Skip to main content
Log in

Using geostatistical methods in soil magnetometry: a review

  • Soils, Sec 4 • Ecotoxicology • Review Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Soil contamination is one of the most pressing environmental problems on a global scale. However, assessing the shape and size of an area where pollution occurs, and the spatial variation in the pollution level, is a complex issue. Field magnetometry is a cheap and fast tool for soil pollution assessment. The purpose of the paper is to systematically describe the history, current state, and potential future applications of geostatistical methods in field magnetometry.

Materials and methods

The article was written based on over a hundred outstanding scientific papers describing soil research around the world using field magnetometry and geostatistical methods, combined with various secondary variables such as geochemical and diffuse reflectance spectroscopy measurements of soil as well as satellite observations.

Results and discussion

Geostatistical methods allow for the optimal use of the magnetometric method in areas with different types of soils such as forests, arable fields, meadows, fallow lands, and urban areas as well as for the determination of spatial variability parameters of magnetic susceptibility. The use of geostatistical methods in field magnetometry also allows for a more accurate determination of other soil and environmental parameters significantly affecting the value of magnetic susceptibility, which must be taken into account when conducting field measurements.

Conclusions

Both geostatistics and field magnetometry are considered groundbreaking methods in pedological research but even greater results arise from the simultaneous use of these methods. The synergy effect resulting from the use of geostatistical methods in field magnetometry allowed for the achievement of many significant scientific and practical findings. Especially, the cokriging method plays an increasingly important role in magnetometric research, thanks to the integration of magnetic susceptibility measurements with other types of measurements.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

References

  • Abbaspour KC, Schulin R, van Genuchten MTh, Schlappi E (1998) An alternative to cokriging for situations with small sample sizes. Math Geol 30(1):259–274

    Article  Google Scholar 

  • Adhikary PP, Dash CJ, Bej R et al (2011) Indicator and probability kriging methods for delineating Cu, Fe, and Mn contamination in groundwater of Najafgarh Block, Delhi, India. Environ Monit Assess 176:663–676. https://doi.org/10.1007/s10661-010-1611-4

  • Ayoubi S, Moazzeni Dehaghani S (2020) Identifying impacts of land use change on soil redistribution at different slope positions using magnetic susceptibility. Arab J Geosci 13:1–11

    Article  Google Scholar 

  • Barrios MR, Marques J Jr, Panosso AR, Siqueira DS, La Scala N (2012) Magnetic susceptibility to identify landscape segments on a detailed scale in the region of Jaboticabal São Paulo Brazil. Rev Bras Cienc Solo 36:1073–1082

    Article  CAS  Google Scholar 

  • Bevington J, Scudiero E, Teatini T, Vellidis G, Morari F (2019) Factorial kriging analysis leverages soil physical properties and exhaustive data to predict distinguished zones of hydraulic properties. Comput Electron Agric 156:426–438

    Article  Google Scholar 

  • Blaha U, Appel E, Stanjek H (2008) Determination of anthropogenic boundary depth in industrially polluted soil and semi-quantification of heavy metal loads using magnetic susceptibility. Environ Pollut 156(2):278–289

    Article  CAS  Google Scholar 

  • Boyko T, Scholger R, Stanjek H (2004) Topsoil magnetic susceptibility mapping as a tool for pollution monitoring: repeatability of in situ measurements. J Appl Geophys 55(3–4):249–259

    Article  Google Scholar 

  • Brito WBM, Campos MCC, Oliveira IAD, Cunha JMD, Freitas LD, Soares MDR, Mantovanelli BC (2021) Pedotransfer functions to estimate some soil properties in Indian Black Earth, south of Amazonas State. An Acad Bras Ciênc 93(4):e20190543

    Article  CAS  Google Scholar 

  • Brito WBM, Campos MCC, Souza FG, Silva LS, Cunha JM, de Lima AFL, Martins TS, Oliveira FP, Oliveira IA (2022) Spatial patterns of magnetic susceptibility optimized by anisotropic correction in different Alisols in southern Amazonas. Brazil Precision Agriculture 23(2):419–449

