Skip to main content
Log in

Losses of sediment, organic matter, and nutrients in the Argentinean Pampas through rainfall simulation experiments

  • Soils, Sec 5 • Soil and Landscape Ecology • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Runoff caused by rainfall events contributes to the watercourses pollution through the export of OM, nutrients, and sediments from soils. This study aimed to assess the loss of OM, nitrogen, phosphorus, and sediments by the runoff of soils under agriculture and cattle farming.

Materials and methods

Three pedons located on the top of the slope, in the backslope, and one close to the alluvial plain (CoAoMo) were selected as study sites. Experiments using a drop-forming rainfall simulator on runoff microplots were carried out under laboratory conditions. The physical and chemical characteristics of soils, sediments, and runoff waters were analyzed.

Results and discussion

The rainfall took part in the soil acidification process through hydric erosion and lixiviation. Hydric erosion produced the loss of divalent cations associated with sediments transported by runoff waters, whereas the loss of monovalent ions (sodium) was linked with a leaching process. The losses of sediment, divalent cations, OM, NK, and P Bray were more marked in soils with a higher position in the landscape and higher slope. On the other side, CoAoMo showed the lowest sediments loss, OM, and NKj due to its high sodium concentration that decreases sediment detachment during the runoff processes. However, CoAoMo, which presented the highest TRP into runoff waters, would be the product of exogenous contamination. Sediments were enriched in fine materials, OM (EF: 1.16–1.32) and NK (EF: 1.31–1.69).

Conclusion

According to these results, the particulate fraction represents the major proportion of nutrients in the runoff waters. Non-conservative management of these soils could conduct to a loss of plant cover that became them susceptible to intense erosion .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

Abbreviations

Co-Ao-Mo:

Alkaline complex of the alluvial plane of Morales stream

EC:

Electrical conductivity

OM:

Organic matter

OC:

Dissolved organic carbon

POC:

Particulate organic carbon

P Bray:

Phosphorus extractable

NKj:

Nitrogen Kjeldahl

TRP:

Total reactive phosphorus

EF:

Enrichment factor

References

  • Álvarez R, Steinbach HS (2010) Materia orgánica y productividad. En: Fertilidad de Suelos. Caracterización y manejo en la región pampeana. Pp 155–169. Editorial Facultad de Agronomía (EFA-UBA). Buenos Aires, Argentina

  • Álvarez R, Álvarez CR, Steinbach HS, Salas JM, Grigera S (2002) Materia orgánica y fertilidad de los suelos en la Pampa Ondulada. Informaciones Agronómicas del Cono Sur N°14 Mayo

  • Barbosa FT, Bertol I, Luciano RV, Gonzalez AP (2009) Phosphorus losses in water and sediments in runoff of the water erosion in oat and vetch seed in contour and downhill. Soil Tillage Res 106:22–28

    Article  Google Scholar 

  • Bargiela MF (2009) Influencia de la relación entre los metales pesados y las sustancias húmicas de ríos de llanuras sobre la movilidad de esos elementos. Master thesis. Universidad de Buenos Aires, Argentina

  • Bationo A, Kihara J, Vanlauwe B, Waswa B, Kimetu J (2007) Soil organic carbon dynamics, functions and management in West African agro-ecosystems. Agric Syst 94:13–25

    Article  Google Scholar 

  • Behrends Kraemer F, Chagas CI, Ibañez L, Carfagno P, Vangeli S (2018) Análisis y predicción de la erosividad de las lluvias para el partido de San Pedro (Bs. As.) (Argentina), Ci Suelo (Argentina) 36(1):124–137

  • Bertol I, Engel FL, Mafra AL, Bertol OJ, Ritter SR (2007) Phosphorus, potassium and organic carbon concentrations in runoff water and sediments under different soil tillage systems during soybean growth. Soil Tillage Res 94:142–150

    Article  Google Scholar 

  • Blanco H, Lal R (2010) Principles of soil conservation and management. Springer, USA, p 617

    Book  Google Scholar 

  • Bouyoucos GJ (1962) Hydrometer method improved for making particle size analysis of soils. Agron J 54:464–465

