expression on primary cultured mouse hepatocytes and T-lymphocyte adhesion. Hepatology 19:426–431

    Article  PubMed  CAS  Google Scholar 

  21. Decker T, Lohmann-Matthes M-L (1988) A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity. J Immunol Methods 15:61–69. doi:10.1016/0022-1759(88)90310-9

    Article  Google Scholar 

  22. Korzeniewski C, Callewaert DM (1983) An enzyme-release assay for natural cytotoxicity. J Immunol Methods 64:313–320. doi:10.1016/0022-1759(83)90438-6

    Article  PubMed  CAS  Google Scholar 

  23. Ohoka N, Yoshii S, Hattori T et al (2005) TRB3, a novel ER stress-inducible gene, is induced via ATF4-CHOP pathway and is involved in cell death. EMBO J 24:1243–1255. doi:10.1038/sj.emboj.7600596

    Article  PubMed  CAS  Google Scholar 

  24. Corbett JA, Tilton RG, Chang K et al (1992) Aminoguanidine, a novel inhibitor of nitric oxide formation, prevents diabetic vascular dysfunction. Diabetes 41:552–556. doi:10.2337/diabetes.41.4.552

    Article  PubMed  CAS  Google Scholar 

  25. Endo M, Mori M, Akira S et al (2006) C/EBP homologous protein (CHOP) is crucial for the induction of caspase-11 and the pathogenesis of lipopolysaccharide-induced inflammation. J Immunol 176:6245–6253

    PubMed  CAS  Google Scholar 

  26. Jiang S, Xie Q, Zhou H et al (2008) Ribozyme-mediated inhibition of caspase-12 activity reduces apoptosis induced by endoplasmic reticulum stress in primary mouse hepatocytes. Int J Mol Med 22:717–724

    PubMed  CAS  Google Scholar 

  27. Rao RV, Hermel E, Castro-Obregon S et al (2001) Coupling endoplasmic reticulum stress to the cell death program. Mechanism of caspase activation. J Biol Chem 276:33869–33874. doi:10.1074/jbc.M102225200

    Article  PubMed  CAS  Google Scholar 

  28. Cardozo AK, Ortis F, Storling J et al (2005) Cytokines downregulate the sarcoendoplasmic reticulum pump Ca2+ ATPase 2b and deplete endoplasmic reticulum Ca2+, leading to induction of endoplasmic reticulum stress in pancreatic b-cells. Diabetes 54:452–461. doi:10.2337/diabetes.54.2.452

    Article  PubMed  CAS  Google Scholar 

  29. Burrows JAJ, Willis LK, Perlmutter DH (2000) Chemical chaperones mediate increased secretion of mutant α1-antitrypsin (α1-AT) Z: a potential pharmacological strategy for prevention of liver injury and emphysema in α1-AT deficiency. Proc Natl Acad Sci USA 97:1796–1801. doi:10.1073/pnas.97.4.1796

    Article  PubMed  CAS  Google Scholar 

  30. Qi X, Hosoi T, Okuma Y et al (2004) Sodium 4-phenylbutyrate protects against cerebral ischemic injury. Mol Pharmacol 66:899–908. doi:10.1124/mol.104.001339

    Article  PubMed  CAS  Google Scholar 

  31. Tatzelt J, Prusiner SB, Welch WJ (1996) Chemical chaperones interfere with the formation of scrapie prion protein. EMBO J 15:6363–6373

    PubMed  CAS  Google Scholar 

  32. Boyce M, Bryant KF, Jousse C et al (2005) A selective inhibitor of eIF2α dephosphorylation protects cells from ER stress. Science 307:935–939. doi:10.1126/science.1101902

    Article  PubMed  CAS  Google Scholar 

  33. Yamaguchi H, Wang HG (2004) CHOP is involved in endoplasmic reticulum stress-induced apoptosis by enhancing DR5 expression in human carcinoma cells. J Biol Chem 279:45495–45502. doi:10.1074/jbc.M406933200

    Article  PubMed  CAS  Google Scholar 

  34. Zinszner H, Kuroda M, Wang X et al (1998) CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev 12:982–995. doi:10.1101/gad.12.7.982

    Article  PubMed  CAS  Google Scholar 

  35. Corcoran CA, Luo X, He Q et al (2005) Genotoxic and endoplasmic reticulum stresses differentially regulate TRB3 expression. Cancer Biol Ther 4:1063–1067

    Article  PubMed  CAS  Google Scholar 

  36. Kim S, Zhang Z, Hitomi E et al (2006) Endoplasmic reticulum stress-induced caspase-4 activation mediates apoptosis and neurodegeneration in INCL. Hum Mol Genet 15:1826–1834. doi:10.1093/hmg/ddl105

    Article  PubMed  CAS  Google Scholar 

  37. Hitomi J, Katayama T, Eguchi Y et al (2004) Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and Aβ-induced cell death. J Cell Biol 165:347–356. doi:10.1083/jcb.200310015

