Skip to main content

Advertisement

Log in

Italian ryegrass–rice rotation system for biomass production and cadmium removal from contaminated paddy fields

  • Soils, Sec 3 • Remediation and Management of Contaminated or Degraded Lands • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Growing energy plants in Cd-contaminated soil to produce bioenergy feedstock and remove excess Cd in the soil is a promising approach to the production of sustainable bioenergy feedstock and safe food. Rice, an important staple food for human beings, is a major source of Cd intake in human beings. Italian ryegrass (Lolium multiflorum Lam) is a potential bioenergy plant with high biomass productivity and high biofuel conversion efficiency.

Materials and methods

An Italian ryegrass and rice crop rotation system would be beneficial for the harvest of bioenergy and phytoremediation. An Italian ryegrass–rice rotation system was established in a moderately Cd-contaminated paddy field. The yield of biomass, amount of Cd removal, and transfer factors for three cropping systems (winter fallow, non-cutting, and cutting) were evaluated over 3 consecutive years of field experiments.

Results and discussion

The total biomass production of the Italian ryegrass–rice rotation system was significantly higher than that of the traditional cropping system. Biomass growth was further promoted by cutting during March. No significant differences were found in yield or Cd concentration of brown rice among the different cropping systems. Total Cd accumulation in rice and Italian ryegrass straw in the rotation cropping system was significantly higher than that in the winter fallow cropping system. Cd was mainly accumulated in the roots, and the ability of Italian ryegrass to transport Cd to the leaves was higher than that of rice.

Conclusions

The Italian ryegrass–rice rotation system is a potential cropping system for Cd-contaminated paddy fields. The average annual yield of biomass was 1656.6 kg km−2, and the average annual amount of Cd removal was more than 9.8 g Cd km−2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adeniji BA, Budimir-Hussey MT, Macfie SM (2010) Production of organic acids and adsorption of Cd on roots of durum wheat (Triticum turgidum L. var. durum). Acta Physiol Plant 32(6):1063–1072

    Article  CAS  Google Scholar 

  • Arduini I, Masoni A, Mariotti M, Pana S, Ercoli L (2014) Cadmium uptake and translocation in durum wheat varieties differing in grain-Cd accumulation. Plant Soil Environ 60(1):43–49

    Article  CAS  Google Scholar 

  • Balsamo RA, Kelly WJ, Satrio JA, Ruiz-Felix MN, Fetterman M, Wynn R, Hagel K (2015) Utilization of grasses for potential biofuel production and phytoremediation of heavy metal contaminated soils. Int J Phytoremediation 17:448–455

    Article  CAS  Google Scholar 

  • Bian R, Joseph S, Cui L, Pan G, Li L, Liu X, Zhang A, Rutlidge H, Wong S, Chia C, Marjo C, Gong B, Munroe P, Donne S (2014) A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment. J Hazard Mater 272:121–128

    Article  CAS  Google Scholar 

  • Brown SL, Chaney RL, Angle JS, Baker AJ (1994) Phytoremediation potential of Thlaspi caerulescens and bladder campion for zinc-and cadmium-contaminated soil. J Environ Qual 23:1151–1157

    Article  CAS  Google Scholar 

  • Cheng L, Wang L, Wei L, Wu Y, Alam A, Xu C, Wang Y, Tu Y, Peng L, Xia T (2019) Combined mild chemical pretreatments for complete cadmium release and cellulosic ethanol co-production distinctive in wheat mutant straw. Green Chem 21:3693–3700

    Article  CAS  Google Scholar 

  • Clemens S, Aarts MGM, Thomine S, Verbruggen N (2013) Plant science: the key to preventing slow cadmium poisoning. Trends Plant Sci 18:92–99

    Article  CAS  Google Scholar 

  • Daisei U, Naoki Y, Izumi K, Feng HC, Tsuyu A, Masahiro Y, Ma JF (2010) Gene limiting cadmium accumulation in rice. Proc Natl Acad Sci USA 107:16500–16505

    Article  Google Scholar 

  • Duan G, Shao GS, Tang Z, Chen HP, Wang BX, Tang Z, Yang YP, Liu YC, Zhao FJ (2017) Genotypic and environmental variations in grain cadmium and arsenic concentrations among a panel of high yielding rice cultivars. Rice 10:9

    Article  Google Scholar 

  • Fang ZG, Hu ZY, Zhao HH, Yang L, Ding CL, Lou LQ, Cai QS (2017) Screening for cadmium tolerance of 21 cultivars from Italian ryegrass (Lolium multiflorum Lam) during germination. Grassl Sci 63:36–45

    Article  CAS  Google Scholar 

  • Guo JH, Liu XJ, Zhang Y, Shen JL, Han WX, Zhang WF, Christie P, Goulding KTW, Vitousek PM, Zhang FS (2010) Significant acidification in major Chinese croplands. Science 327(5968):1008–1010

    Article  CAS  Google Scholar 

  • Han SJ, Li XN, Amombo E, Fu JM, Xie Y (2018) Cadmium tolerance of perennial ryegrass induced by Aspergillus aculeatus. Front Microbiol 9:1579