    Article  Google Scholar 

  • Camargo LA, Marques J Jr, Barrón V, Alleoni LRF, Pereira GT, Teixeira DDB, Bahia ASRS (2018) Predicting potentially toxic elements in tropical soils from iron oxides magnetic susceptibility and diffuse reflectance spectra. CATENA 165:503–515

    Article  CAS  Google Scholar 

  • Catelan MG, Marques J Jr, Siqueira DS, Gomes RP, Bahia A (2022) Sugarcane yield and quality using soil magnetic susceptibility. Sci Agric 79(4):e20200329

    Article  Google Scholar 

  • Cervi EC, Costa ACS, Souza IG Jr (2014) Magnetic susceptibility and the spatial variability of heavy metals in soils developed on basalt. J Appl Geophy 111:377–383

    Article  Google Scholar 

  • Cervi EC, Maher B, Poliseli PC, de Souza Junior IG, da Costa ACS (2019) Magnetic susceptibility as a pedogenic proxy for grouping of geochemical transects in landscapes. J Appl Geophy 169:109–117

    Article  Google Scholar 

  • Chaparro Marcos AE, Gogorza CSG, Chaparro Mauro AE, Irurzun MA, Sinito AM (2006) Review of magnetism and heavy metal pollution studies of various environments in Argentina. Earth Planets Space 58:1411–1422

    Article  Google Scholar 

  • Chianese D, D’Emilio M, Bavusi M et al (2006) Magnetic and ground probing radar measurements for soil pollution mapping in the industrial area of Val Basento (Basilicata Region, Southern Italy): a case study. Environ Geol 49:389–404

    Article  CAS  Google Scholar 

  • Chikazumi S, Graham CD Jr (1997) Physics of ferromagnetism. Clarendon press, Oxford

    Book  Google Scholar 

  • Clark I (1979) Practical Geostatistics. Applied Science Publishers Ltd., London

    Google Scholar 

  • Cressie NAC (1991) Statistics for spatial data. John Wiley & Sons, New York

    Google Scholar 

  • Cruz C, Góis J, Sant’Ovaia H,·Noronha F (2020) Geostatistical approach to the study of the magnetic susceptibility variation: Lamas de Olo Pluton case study. J Iber Geol 46:279–289

    Article  Google Scholar 

  • Curran PJ (1988) The semivariances in remote sensing: an introduction. Remote Sens Environ 24:493–507

    Article  Google Scholar 

  • D’Emilio M, Coluzzi R, Macchiato M, Imbrenda V, Ragosta M, Sabia S, Simoniello T (2018) Satellite data and soil magnetic susceptibility measurements for heavy metals monitoring: findings from Agri Valley (Southern Italy). Environ Earth Sci 77(3):1–7

    Article  Google Scholar 

  • de Sousa Mendes W, Dematte JA, Silvero NE, Campos LR (2021) Integration of multispectral and hyperspectral data to map magnetic susceptibility and soil attributes at depth: a novel framework. Geoderma 385:114885

    Article  Google Scholar 

  • Dearing JA (1994) Environmental magnetic susceptibility: using the Bartington MS2 system. Chi Publishing, Kenilworth, UK

    Google Scholar 

  • Declercq Y, Samson R, Castanheiro A, Spassov S, Tack FM, Van De Vijver E, De Smedt P (2019) Evaluating the potential of topsoil magnetic pollution mapping across different land use classes. Sci Total Environ 685:345–356

    Article  CAS  Google Scholar 

  • Deutsch CV, Journel AG (1992) GSLIB Geostatistical Software Library and User’s Guide. Oxford University Press, New York

    Google Scholar 

  • Dobermann A, Goovaerts P, George T (1995) Sources of soil variation in an acid Ultisol of the Philippines Geoderma 68(3):173–191. ISSN 0016-7061. https://doi.org/10.1016/0016-7061(95)00035-M, https://www.sciencedirect.com/science/article/pii/001670619500035M

  • El Baghdadi M, Barakat A, Sajieddine M, Nadem S (2012) Heavy metal pollution and soil magnetic susceptibility in urban soil of Beni Mellal City (Morocco). Environ Earth Sci 66(1):141–155

    Article  Google Scholar 

  • Evans M, Heller F (2003) Environmental magnetism: principles and applications of enviromagnetics. Academic Press, San Diego

