Skip to main content
Log in

Acoustic analysis of ultrasonic air-borne transducer with concave structure

  • Original Research Paper
  • Published:
Intelligent Service Robotics Aims and scope Submit manuscript

Abstract

This paper introduces an ultrasonic transducer with a concave curved structure. The transducer is based on a concave piezoelectric film on a silicone support with an air cavity. Specifically, an air cavity exists between the piezoelectric film and the support in the shape of a curved cuboid, providing space for the film to vibrate. We build a theoretical model of a concave piezoelectric transducer. To validate the model, we demonstrate a concave piezoelectric transducer and measure the ultrasound pressure field using an acoustic imaging camera. Two types of experiments are conducted by supplying a sinusoidal input voltage with a frequency sweep and a voltage sweep. The experimental results share similarity with the theoretical results. In addition, we conduct a parametric study to analyze the characteristics of the transducer. Interestingly, we find that the radius of curvature and axial length primarily contribute to ultrasound pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kruizinga P, Meulen PVD, Fedjajevs A, Mastik F, Springeling G, Jong ND, Bosch JG, Leus G (2017) Compressive 3D ultrasound imaging using a single sensor. Sci Adv 3(12):e1701423

    Article  Google Scholar 

  2. Brown LF, Mason JL (1996) Disposable PVDF ultrasonic transducers for nondestructive testing applications. IEEE Trans Ultrason Ferroelectr Freq Control 43(4):560–568

    Article  Google Scholar 

  3. Zhou Q, Lam KH, Zheng H, Qiu W, Shung K (2014) Piezoelectric single crystal ultrasonic transducers for biomedical applications. Prog Mater Sci 66:87–111

    Article  Google Scholar 

  4. Tsalamlal MY, Issartel P, Ouarti N, Ammi (2014) M HAIR: Haptic feedback with a mobile AIR jet. In: 2014 IEEE international conference on robotics and automation (ICRA), pp 2699–2706

  5. Rakkolainen I, Freeman E, Sand A, Raisamo R, Brewster S (2020) A survey of mid-air ultrasound haptics and its applications. IEEE Trans Haptics 14(1):2–19

    Article  Google Scholar 

  6. Pullano SA, Critello CD, Bianco MG, Menniti M, Fiorillo AS (2021) PVDF ultrasonic sensors for in-air applications: a review. IEEE Trans Ultrason Ferroelectr Freq Control 68(7):2324–2335

    Article  Google Scholar 

  7. Toda M, Tosima S (2000) Theory of curved, clamped, piezoelectric film, air-borne transducers. IEEE Trans Ultrason Ferroelectr Freq Control 47(6):1421–1431

    Article  Google Scholar 

  8. Toda M (2002) Cylindrical PVDF film transmitters and receivers for air ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control 49(5):626–634

    Article  Google Scholar 

  9. Wang H, Toda M (1999) Curved PVDF airborne transducer. IEEE Trans Ultrason Ferroelectr Freq Control 46(6):1375–1386

    Article  Google Scholar 

  10. Gürkan K, Akan A (2015) Simulation and measurement of air-coupled semi-circular and conical PVDF sensors. IEEE Sens J 16(4):983–988

    Article  Google Scholar 

  11. Chen J, Zhao J, Lin L, Sun X (2019) Quasi-spherical PVDF ultrasonic transducer with double-cylindrical PVDF structure. IEEE Sens J 20(1):113–120

    Article  Google Scholar 

  12. Rosnitskiy PB, Yuldashev PV, Sap- ozhnikov OA, Maxwell AD, Kreider W, Bailey MR, Khokhlova VA (2016) Design of HIFU transducers for generating specified nonlinear ultrasound fields. IEEE Trans Ultrason, Ferroelectr Freq Control 64(2):374–390

    Article  Google Scholar 

  13. Goldberg FM, McDermott LC (1987) An investigation of student understanding of the real image formed by a converging lens or concave mirror. Am J Phys 55(2):108–119

    Article  Google Scholar 

  14. Cha JH, Kang B, Jang J, Chang JH (2015) A 15-MHz 1–3 piezocomposite concave array transducer for ophthalmic imaging. IEEE Trans Ultrason Ferroelectr Freq Control 62(11):1994–2004

