Skip to main content
Log in

Detecting deformation of a soft cylindrical structure using piezoelectric sensors

  • Original Research Paper
  • Published:
Intelligent Service Robotics Aims and scope Submit manuscript

Abstract

In this paper, we propose a model for the electrical responses of a soft cylindrical structure with shear deformations using piezoelectric sensors. Specifically, to analyze the cylindrical structure during movement, we assumed that a shear force was applied to the flat surface on the top of the structure. Using this force, we established a model using the Euler–Bernoulli beam theory and estimated the electrical responses of the sensors generated by its deformation. To validate the theoretical analysis, a soft cylindrical structure was fabricated using silicone containing piezoelectric sensors. Moreover, a series of tests were performed by applying a tensile testing machine and vibration exciter to the soft structure. During the experiments, we observed the sensor outputs while generating vibrations in the form of triangular and sinusoidal waves. The experimental outputs demonstrate that the sensors can distinguish the displacements and directions of the structural deformations, similar to our predictive model, through the voltage outputs and phase variations of the sensors. Moreover, parametric studies were performed to investigate the sensor responses under structural deformations affected by four parameters related to the material and external forces: the Young’s modulus, radius, mass density, and frequency of the sinusoidal shear force.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Whitesides GM (2018) Soft robotics. Angew Chem Int Ed 57(16):4258–4273

    Article  Google Scholar 

  2. Lipson H (2014) Challenges and opportunities for design, simulation, and fabrication of soft robots. Soft Rob 1(1):21–27

    Article  Google Scholar 

  3. Trivedi D, Rahn CD, Kier WM, Walker ID (2008) Soft robotics: biological inspiration, state of the art, and future research. Appl Bionics Biomech 5(3):99–117

    Article  Google Scholar 

  4. Youn JH, Mun H, Kyung KU (2021) A wearable soft tactile actuator with high output force for fingertip interaction. IEEE Access 9:30206–30215

    Article  Google Scholar 

  5. Fras J, Noh Y, Macias M, Wurdemann H, Althoefer K (2018) Bio-inspired octopus robot based on novel soft fluidic actuator. In: 2018 IEEE international conference on robotics and automation (ICRA), pp 1583–1588

  6. Xie Z, Domel AG, An N, Green C, Gong Z, Wang T, Knubben EM, Weaver JC, Bertoldi K, Wen L (2020) Octopus arm-inspired tapered soft actuators with suckers for improved grasping. Soft Rob 7(5):639–648

    Article  Google Scholar 

  7. Sol JAHP, Peeketi AR, Vyas N, Schenning APHJ, Annabattula RK, Debije MG (2019) Butterfly proboscis-inspired tight rolling tapered soft actuators. Chem Commun 55(12):1726–1729

    Article  Google Scholar 

  8. Katzschmann RK, Marchese AD, Rus D (2015) Autonomous object manipulation using a soft planar grasping manipulator. Soft Rob 2(4):155–164

    Article  Google Scholar 

  9. Marchese AD, Komorowski K, Onal CD, Rus D (2014) Design and control of a soft and continuously deformable 2D robotic manipulation system. In: 2014 IEEE international conference on robotics and automation (ICRA), pp 2189–2196

  10. Lee YM, Choi HR, Koo JC (2022) Analytical approach to deformation of a soft rotary actuator with double curvature shell shape. J Korea Rob Soc 17(1):68–75

    Article  Google Scholar 

  11. Hashem R, Stommel M, Cheng LK, Xu W (2021) Design and characterization of a bellows-driven soft pneumatic actuator. IEEE ASME Trans Mechatron 26(5):2327–2338

    Article  Google Scholar 

  12. Martinez RV, Fish CR, Chen X, Whitesides GM (2012) Elastomeric origami: programmable paper-elastomer composites as pneumatic actuators. Adv Func Mater 22(7):1376–1384

    Article  Google Scholar 

  13. Ranzani T, Gerboni G, Cianchetti M, Menciassi A (2015) A bioinspired soft manipulator for minimally invasive surgery. Bioinspir Biomim 10(3):035008

    Article  Google Scholar 

  14. Dawood AB, Fras J, Aljaber F, Mintz Y, Arezzo A, Godaba H, Althoefer K (2021) Fusing dexterity and perception for soft robot-assisted minimally invasive surgery: what we learnt from STIFF-FLOP. Appl Sci 11(14):6586

    Article  Google Scholar 

  15. Gul JZ, Yang YJ, Su KY, Choi KH (2017) Omni directional multimaterial soft cylindrical actuator and its application as a steerable catheter. Soft Rob 4(3):224–240

    Article  Google Scholar 

  16. Pfeil S, Henke M, Katzer K, Zimmermann M, Gerlach G (2020) A worm-like biomimetic crawling robot based on cylindrical dielectric elastomer actuators. Front Robot AI 7:9

    Article  Google Scholar 

  17. Elgeneidy K, Lohse N, Jackson M (2018) Bending angle prediction and control of soft pneumatic actuators with embedded flex sensors—a data-driven approach. Mechatronics 50:234–247