    Google Scholar 

  • Fabijańczyk P (2010) Statystyczna i geostatystyczna analiza możliwości wykorzystania pomiarów magnetometrycznych do oceny potencjalnego zanieczyszczenia gleb metalami ciężkimi. Dissertation, Warsaw University of Technology (in Polish)

  • Fabijańczyk P, Zawadzki J (2019) Using geostatistical gaussian simulation for designing and interpreting soil surface magnetic susceptibility measurements. Int J Environ Res Public Health 16(18):3497

    Article  Google Scholar 

  • Fabijańczyk P, Zawadzki J, Magiera T (2017) Magnetometric assessment of soil contamination in problematic area using empirical Bayesian and indicator kriging: a case study in Upper Silesia, Poland. Geoderma 308:69–77

    Article  Google Scholar 

  • Fabijańczyk P, Zawadzki J, Magiera T, Szuszkiewicz M (2016) A methodology of integration of magnetometric and geochemical soil contamination measurements. Geoderma 277:51–60

    Article  Google Scholar 

  • Forstner U (1995) Land Contamination by metals: global scope and magnitude of problem In: Allen HE, Huang CP, Bailey GW, and A. R. Bowers (eds) Metal speciation and contamination of soil, CRC Press, Boca Raton

  • Fürst C, Lorz C, Makeschin F (2009) Testing a soil magnetometry technique in a highly polluted industrial region in north-eastern Germany. Water Air Soil Pollut 202(1–4):33–43

    Article  Google Scholar 

  • Golden N (2019) Magnetic and interpolation techniques in the identification and analysis of metal contaminants in urban soils. Dissertation, National University of Ireland Galway

  • Golden N, Morrison L, Gibson , Zhang CS (2011) High resolution mapping of metal contamination in an urban sports ground (Galway, Ireland) using ordinary cokriging with magnetic susceptibility data. GeoMed2011 – 4th International Conference on Medical Geology, Italy.

  • Golden N, Zhang C, Potito AP, Gibson PJ, Bargary N, Morrison L (2017) Impact of grass cover on the magnetic susceptibility measurements for assessing metal contamination in urban topsoil. Environ Res 155:294–306

    Article  CAS  Google Scholar 

  • Golden N, Zhang C, Potito A, Gibson PJ, Bargary N, Morrison L (2020) Use of ordinary cokriging with magnetic susceptibility for mapping lead concentrations in soils of an urban contaminated site. Soils Sediments 20(3):1357–1370

    Article  CAS  Google Scholar 

  • Goovaerts P (1997) Geostatistics for Natural Resources Evaluation. Oxford University Press, New York

    Book  Google Scholar 

  • Goovaerts P (1998) Geostatistical tools for characterizing the spatial variability of microbiological and physico-chemical soil properties. Biol Fert Soils 27:315–334. https://doi.org/10.1007/s003740050439

  • Grimley DA, Arruda NK, Bramstedt MW (2004) Using magnetic susceptibility to facilitate more rapid, reproducible and precise delineation of hydric soils in the midwestern USA. CATENA 58:183–213

    Article  Google Scholar 

  • Grimley DA, Vepraskas MJ (2000) Magnetic susceptibility for use in delineating hydric soils. Soil Sci Soc Am J 64:2174–2180

    Article  CAS  Google Scholar 

  • Haining R (1990) Spatial data analysis in the social and environmental sciences. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Hanesch M, Rantitsch G, Hemetsberger S, Scholger R (2007) Lithological and pedological influences on the magnetic susceptibility of soil: their consideration in magnetic pollution mapping. Sci Total Environ 382:351–363

    Article  CAS  Google Scholar 

  • Hanesch M, Scholger R (2002) Mapping of heavy metal loadings in soils by means of magnetic susceptibility measurements. Env Geol 42:857–870

    Article  CAS  Google Scholar 

  • Hanesch M, Scholger R (2005) The influence of soil type on the magnetic susceptibility measured throughout soil profiles. Geophys J Int 161(1):50–56

    Article  CAS  Google Scholar 

  • Heller F, Strzyszcz Z, Magiera T (1998) Magnetic record of industrial pollution on forest soils of Upper Silesia (Poland). J Geophys Res Solid Earth 103(B8):17767–17774