    Article  Google Scholar 

  • Cai D, De Roock M, Jin K, Schiettecatte W, Wu H, Gabriels D, Hartmann R, Cornelis W (2002) Nutrient load in runoff from small plots: laboratory and field rainfall simulation tests on Chinese loess soils. 12th ISCO Conference, Beijing 160–164

  • Casas RR (2001) La conservación de los suelos y la sustentabilidad de los sistemas agrícolas. https://sedici.unlp.edu.ar/bitstream/handle/10915/30748/Documento_completo.pdf?sequence=1. Accessed 15 July 2021

  • Casas RR, Albarracín GF (2015) El Deterioro del Suelo y el Ambiente en la Argentina. FECIC. Tomos II, 452 pp

  • Chagas CI, Behrends Kraemer F (2018) Escurrimiento, erosión del suelo y contaminación de los recursos hídricos superficiales por sedimentos asociados a la actividad agropecuaria extensiva: algunos elementos para su análisis. 1a ed. - Ciudad Autónoma de Buenos Aires: Editorial Facultad de Agronomía. ISBN 978–987–3738–17–3

  • Chagas CI, Lavado RS, Revilla CA, Macias GJ (1999) Movimiento superficial del fósforo en suelos de la Pampa Ondulada. Cienc Suelo (argentina) 17(2):46–53

    CAS  Google Scholar 

  • Chagas CI, Behrends Kraemer F, Utin S, Irurtia C, Santanatoglia O (2011) Influencia de las propiedades edáficas y la posición en el paisaje sobre la respuesta hidrológica de suelos pertenecientes a una cuenca de la Pampa Ondulada. Revista Cuadernos del CURIHAM (UNR) 17: 15–24 (ISSN 15142906)

  • Chagas CI, Behrends Kraemer F, Santanatoglia OJ, Paz M, Moretton J (2014) Biological water contamination in some cattle production fields of Argentina subjected to runoff and erosion. Span J Agric Res 12(4):1008–1017

    Article  Google Scholar 

  • De Servia M, De Lora FA, Chagas CI (2005) Heavy metals in sediments and runoff waters in soils of the Matanza river basin, Argentina. Comm Soil Sci Plant Anal 36:1–12

    Article  Google Scholar 

  • Durán Zuazo VH, Martínez Raya A, Aguilar Ruiz J (2004) Nutrient losses by runoff and sediment from the Taluses of orchard terraces. Water Air Soil Pollut 153:355–373

    Article  Google Scholar 

  • Fernández-Marcos ML (2011) Contaminación por fósforo procedente de la fertilización orgánica de suelos agrícolas. In: López Mosquera ME, Sainz Osés MJ (eds) Gestión de residuos orgánicos de uso agrícola. Servizo de Publicacións e Intercambio Científico, Santiago de Compostela, pp 25–31

    Google Scholar 

  • García AR, Fabrizio de Iorio A (2005) Incidencia de la descarga de efluentes de un feed-lot en la calidad de agua del Arroyo Morales. Rev Facultad De Agronomía UBA 25(2):167–176

    Google Scholar 

  • Giuffré de López Camelo L (2009) Minerales. En: Conti M (coord) Principios de edafología con énfasis en suelos argentinos, 2da edn. EFA-UBA, Buenos Aires, pp 27–42

  • Gmach MR, Cherubin MR, Kaiser K, Pellegrino Cerri CE (2020) Processes that influence dissolved organic matter in the soil: a review. Sci Agric 77(3):1–10

    Article  Google Scholar 

  • Goebel MO, Bachmann J, Woche SK, Fischer WR (2005) Soil wettability, aggregate stability, and the decomposition of soil organic matter. Geoderma 128:80–93

    Article  CAS  Google Scholar 

  • Golterman H, Clymo R, Ohndtad M (1978) Methods for the physical and chemical examination of freshwaters Oxford

    Google Scholar 

  • Gottfriedt GM, De Siervi CI, de Iorio CAF (2004) Erosión laminar en suelos de Pampa Ondulada con contenidos contrastantes de sodio intercambiable. Cienc Suelo (argentina) 22:123–128

    Google Scholar 

  • Hien F, Compaore JA, Coulibaly-Some O (1996) La dynamique de la dégradation des solsdans le bassin du Nakambé: une étudediachroniquedans le secteur des forêtsclassées de Bissiga-Nakabéau Burkina Faso. In: Escadafal R, Mulders MA, Thiombiano L (eds) Surveillance des sols dansl’environnement par télédétection et systems d’information géographiques (Monitoring soils in the environment with remote sensing and GIS). SympInt AISS, Paris, pp 523–530