    Article  PubMed  CAS  Google Scholar 

  38. Gotoh T, Terada K, Oyadomari S et al (2004) Hsp70-DnaJ chaperone pair prevents nitric oxide- and CHOP-induced apoptosis by inhibiting translocation of Bax to mitochondria. Cell Death Differ 11:390–402. doi:10.1038/sj.cdd.4401369

    Article  PubMed  CAS  Google Scholar 

  39. McCullough KD, Martindale JL, Klotz LO et al (2001) Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol 21:1249–1259. doi:10.1128/MCB.21.4.1249-1259.2001

    Article  PubMed  CAS  Google Scholar 

  40. Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8:519–529. doi:10.1038/nrm2199

    Article  PubMed  CAS  Google Scholar 

  41. Bajt ML, Knight TR, Lemasters JJ et al (2004) Acetaminophen-induced oxidant stress and cell injury in cultured mouse hepatocytes: protection by N-acetyl cysteine. Toxicol Sci 80:343–349. doi:10.1093/toxsci/kfh151

    Article  PubMed  CAS  Google Scholar 

  42. Hasselblatt P, Rath M, Komnenovic V et al (2007) Hepatocyte survival in acute hepatitis is due to c-Jun/AP-1-dependent expression of inducible nitric oxide synthase. Proc Natl Acad Sci USA 104:17105–17110. doi:10.1073/pnas.0706272104

    Article  PubMed  CAS  Google Scholar 

  43. Watanabe Y, Osaki H, Akaike T (1997) TNF-α bifunctionally induces proliferation in primary hepatocytes. Role of cell anchorage and spreading. J Immunol 159:4840–4847

    PubMed  CAS  Google Scholar 

  44. Los M, Wesselborg S, Schulze-Osthoff K (1999) The role of caspases in development, immunity, and apoptotic signal transduction: lessons from knockout mice. Immunity 10:629–639. doi:10.1016/S1074-7613(00)80062-X

    Article  PubMed  CAS  Google Scholar 

  45. Slee EA, Harte MT, Kluck RM et al (1999) Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspase-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. J Cell Biol 144:281–292. doi:10.1083/jcb.144.2.281

    Article  PubMed  CAS  Google Scholar 

  46. Urano F, Wang X, Bertolotti A et al (2000) Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287:664–666. doi:10.1126/science.287.5453.664

    Article  PubMed  CAS  Google Scholar 

  47. Nakagawa T, Zhu H, Morishima N et al (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-β. Nature 403:98–103. doi:10.1038/47513

    Article  PubMed  CAS  Google Scholar 

  48. Ni M, Lee AS (2007) ER chaperones in mammalian development and human diseases. FEBS Lett 581:3641–3651. doi:10.1016/j.febslet.2007.04.045

    Article  PubMed  CAS  Google Scholar 

  49. Sokka A, Putkonen N, Mudo G et al (2007) Endoplasmic reticulum stress inhibition protects against excitotoxic neuronal injury in the rat brain. J Neurosci 27:901–908. doi:10.1523/JNEUROSCI.4289-06.2007

    Article  PubMed  CAS  Google Scholar 

  50. Rubenstein RC, Zeitlin PL (2000) Sodium 4-phenylbutyrate downregulates Hsc70: implications for intracellular trafficking of ΔF508-CFTR. Am J Physiol Cell Physiol 278:C259–C267

    PubMed  CAS  Google Scholar 

  51. Cnop M, Ladriere L, Hekerman P et al (2007) Selective inhibition of eukaryotic translation initiation factor 2α dephosphorylation potentiates fatty acid-induced endoplasmic reticulum stress and causes pancreatic β-cell dysfunction and apoptosis. J Biol Chem 282:3989–3997. doi:10.1074/jbc.M607627200

    Article  PubMed  CAS  Google Scholar 

  52. Ozcan U, Yilmaz E, Ozcan L et al (2006) Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 313:1137–1140. doi:10.1126/science.1128294

    Article  PubMed  CAS  Google Scholar 

  53. Vilatoba M, Eckstein C, Bilbao G et al (2005) Sodium 4-phenylbutyrate protects against liver ischemia reperfusion injury by inhibition of endoplasmic reticulum-stress mediated apoptosis. Surgery 138:342–351. doi:10.1016/j.surg.2005.04.019

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the High-Tech Research Center Project for Private Universities: matching fund subsidy from MEXT (Ministry of Education, Culture, Sports, Science and Technology), 2004–2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshifumi Watanabe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanki, K., Kawamura, T. & Watanabe, Y. Control of ER stress by a chemical chaperone counteracts apoptotic signals in IFN-γ-treated murine hepatocytes. Apoptosis 14, 309–319 (2009). https://doi.org/10.1007/s10495-009-0318-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-009-0318-x

Keywords

Navigation