    Article  CAS  Google Scholar 

  • Hengl T (2009) A Practical Guide to Geostatistical Mapping. University of Amsterdam, Amsterdam 1–26. http://spatial-analyst.net/book/

  • Isaaks EH, Srivastava RM (1989) An introduction to applied geostatistics. Oxford University Press, New York

    Google Scholar 

  • ISO 21226:2019 —International ISO standard: soil quality—guideline for the screening of soil polluted

  • Ji J, Chen J, Jin L, Zhang W, Balsam W, Lu H (2004) Relating magnetic susceptibility (MS) to the simulated thematic mapper (TM) bands of the Chinese loess: application of TM image for soil MS mapping on Loess Plateau. J Geophys Res 109:B05102

    Google Scholar 

  • Jiles D (2016) Introduction to Magnetism, and Magnetic Materials. Taylor and Francis Group, Boca Raton, FL

    Google Scholar 

  • Jordanova N (2016) Soil magnetism—applications in pedology, environmental science and agriculture. Elsevier, London

    Google Scholar 

  • Jordanova N, Jordanova D, Petrov P (2016) Soil magnetic properties in Bulgaria at a national scale—Challenges and benefits. Glob Planet Change 137:107–122

    Article  Google Scholar 

  • Jordanova N, Jordanova D, Veneva L, Yorova K, Petrovsky E (2003) Magnetic response of soils and vegetation to heavy metal pollution a case study. Environ Sci Tech 37(19):4417–4424

    Article  CAS  Google Scholar 

  • Journel AG (1989) Fundamentals of Geostatistics in Five Lessons. American Geophysical Union, Washington, D.C.

    Book  Google Scholar 

  • Journel AG, Huibregts CJ (1978) Mining Geostatistics. Academic Press, London

    Google Scholar 

  • Kabata-Pendias E (2011) Trace Elements in Soils and Plants. CRC Press, Boca Raton, FL, USA

    Google Scholar 

  • Kapička A, Petrovský E, Jordanova N, Podrázský V (2001) Magnetic parameters of forest top soils in Krkonoše mountains Czech Republic. Phys Chem Earth a: Solid Earth Geod 26(11–12):917–922

    Article  Google Scholar 

  • Kapička A, Petrovský E, Ustjak S, Macháčková K (1999) Proxy mapping of fly-ash pollution of soils around a coal-burning power plant: a case study in the Czech Republic. J Geochem Explor 66(1–2):291–297

    Article  Google Scholar 

  • Khan S, Naushad M, Lima EC, Zhang S, Shaheen MS, Rinklebe J (2021) Global soil pollution by toxic elements: current status and future perspectives on the risk assessment and remediation strategies—a review. J Hazard Mater 417:126039

    Article  CAS  Google Scholar 

  • Kierlik P, Hanc-Kuczkowska A, Rachwał M, Męczyński R, Matuła I (2020) Application of Mössbauer Spectroscopy for Identification of Iron-Containing Components in Upper Silesian Topsoil Being under Industrial Anthropopressure. Materials 13(22):5206

    Article  CAS  Google Scholar 

  • Kitanidis PK (1997) Introduction to Geostatistics: applications in Hydrogeology. Cambridge University Press, Cambridge, U.K.

    Book  Google Scholar 

  • Krige DG (1951) A statistical approach to some mine valuations and allied problems at the Witwatersrand. Dissertation, University of Witwatersrand, South Africa

  • Krige DG (1966) Two–dimensional weighted moving average trend surfaces for ore valuation. In: Proceedings of the Symposium on Mathematics, Statistics and Computer Applications in Ore Valuation, Johannesburg. South African Institute of Mining and Metallurgy, Johannesburg,

  • Krige DG (1976) Some basic consideration in the application of geostatistics to gold ore valuation. J South Afr Inst Min Metall 3–14:383–391

    Google Scholar 

  • Krivoruchko K and Gribov A (2014) Pragmatic Bayesian kriging for non-stationary and moderately non-Gaussian data. Mathematics of Planet Earth. Proceedings of the 15th Annual Conference of the International Association for Mathematical Geosciences. Springer: 61–64