    Article  Google Scholar 

  15. Jang J, Chang JH (2016) Design and fabrication of double-focused ultrasound transducers to achieve tight focusing. Sensors 16(8):1248

    Article  Google Scholar 

  16. Castonguay M, Cheeke JDN (1985) Scanning acoustic microscopy using PVDF concave lenses. Electron Lett 21(21):990–992

    Article  Google Scholar 

  17. Lee YC, Chu CC (2005) A double-layered line-focusing PVDF transducer and v(z) measurement of surface acoustic wave. Jpn Soc Appl Phys 44(3R):1462

    Article  MathSciNet  Google Scholar 

  18. Lu Y, He C, Song G, Wu B, Chung CH, Lee YC (2014) Fabrication of broadband poly (vinylidene difluoride-trifluroethylene) line-focus ultrasonic transducers for surface acoustic wave measurements of anisotropy of a (1 0 0) silicon wafer. Ultrasonics 54(1):296–304

    Article  Google Scholar 

  19. Toda M (2001) Phase-matched air ultrasonic transducers using corrugated PVDF film with half wavelength depth. IEEE Trans Ultrason Ferroelectr Freq Control 48(6):1568–1574

    Article  Google Scholar 

  20. Du G, Breazeale MA (1985) The ultrasonic field of a Gaussian transducer. J Acoust Soc Am 78(6):2083–2086

    Article  Google Scholar 

  21. Ülker KB, Miller EL, Cleveland RO (2007) Semi-analytical computation of the acoustic field of a segment of a cylindrically concave transducer in lossless and attenuating media. J Acoust Soc Am 121(2):1226–1237

    Article  Google Scholar 

  22. Arenas JP, Ramis J, Alba J (2010) Estimation of the sound pressure field of a baffled uniform elliptically shaped transducer. Appl Acoust 71(2):128–133

    Article  Google Scholar 

  23. Manbachi A, Cobbold RSC (2011) Development and application of piezoelectric materials for ultrasound generation and detection. Ultrasound 19(4):187–196

    Article  Google Scholar 

  24. Frost HM (1979) Electromagnetic-ultrasound transducers: principles, practice, and applications. Phys Acoust 14:179–275

    Article  Google Scholar 

  25. Salim MS, Malek MA, Heng R, Juni K, Sabri N (2012) Capacitive micromachined ultrasonic transducers: technology and application. J Med Ultrasound 20(1):8–31

    Article  Google Scholar 

  26. Ritter T, Geng X, Shung KK, Lopath PD, Park SE, Shrout TR (2000) Single crystal PZN/PT-polymer composites for ultrasound transducer applications. IEEE Trans Ultrason Ferroelectr Freq Control 47(4):792–800

    Article  Google Scholar 

  27. Liu T, Dangi A, Kim JN, Kothapalli SR, Choi KS, McKinstry ST, Jackson T (2021) Flexible thin-film PZT ultrasonic transducers on polyimide substrates. Sensors 21(3):1014

    Article  Google Scholar 

  28. Wang Z, Xue QT, Chen YQ, Shu Y, Tian H, Yang Y, Xie D, Luo JW, Ren TL (2015) A flexible ultrasound transducer array with micro-machined bulk PZT. Sensors 15(2):2538–2547

    Article  Google Scholar 

  29. Chen Y, Bao X, Wong CM, Cheng J, Wu H, Song H, Ji X, Wu S (2018) PZT ceramics fabricated based on stereolithography for an ultrasound transducer array application. Ceram Int 44(18):22725–22730

    Article  Google Scholar 

  30. Moreno E, Acevedo P,Fuentes M, Soto mayor A, Borroto L, Villafuerte ME, Leija L (2005) Design and construction of a bolt-clamped langevin transducer. In: 2005 2nd international conference on electrical and electronics engineering, pp 393–395. IEEE

  31. Morita T, Kurosawa MK, Higuchi T (1999) Cylindrical micro ultrasonic motor utilizing bulk lead Zirconate Titanate (PZT). Jpn J Appl Phys 38(5S):3347