    Article  Google Scholar 

  18. Elgeneidy K, Neumann G, Jackson M, Lohse N (2018) Directly printable flexible strain sensors for bending and contact feedback of soft actuators. Front Robot AI 5:2

    Article  Google Scholar 

  19. Costa JC, Spina F, Lugoda P, Garcia-Garcia L, Roggen D, Münzenrieder N (2019) Flexible sensors-from materials to applications. Technologies 7(2):35

    Article  Google Scholar 

  20. Wurdemann HA, Sareh S, Shafti A, Noh Y, Faragasso A, Chathuranga DS, Liu H, Hirai S, Althoefer K (2015) Embedded electro-conductive yarn for shape sensing of soft robotic manipulators. In: 2015 37th Annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp 8026–8029

  21. Chhetry A, Das PS, Yoon H, Park JY (2018) A sandpaper-inspired flexible and stretchable resistive sensor for pressure and strain measurement. Org Electron 62:581–590

    Article  Google Scholar 

  22. Matsuzaki R, Todoroki A (2007) Wireless flexible capacitive sensor based on ultra-flexible epoxy resin for strain measurement of automobile tires. Sens Actuators A 140(1):32–42

    Article  Google Scholar 

  23. Fujimoto KT, Watkins JK, Phero T, Litteken D, Tsai K, Bingham T, Ranganatha KL, Johnson BC, Deng Z, Jaques B, Estrada D (2020) Aerosol jet printed capacitive strain gauge for soft structural materials. Npj Flex Electron 4:32

    Article  Google Scholar 

  24. Galloway KC, Chen Y, Templeton E, Rife B, Godage IS, Barth EJ (2019) Fiber optic shape sensing for soft robotics. Soft Rob 6(5):671–684

    Article  Google Scholar 

  25. Youn JH, Mun H, Jang SY, Kyung KU (2021) Highly stretchable-compressible coiled polymer sensor for soft continuum manipulator. Smart Mater Struct 31(1):015043

    Article  Google Scholar 

  26. Ji Z, Zhang M (2022) Highly sensitive and stretchable piezoelectric strain sensor enabled wearable devices for real-time monitoring of respiratory and heartbeat simultaneously. Nanotechnol Precis Eng 5:013002

    Article  Google Scholar 

  27. Gariya N, Kumar P, Prasad B, Singh T (2023) Soft pneumatic actuator with an embedded flexible polymeric piezoelectric membrane for sensing bending deformation. Mater Today Commun 35:105910

    Article  Google Scholar 

  28. Shapiro Y, Wolf A, Kósa G (2013) Piezoelectric deflection sensor for a bi-bellows actuator. IEEE ASME Trans Mechatron 18(3):1226–1230

    Article  Google Scholar 

  29. Shapiro Y, Kósa G, Wolf A (2014) Shape tracking of planar hyper-flexible beams via embedded PVDF deflection sensors. IEEE ASME Trans Mechatron 19(4):1260–1267

    Article  Google Scholar 

  30. Vinogradov A, Holloway F (1999) Electro-mechanical properties of the piezoelectric polymer PVDF. Ferroelectrics 226(1):169–181

    Article  Google Scholar 

  31. Thuruthel TG, Falotico E, Renda F, Laschi C (2017) Learning dynamic models for open loop predictive control of soft robotic manipulators. Bioinspir Biomim 12(6):066003

    Article  Google Scholar 

  32. Rodrigue H, Wang W, Kim DR, Ahn SH (2017) Curved shape memory alloy-based soft actuators and application to soft gripper. Compos Struct 176:398–406

    Article  Google Scholar 

  33. Jin H, Ouyang Y, Chen H, Kong J, Li W, Zhang S (2022) Modeling and motion control of a soft SMA planar actuator. IEEE ASME Trans Mechatron 27(2):916–927

    Article  Google Scholar 

  34. He G (2019) Motion planning and control for endoscopic operations of continuum manipulators. Intel Serv Robot 12:159–166

    Article  Google Scholar 

  35. Mehrkish A, Janabi-Sharifi F, Goharimanesh M, Norouzi-Ghazbi S (2023) Multiple aspects grasp quality evaluation in underactuated grasp of tendon-driven continuum robots. Intel Serv Robot 16:33–48

    Google Scholar 

  36. Abdarrhim MA, Abdussalam MR (2021) Euler–Bernoulli and Timoshenko Beam theories analytical and numerical comprehensive revision. Eur J Eng Technol Res 6(7):20–32

    Article  Google Scholar 

  37. Jessica LS, Nicholas AV, Krysten EK, Benjamin L, Martin LT, Phillip AS, Karen S, Teresa ACK (2015) Use of silicone materials to simulate tissue biomechanics as related to deep tissue injury. Adv Skin Wound Care 28(2):59–68