  • Le Borgne E (1955) Abnormal magnetic susceptibility of the top soil. Ann Geophys 11:399–419

    Google Scholar 

  • Le Borgne E (1960) Influence du feu sur les proprietés magnetiquès du sol et du granite. Ann Geophys 16:159–195

    Google Scholar 

  • Leal FT, França ABC, Siqueira DS, Teixeira DDB, Marques Júnior J, Scala NL Jr (2015) Characterization of potential CO2 emissions in agricultural areas using magnetic susceptibility. Sci Agric 72(6):535–539

    Article  CAS  Google Scholar 

  • Lecoanet H, Leveque F, Segura S (1999) Magnetic susceptibility in environmental applications: comparison of field probes. Phys Earth Planet Inter 115:191–204

    Article  Google Scholar 

  • Li L, Ji J, Balsam W, Chen Y, Chen J, Lu H (2003) Determining magnetic susceptibility in loess-paleosol sections by near-infrared reflectance spectroscopy. Geophys Res Lett 30(10):1520

    Google Scholar 

  • Liu Q, Roberts AP, Larrasoaña JC, Banerjee SK, Guyodo Y, Tauxe L, Oldfield F (2012) Environmental magnetism: principles and applications. Rev Geophys 50:1–50

    Article  CAS  Google Scholar 

  • Luc A (2000) Spatial Econometrics. In: Baltagi B (ed) Companion to Econometrics. Basil Blackwell, Oxford

  • Madeira J, Bedidi A, Cervelle B, Pouget M, Flay N (1997) Visible spectrometric indices of hematite (Hm) and goethite (Gt) content in lateritic soils: the application of a thematic mapper (TM) image for soil-mapping in Brasilia, Brazil. Int J Remote Sens 18:2835–2852

    Article  Google Scholar 

  • Magiera T, Strzyszcz Z, Ferdyn M, Gajda B, MAGPROX (2003) Screening of Anthropogenic Dust Pollutions in Topsoil by Using Magnetic Proxies. In: Pawłowski L, Dudzińska MR, Pawłowski A (eds) Environmental Engineering Studies. Springer, Boston, MA

  • Magiera T, Łukasik A, Zawadzki J, Rösler (2019) W Magnetic susceptibility as indicator of anthropogenic disturbances in forest topsoil: a review of magnetic studies carried out in Central European forests. Ecol Indic 106:105–518

    Article  Google Scholar 

  • Magiera T, Strzyszcz Z, Kapicka A, Petrovsky E (2006) Discrimination of lithogenic and anthropogenic influences on topsoil magnetic susceptibility in Central Europe. Geoderma 130:299–311

    Article  Google Scholar 

  • Magiera T, Zawadzki J (2006) Magnetometria glebowa – nowe narzędzie do oceny zanieczyszczenia gleb. Geofizyka, Biuletyn Informacyjny 2:74–89 ((in Polish))

    Google Scholar 

  • Magiera T, Zawadzki J (2007) Using of high-resolution topsoil magnetic screening for dust deposition assessment: comparison of forest and arable soil dataset. Environ Monit Assess 125(1–3):19–28

    Article  CAS  Google Scholar 

  • Magiera T, Zawadzki J, Szuszkiewicz M, Fabijańczyk P, Steinnes E, Fabian K, Miszczak E (2018) Impact of an iron mine and a nickel smelter at the Norwegian/Russian border close to the Barents Sea on surface soil magnetic susceptibility and content of potentially toxic elements. Chemosphere 195:48–62

    Article  CAS  Google Scholar 

  • Maher BA (1986) Characterization of soils by mineral magnetic measurements. Phys Earth Planet Int 42:76–92

    Article  Google Scholar 

  • Marques J Jr, Siqueira DS, Camargo LA, Teixeira DDB, Barrón V, Torrent J (2014) Magnetic susceptibility and diffuse reflectance spectroscopy to characterize the spatial variability of soil properties in a Brazilian Haplustalf. Geoderma 219:63–71

    Article  Google Scholar 

  • Matheron G (1960) Krigeage d’un panneau rectangulaire par sa périphérie. Note géostatistique 28, Centre de Géostatistique, Fontainebleau