    Google Scholar 

  • INTA (1997) Mapa de Suelos del Distrito General Las Heras, Provincia de Buenos Aires. Argentina Scale 1(50):000

    Google Scholar 

  • Iorio AF de, Rendina A, Bargiela M, García A, Barros M (2001) Formas químicas de Zn en un suelo anegadizo. II Congreso de Química y Física Ambiental, La Habana (Cuba), Nov 5–9

  • Irurtia CB, Mon R (1994) Microsimulador de lluvia para determinar infiltración a campo. Publicación No. 76, Instituto de Suelos, CIRN, INTA

  • Iserloh T, Ries JB, Cerdà A, Echeverría MT, Fister W, Geißler C, Kuhn NJ, León FJ, Peters P, Schindewolf M, Schmidt J, Scholten T, Seeger M (2012) Comparative measurements with seven rainfall simulators on uniform bare fallow land. Z Geomorphol 57(1):11–26

    Article  Google Scholar 

  • Jacinthe P-A, Lal R, Owens LB, Hothem DL (2004) Transport of labile carbon in runoff as affected by land use and rainfall characteristics. Soil Tillage Res 77:111–123

    Article  Google Scholar 

  • Jardine PM, Weber NL, McCarthy JF (1989) Mechanisms of dissolved organic carbon adsorption on soil. Soil Sci Soc Am J 53:1378–1385

    Article  CAS  Google Scholar 

  • Jardine PM, Wilson GV, Mccarthy JF, Luxmoore RJ, Taylor DL, Zelazny LW (1990) Hydrogeochemical processes controlling the transport of dissolved organic carbon through a forested hillslope. J Contam Hydrol 6:3–19

    Article  CAS  Google Scholar 

  • Kamphorst A (1987) A small rainfall simulator for the determination of erodibility. Nether J Agric Sci 35:40

    Google Scholar 

  • Kjeldahl J (1883) A new method for the estimation of nitrogen in organic compounds. Z Anal Chem 22(1):366–383

    Article  Google Scholar 

  • Kurtz LT, Bray RH (1945) Determination of total, organic and available forms of phosphorus in soils. Soil Sci 59:39–45

    Article  Google Scholar 

  • Lal R (2003) Soil erosion and the global carbon budget. Environ Int 29:437–450

    Article  CAS  Google Scholar 

  • Lal R (2004) Soil carbon squestration to mitigate climate change. Geoderma 123:1–22

    Article  CAS  Google Scholar 

  • Letcher RA, Jakeman AJ, Merritt WS (1999) Technical report, Review of Techniques to Estimate Catchment Exports. Environmental Protection Authority, Sydney, Australia

  • Ma W, Li Z, Ding K, Huang B, Nie X, Lu Y, Xiao H (2016) Soil erosion, organic carbon and nitrogen dynamics in planted forests: a case study in a hilly catchment of Hunan Province, China. Soil Tillage Res 155:69–77

    Article  Google Scholar 

  • Maïga-Yaleu S, Guiguemde I, Yacouba H, Karambiri H, Ribolzi O, Bary A, Ouedraogo R, Chaplot V (2013) Soil crusting impact on soil organic carbon losses by water erosion. CATENA 107:26–34

    Article  Google Scholar 

  • Maggi AE, Behrends Kraemer F, Introcaso RM, Thompson D (2016) Caracterización física y química de un Argiudol Vértico de la Pampa Ondulada con erosión hidrica en el surco y entresurco. Cienc Suelo (argentina) 34(1):113–126

    Google Scholar 

  • Marelli H, Arce J, Masiero B, Lorenzón C, Marelli P (2007) Relación entre variables químicas del suelo y del sedimento erosionado. Informe de investigación, EEA Marcos Juárez

  • Page AL, Miller RH, Keeney DR (1982) Methods of soil analysis, Part 2, Chemical and microbiological properties. 2nd edn Soil Sci Soc Am, Madison, Wisconsin, USA