    Article  Google Scholar 

  32. Yan Z, Sun L (2007) Design, control and application of a PZT-driven micro-stage. In : 2007 International conference on mechatronics and automation, pp. 1471–1476. IEEE

  33. Ambrosy A, Holdik K (1984) Piezoelectric PVDF films as ultrasonic transducers. J Phys E Sci Instrum 17(10):856

    Article  Google Scholar 

  34. Kawai H (1969) The piezoelectricity of poly (vinylidene Fluoride). Jpn J Appl Phys 8(7):975

    Article  Google Scholar 

  35. Dallaev R, Pisarenko T, Sobola D, Orud zhev F, Ramazanov S, Trčka T, (2022) Brief review of PVDF properties and applications potential. Polymers 14(22):4793

  36. Feiring A (2011) Fluorine-containing polymers. Encycl Mater Sci Technol, pp 3209–3215

  37. Rebby JN (1976) Theory and analysis of elastic plates. Texas A &M University, College Station

    Google Scholar 

  38. Timoshenko S, Woinowsky-Krieger S (1959) Theory of plates and shells, vol 2. McGraw-Hill, New York

    Google Scholar 

  39. Lavery JE (2002) Shape-preserving, multiscale interpolation by univariate curvature-based cubic L1 splines in Cartesian and polar coordinates. Comput Aided Geom Des 19(4):257–273

    Article  Google Scholar 

  40. Beranek L (1986) Acoustics. American Institute of Physics, New York

    Google Scholar 

  41. Rayleigh (1897) On the passage of waves through apertures in Plane screens, and allied problems. Lond Edinb Dublin Philos Mag J Sci 43(263):259–272

  42. Measurement. Specialties Metallized Piezo Film Sheets. https://www.te.com (2017)

  43. Dias T, Monaragala R, Soleimani M (2007) Acoustic response of a curved active PVDF-paper/fabric speaker for active noise control of automotive interior noise. Meas Sci Technol 18(5):1521

    Article  Google Scholar 

  44. Limei X, Jianfang C, Dagui H (2005) Design and characterization of a PVDF ultrasonic acoustic transducer applied in audio beam loudspeaker. In: International Conference on Mechatronics and Automation, IEEE

  45. Han J, Lang JH, Bulović V (2022) An ultrathin flexible loudspeaker based on a piezoelectric microdome array. IEEE Trans Ind Electron 70(1):985–994

    Article  Google Scholar 

  46. Aurelle N, Guyomar D, Richard C, Gonnard P, Eyraud L (1996) Nonlinear behavior of an ultrasonic transducer. Ultrasonics 34(2–5):187–191

    Article  Google Scholar 

  47. Standard I (1988) IEEE standard on piezoelectricity. ANSI/IEEE Std, 176–1987

  48. Kim H, Lee K, Jo G, Kim J, Lim M, Cha Y (2020) Tendon-inspired piezoelectric sensor for biometric application. IEEE/ASME Trans Mechatron 26(5):2538–2547

    Article  Google Scholar 

  49. Bandla S, Allahkarami M, Hanan JC (2014) Out-of-plane orientation and crystallinity of biaxially stretched polyethylene terephthalate. Powder Differ 29(2):123–126

    Article  Google Scholar 

  50. Lee Y, Park K, Kang S, Yeo C, Kim J, Kang E, Song Y, Lee Y (2015) Fabrication and analysis of thin-film GaAs solar cell on flexible thermoplastic substrate using a low-pressure cold-welding. Curr Appl Phys 15(11):1312–1317

    Article  Google Scholar 

  51. Jones FE (1978) The air density equation and the transfer of the mass unit. J Res Natl Bur Stand 83(5):419

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Gyeong Min Lee for his help with drawing schematics. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) under Grant 2022M3C1A3098746.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youngsu Cha.

Ethics declarations

Conflict of interest:

The authors declare that they have no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, C.G., Cha, Y. Acoustic analysis of ultrasonic air-borne transducer with concave structure. Intel Serv Robotics (2024). https://doi.org/10.1007/s11370-024-00538-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11370-024-00538-1

Keywords

Navigation