  • Matheron G (1962) Traité de Géostatistique Appliquée. Editions Technip, France

    Google Scholar 

  • Matheron G (1963) Principles of Geostatistics. Econ Geol 58:1246–1266

    Article  CAS  Google Scholar 

  • Matias SSR, Marques J Jr, Siqueira DS, Pereira GT (2014) Outlining precision boundaries among areas with different variability standards using magnetic susceptibility and geomorphic surfaces. Eng Agric 34(4):695–706

    Google Scholar 

  • McBratney AB, Webster R (1986) Choosing functions for semi-variograms of soil properties and fitting them to sampling estimates. Soil Sci Soc Am J 37:617–639

    Article  Google Scholar 

  • Mullins CE (1977) Magnetic susceptibility of the soil and its significance in soil science: a review. J Soil Sci 28:223–246

    Article  CAS  Google Scholar 

  • Murad E (2010) Mössbauer spectroscopy of clays, soils and their mineral constituents. Clay Miner 45(4):413–430

    Article  CAS  Google Scholar 

  • Nanos N, Rodríguez MJA (2012) Multiscale analysis of heavy metal contents in soils: Spatial variability in the Duero river basin (Spain). Geoderma 189:554–562

    Article  Google Scholar 

  • Oldfield F, Brown A, Thompson R (1979) The effect of microtopography and vegetation on the catchment of airborne particles measured by remanent magnetism. Quat Res 12(3):326–332

    Article  Google Scholar 

  • Oldfield F, Thompson R, Dickson DPE (1981) Artificial enhancement of stream bedload: a hydrological application of superparamagnetism. Phys Earth Planet Int 26:107–124

    Article  CAS  Google Scholar 

  • Oliveira IA, Marques Junior J, Campos MCC, Aquino RE, Freitas L, Siqueira DS, Cunha JM (2015) Variabilidade Espacial e Densidade Amostral da Suscetibilidade Magnética e dos Atributos de Argissolos da Região de Manicoré, AM. Rev Bras Ciênc Solo 39:668–681 ((In Spanish))

    Article  Google Scholar 

  • Papritz A, Fluhler H (1994) Temporal change of spatially autocorrelated soil properties: optimal estimation by cokriging. Geoderma 62(1–3):29–43. ISSN 0016-7061. https://doi.org/10.1016/0016-7061(94)90026-4, https://www.sciencedirect.com/science/article/pii/0016706194900264

  • Pilz J, Spöck G (2008) Why do we need and how should we implement Bayesian kriging methods. Stoch Environ Res Risk Assess 22:621–632. https://doi.org/10.1007/s00477-007-0165-7

  • Petrovský E, Kapiˇcka A, Jordanova N, Knab M, Hoffmann V (2000) Low-field magnetic susceptibility: a proxy method of estimating increased pollution of different environmental systems. Environ Earth Sci 39:312–318

    Google Scholar 

  • Rachwał M, Kardel K, Magiera T, Bens O (2017) Application of magnetic susceptibility in assessment of heavy metal contamination of Saxonian soil (Germany) caused by industrial dust deposition. Geoderma 295:10–21

    Article  Google Scholar 

  • Rivoirard J (2004) On Some Simplifications of Cokriging Neighborhood. Math Geol 36:899–915. https://doi.org/10.1023/B:MATG.0000048798.80689.b0

  • Siqueira DS, Marques J Jr, Pereira GT, Barbosa RS, Teixeira DDB, Peluco RG (2014) Sampling density and proportion for the characterization of the variability of Oxisol attributes on different materials. Geoderma 232–234:172–182

    Article  Google Scholar 

  • Siqueira DS, Marques J Jr, Pereira GT, Teixeira DDB, Vasconcelos V, De Carvalho JOA, Martins E (2015) Detailed mapping unit design based on soil–landscape relation and spatial variability of magnetic susceptibility and soil color. CATENA 135:149–162

    Article  CAS  Google Scholar 

  • Siqueira DJM Jr, Teixeira D, Matias SSR, Camargo LA, Pereira GT (2016) Magnetic susceptibility for characterizing areas with different potentials for sugarcane production. Pesq Agropec Bras Brasilia 51(9):1349–1358