  • Rao Z-X, Huang D-Y, Zhu H-H, Zhu Q-H, Wang J-Y (2016) Effect of rice straw mulching on migration and transportation of Cd, Cu, Zn, and Ni in surface runoff under simulated rainfall. J Soils Sediments 16:2021–2029

    Article  CAS  Google Scholar 

  • Ries JB, Marzen M, Iserloh T, Fister W (2014) Soil erosion in Mediterranean landscapes–Experimental investigation on crusted surfaces by means of the portable wind and rainfall simulator. J Arid Environ 100–101:42–51

    Article  Google Scholar 

  • Roth CHH (2004) A framework relating soil surface condition to infiltration and sediment and nutrient mobilization in grazed Rangelands of Northeastern Queensland, Australia. Earth Surf Process Landforms 29:1093–1104

    Article  Google Scholar 

  • Sasal C (2012) Factores condicionantes de la evolución estructural de suelos limosos bajo siembra directa. Efecto sobre el balance de agua. Doctoral thesis. Universidad de Buenos Aires, Argentina

  • Sharpley AN (1985) The selective erosion of plant nutrients in runoff. Soil Sci Soc Am J 49:1527–1534

    Article  CAS  Google Scholar 

  • Sharpley AN, Withers PJA (1994) The environmentally-sound management of agricultural phosphorus. Fert Res 39(2):133–146

    Article  CAS  Google Scholar 

  • Snedecor GW, Cochran WG (1980) Statistical methods. 7th Edn. Iowa University Press

  • Soil Survey Staff (2010) Keys to Soil Taxonomy, Eleventh Edition. United States Department of Agriculture, Natural Resources Conservation Service. Washington, DC. 345 p. (En español). ftp://ftp-fc.sc.egov.usda.gov/NSSC/Soil_Taxonomy/keys/2010_Keys_to_Soil_Taxonomy.pdf

  • Strickland TC, Potter TL, Truman CC, Franklin DH, Bosch DD, Hawkins GL (2012) Results of rainfall simulation to estimate sediment-bound carbon and nitrogen loss from an Atlantic Coastal Plain (USA) ultisol. Soil Tillage Res 122:12–21

    Article  Google Scholar 

  • Tipping E, Rieuwerts J, Pan G, Ashmore MR, Lofts S, Hill MTR, Farago ME, Thornton I (2003) The solid-solution partitioning of heavy metals (Cu, Zn, Cd, Pb) in upland soils of England and Wales. Environ Pollut 125:213–225

    Article  CAS  Google Scholar 

  • US Environmental Protection Agency (1973) Water quality criteria. US Government Printing Office; Washington, DC

  • Wu XY, Zhang LP, Yu XX (2012) Impacts of surface runoff and sediment on nitrogen and phosphorus loss in red soil region of southern China. Environ Earth Sci 67:1939–1949

    Article  CAS  Google Scholar 

  • Wu X, Wei Y, Wang J, Xia J, Cai Ch, Wei Z (2018) Effects of soil type and rainfall intensity on sheet erosion processes and sediment characteristics along the climatic gradient in central-south China. Sci Total Environ 621:54–66

    Article  CAS  Google Scholar 

  • Yang K, Guan L, Zhu J, Yan L (2013) Effects of exogenous humic acids on forms of organic phosphorus in three contrasting types of soil. Comm Soil Sci Plant Anal 44:2095–2106

    Article  CAS  Google Scholar 

  • Zhang Y, Zheng F, Cao N (2010) Effect of saturated near surface on nitrate and ammonia nitrogen losses in surface runoff at the loess soil hillslope. Internat J Chem Eng Article ID 398504

Download references

Funding

This study was funded by the National Science and Technology Agency (ANPCyT) and the University of Buenos Aires through the PICT-2012–2837 and UBACyTAG548 and UBACyT GEF 282.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Marcelo Silvano De Siervi, Silvana Arreghini, and Alicia Rosa Fabrizio de Iorio. The first draft of the manuscript was written collectively by all the authors. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Marcelo De Siervi.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible editor: Lu Zhang

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Siervi, M., Arreghini, S. & de Iorio, A.F. Losses of sediment, organic matter, and nutrients in the Argentinean Pampas through rainfall simulation experiments. J Soils Sediments 22, 2485–2498 (2022). https://doi.org/10.1007/s11368-022-03243-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-022-03243-7

Keywords

Navigation