    Article  Google Scholar 

  38. Cowper GR (1966) The shear coefficient in Timoshenko’s beam theory. J Appl Mech 33(2):335–340

    Article  Google Scholar 

  39. Chen WR, Chang H (2017) Closed-form solutions for free vibration frequencies of functionally graded Euler–Bernoulli beams. Mech Compos Mater 53:79–98

    Article  Google Scholar 

  40. Chesne S, Pezerat C (2011) Distributed piezoelectric sensors for boundary force measurements in Euler–Bernoulli beams. Smart Mater Struct 20(7):075009

    Article  Google Scholar 

  41. Marechal L, Balland P, Lindenroth L, Petrou F, Kontovounisios C, Bello F (2021) Toward a common framework and database of materials for soft robotics. Soft Rob 8(3):284–297

    Article  Google Scholar 

  42. Lee CK, Moon FC (1989) Laminated piezopolymer plates for torsion and bending sensors and actuators. J Acoust Soc Am 85(6):2432–2439

    Article  Google Scholar 

  43. Kim H, Lim M, Cha Y (2019) Cross-shaped piezoelectric beam for torsion sensing. Smart Mater Struct 29(1):015023

    Article  Google Scholar 

  44. Cha Y, You H (2019) Parameter study on piezoelectric length to harvesting power in torsional loads. IEEE ASME Trans Mechatron 24(3):1220–1227

    Article  Google Scholar 

  45. Caliò R, Rongala UB, Camboni D, Milazzo M, Stefanini C, De Petris G, Oddo CM (2014) Piezoelectric energy harvesting solutions. Sensors 14(3):4755–4790

    Article  Google Scholar 

  46. Howells CA (2009) Piezoelectric energy harvesting. Energy Convers Manag 50:1847–1850

    Article  Google Scholar 

  47. Cha Y (2017) Energy harvesting using flexible piezoelectric materials from human walking motion: theoretical analysis. J Intell Mater Syst Struct 28(20):3006–3015

    Article  Google Scholar 

  48. Erturk A, Tarazaga PA, Farmer JR, Inman DJ (2009) Effect of strain nodes and electrode configuration on piezoelectric energy harvesting from cantilevered beams. J Vib Acoust 131(1):011010

  49. Kipnis N (2009) A law of physics in the classroom: the case of Ohm’s law. Sci Educ 18:349–382

  50. Cha Y, Seo J, Kim JS, Park JM (2017) Human-computer interface glove using flexible piezoelectric sensors. Smart Mater Struct 26(5):057002

    Article  Google Scholar 

  51. Cha Y, Hong J, Lee J, Park JM, Kim K (2016) Flexible piezoelectric energy harvesting from mouse click motions. Sensors 16(7):1045

    Article  Google Scholar 

  52. Li W, Wang WT, Sun WH, Wang WY, Zhu NH (2014) Generation of triangular waveforms based on a microwave photonic filter with negative coefficient. Opt Express 22(12):14993–15001

    Article  Google Scholar 

  53. Kim H, Lee K, Jo G, Kim JS, Lim MT, Cha Y (2021) Tendon-inspired piezoelectric sensor for biometric application. IEEE ASME Trans Mechatron 26(5):2538–2547

    Article  Google Scholar 

  54. Kim B, Lee SB, Lee J, Cho S, Park H, Yeom S, Park SH (2012) A comparison among Neo–Hookean model, Mooney–Rivlin model, and Ogden model for chloroprene rubber. Int J Precis Eng Manuf 13(5):759–764

    Article  Google Scholar 

  55. Eshaghi M, Ghasemi M, Khorshidi K (2021) Design, manufacturing and applications of small-scale magnetic soft robots. Extreme Mech Lett 44:101268

    Article  Google Scholar 

  56. Yu M, Cheng X, Peng S, Cao Y, Lu Y, Li B, Feng X, Zhang Y, Wang H, Jiao Z, Wang P, Zhao L (2022) A self-sensing soft pneumatic actuator with closed-Loop control for haptic feedback wearable devices. Mater Des 223:111149

    Article  Google Scholar 

  57. Gabardi M, Solazzi M, Leonardis D, Frisoli A (2016) A new wearable fingertip haptic interface for the rendering of virtual shapes and surface features. In: 2016 IEEE haptics symposium (HAPTICS), pp 140–146

  58. Kim SJ, Choi JY, Moon HP, Choi HR, Koo JC (2016) Development of polymer slip tactile sensor using relative displacement of separation layer. J Korea Robot Soc 11(2):100–107

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Kyung Min Lee for his help with drawing schematics. This work is supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea Ministry of Science and ICT (MSIT) (No. 2022M3C1A3098746).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youngsu Cha.

Ethics declarations

Competing Interests

The authors declare that they have no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Min, J., Kim, H. & Cha, Y. Detecting deformation of a soft cylindrical structure using piezoelectric sensors. Intel Serv Robotics 17, 85–94 (2024). https://doi.org/10.1007/s11370-023-00484-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11370-023-00484-4

Keywords

Navigation