    Article  Google Scholar 

  • Sollitto D, Romic M, Castrignanò A, Romic D, Bakic H (2010) Assessing heavy metal contamination in soils of the Zagreb region (Northwest Croatia) using multivariate geostatistics. CATENA 80(3):182–194

    Article  CAS  Google Scholar 

  • Strzyszcz Z (1989) Anwesenheit des ferromagnetischen Eisens in oberschlesischen Waldböden und deren Ursachen. Mitt Deut Boden Ges 59(2):1197–1202

    Google Scholar 

  • Strzyszcz Z (1991) Ferromagnetism of Soils in Some Polish National Parks. Mitt Deut Boden Ges 66(2):1119–1122

    Google Scholar 

  • Strzyszcz Z (1993) Magnetic susceptibility of soils in the areas influenced by industrial emissions. Schulin R. Soil Monitoring, Birkhäuser Verlag Basel, Desaules A, pp 255–269

    Google Scholar 

  • Strzyszcz Z, Magiera T (1998) Magnetic susceptibility and heavy metals contamination in soils of Southern Poland. Phys Chem Earth 23(9–10):1127–1131

    Article  Google Scholar 

  • Strzyszcz Z, Magiera T, Heller F (1996) The influence of industrial immissions on the magnetic susceptibility of soils in Upper Silesia. Stud Geophys Geod 40:276–286

    Article  Google Scholar 

  • Teixeira DD, Marques J Jr, Siqueira DS, Vasconcelos V, Carvalho OA Jr, Martins ÉS, Pereira GT (2018) Mapping units based on spatial uncertainty of magnetic susceptibility and clay content. CATENA 164:79–87

    Article  Google Scholar 

  • Thompson R, Oldfield F (1986) Environmental magnetism. Allen and Unwin, London

    Book  Google Scholar 

  • Thompson R, Stober JC, Turner GM, Oldfield F, Bloemendal J, Dearing JA, Rummery TA (1980) Environmental applications of magnetic measurements. Science 207:481–486

    Article  CAS  Google Scholar 

  • Van Groenigen JW, Siderius, W, Stein, A (1999) Constrained optimisation of soil sampling for minimisation of the kriging variance. Geoderma 87(3–4):239–259

    Article  Google Scholar 

  • Vanloocke S (2012) Factorial kriging of soil sensor images using ISATIS. University Gent. Master dissertation. https://libstore.ugent.be/fulltxt/RUG01/001/892/544/RUG01-001892544_2012_0001_AC.pdf

  • Vodyanickiy YuN (1981) Formation of ferromagnets in soddy-podzolic soils. Poczwowiedienije 5:114–123

    Google Scholar 

  • Vodyanickiy Yu N, Bagin VJ, Mymrin VA (1983) Ferromagnetic minerals distribution in the podzolic soil profile. Poczwowiedienije 3:104–111

    Google Scholar 

  • Wackernagel H (1994) Cokriging versus kriging in regionalized multivariate data analysis. Geoderma 62(1–3):83–92

    Article  Google Scholar 

  • Wang XS, Qin Y (2005) Correlation between magnetic susceptibility and heavy metals in urban topsoil: a case study from the city of Xuzhou, China. Environ Geol 49:10–18

    Article  CAS  Google Scholar 

  • Warrick AW, Nielsen DR (1980) Spatial variability of soil physical properties in the field: 319–344. In: Hillel D(ed) Applications of soil physics. Academic Press, New York

  • Webster R, Oliver M (2007) Geostatistics for environmental scientists. Wiley, Chichester

    Book  Google Scholar 

  • Zare S, Abtahi A, Shamsi SRF, Lagacherie P (2021) Combining laboratory measurements and proximal soil sensing data in digital soil mapping approaches. CATENA 207:105702

    Article  Google Scholar 

  • Zawadzki J (2011) Metody geostatystyczne dla kierunków przyrodniczych i technicznych. Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa (in Polish)

  • Zawadzki J, Fabijańczyk P (2007a) The possibility of integration of chemical and magnetometry measurements in order to assess the potential soil contamination with heavy metals. Ochr Śr Zasobów Nat 31:79–83

    Google Scholar 

  • Zawadzki J, Fabijańczyk P (2007b) Modeling the spatial variability of soils magnetic susceptibility in the area of Upper Silesian Industrial Area. Ecol Chem Eng A 14(3):379–391 ((in Polish))

    CAS  Google Scholar 

  • Zawadzki J, Fabijańczyk P (2007c) Use of variograms or field magnetometry analysis in Upper Silesia Industrial Region. Stud Geophys Geod 4(51):535–550

    Article  Google Scholar 

  • Zawadzki J, Fabijańczyk P (2007d) Integrated measurements of soil magnetic susceptibility. Ochr Śr Zasobów Nat 31:89–93

    Google Scholar 

  • Zawadzki J, Fabijańczyk P (2008) Geostatistical assessment of anthropogenic soil contamination using magnetometric measurements. Ecol Chem Eng A 15(12):1369–1376

    Google Scholar 

  • Zawadzki J, Fabijańczyk P (2009) Reduction of soil contamination uncertainty assessment using magnetic susceptibility measurements and Co_Est method. Ecol Chem Eng A 16(1–2):99–104

    CAS  Google Scholar 

  • Zawadzki J, Fabijańczyk P, Magiera T, Rachwał M (2015a) Geostatistical microscale study of magnetic susceptibility in soil profile and magnetic indicators of potential soil pollution. Water Air Soil Pollut 226(5):1–8

    Article  CAS  Google Scholar 

  • Zawadzki J, Fabijańczyk P, Magiera T, Rachwał M (2015b) Micro-scale spatial correlation of magnetic susceptibility in soil profile in forest located in an industrial area. Geoderma 249:61–68

    Article  Google Scholar 

  • Zawadzki J, Magiera T, Fabijańczyk P (2009) Geostatistical evaluation of magnetic indicators of forest soil contamination with heavy metals. Stud Geophys Geod 53:133–149

    Article  Google Scholar 

  • Zawadzki J, Magiera T, Fabijańczyk P, Kusza G (2012) Geostatistical 3-dimensional integration of measurements of soil magnetic susceptibility. Environ Monit Assess 184(5):3267–3278

    Article  CAS  Google Scholar 

  • Zawadzki J, Szuszkiewicz M, Fabijańczyk P, Magiera T (2016) Geostatistical discrimination between different sources of soil pollutants using a magneto-geochemical data set. Chemosphere 164:668–676

    Article  CAS  Google Scholar 

  • Zeng LT, Chen YK,Wang XS (2014) Multi-scale spatial variability analysis of heavy metals and magnetic susceptibility in urban topsoil. Acta Sci Circumstantiae 34(4):987–995 (in Chinese)

Download references

Funding

The research leading to these results has received funding from the Polish-Norwegian Research Programme operated by the National Centre for Research and Development under the Norwegian Financial Mechanism 2009–2014 in the frame of Project IMPACT–Contract No Pol-Nor/199338/45/2013. This study was also partially made in the frame of the statutory activities of the Faculty of Building Services, Hydro and Environmental Engineering of Warsaw University of Technology.

Author information

Authors and Affiliations

Authors

Contributions

Piotr Fabijańczyk: methodology, software, validation, formal analysis, investigation, resources, data curation, writing, writing—review and editing, visualization, project administration. Jarosław Zawadzki: conceptualization, methodology, software, validation, formal analysis, investigation, resources, data curation, writing, writing—review and editing, visualization, supervision, project administration, funding acquisition. Tadeusz Magiera: methodology, validation, formal analysis, investigation, resources, data curation, writing—review and editing, project administration, funding acquisition. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Jarosław Zawadzki.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

The authors of this article consent to participate in the research process and design.

Consent for publication

All authors have approved the final version of the manuscript and have given their consent for publication.

Competing interests

The authors declare no conflict of interests.

Additional information

Responsible editor: Dong-Mei Zhou

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zawadzki, J., Fabijańczyk, P. & Magiera, T. Using geostatistical methods in soil magnetometry: a review. J Soils Sediments (2024). https://doi.org/10.1007/s11368-024-03784-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11368-024-03784-z

Keywords

Navigation