    Article  Google Scholar 

  • Imseng M, Wiggenhauser M, Keller A, Muller M, Rehkamper M, Murphy K, Kreissig K, Frossard E, Wilcke W, Bigalke M (2018) Fate of Cd in agricultural soils: a stable isotope approach to anthropogenic impact, soil formation, and soil-plant cycling. Environ Sci Technol 52:1919–1928

    Article  CAS  Google Scholar 

  • Lee DK, Aberle E, Anderson EK, Anderson W, Baldwin BS, Baltensperger D, Barrett M, Blumenthal J, Bonos S, Bouton J (2018) Biomass production of herbaceous energy crops in the United States: field trial results and yield potential maps from the multiyear regional feedstock partnership. GCB Bioenergy 10:698–716

    Article  Google Scholar 

  • Liu H, Zhao HX, Wu LH, Liu AN, Zhao FJ, Xu WZ (2017) Heavy metal ATPase 3 (HMA3) confers cadmium hypertolerance on the cadmium/zinc hyperaccumulator Sedum plumbizincicola. New Phytol 215:687–698

    Article  CAS  Google Scholar 

  • Long HL, Li XB, Wang H, Jia JD (2013) Biomass resources and their bioenergy potential estimation: A review. Renew Sust Energ Rev 26:344–352

    Article  Google Scholar 

  • McGrath SP, Lombi E, Gray CW, Caille N, Dunham SJ, Zhao FJ (2006) Field evaluation of Cd and Zn phytoextraction potential by the hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri. Environ Pollut 141:115–125

    Article  CAS  Google Scholar 

  • MEE, SAMR (2018) Soil environmental quality risk control standard for soil contamination of agricultural land (GB15618-2018)

  • Meng L, Huang T, Shi J, Chen J, Zhong F, Wu L, Xu J (2019) Decreasing cadmium uptake of rice (Oryza sativa L.) in the cadmium-contaminated paddy field through different cultivars coupling with appropriate soil amendments. J Soils Sediments 19:1788–1798

    Article  CAS  Google Scholar 

  • MEP, MLR (2014) The report on the national soil contamination survey (in Chinese). http://www.gov.cn/foot/site1/20140417/782bcb88840814ba158d01.pdf. Accessed 17 April 2014

  • Mu T, Wu T, Zhou T, Li Z, Ouyang Y, Jiang J, Zhu D, Hou J, Wang Z, Luo Y, Christie P (2019) Geographical variation in arsenic, cadmium, and lead of soils and rice in the major rice producing regions of China. Sci Total Environ 677:373–381

    Article  CAS  Google Scholar 

  • Muthusaravanan S, Sivarajasekar N, Vivek JS, Paramasivan T, Naushad M, Prakashmaran J, Gayathri V, Al-Duaij OK (2018) Phytoremediation of heavy metals: mechanisms, methods and enhancements. Environ Chem Lett 16:1339–1359

    Article  CAS  Google Scholar 

  • NHC, CFDA (2017) Maximum levels of contaminants in foods (GB 2762-2017)

  • Nie J, Liu Y, Zeng G, Zheng B, Tan X, Liu H, Xie J, Gan C, Liu W (2016) Cadmium accumulation and tolerance of Macleaya cordata: a newly potential plant for sustainable phytoremediation in Cd-contaminated soil. Environ Sci Pollut R. 23:10189–10199

    Article  CAS  Google Scholar 

  • Norini MP, Thouin H, Miard F, Battaglia-Brunet F, Gautret P, Guégan R, . Forestier LL, Morabito D, Bourgerie S, Motelica-Heino M (2019). Mobility of Pb, Zn, Ba, As and Cd toward soil pore water and plants (willow and ryegrass) from a mine soil amended with biochar. J Environ Manage 232:117-130

    Article  CAS  Google Scholar 

  • Peng J, Gong J (2014) Vacuolar sequestration capacity and long-distance metal transport in plants. Front Plant Sci 5:19

    Google Scholar 

  • Rizwan M, Ali S, Adrees M, Ibrahim M, Tsang DCW, Zia-Ur-Rehman M, Zahir ZA, Rinklebe J, Tack FMG, Ok YS (2017) A critical review on effects, tolerance mechanisms and management of cadmium in vegetables. Chemosphere 182:90–105

    Article  CAS  Google Scholar 

  • Rizwan M, Ali S, Rehman MZ, Rinklebe J, Tsang DC, Bashir A, Maqbool A, Tack FM, Ok YS (2018) Cadmium phytoremediation potential of Brassica crop species: a review. Sci Total Environ 631:1175–1191

    Article  Google Scholar 

  • Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templaton D, Crocker D (2010) Determination of structural carbohydrates and lignin in biomass, Technical Report, NREL/TP-510−42618. National Renewable Energy Laboratory, Golden

    Google Scholar 

  • Song Y, Wang YBN, Mao WF, Sui HX, Yong L, Yang DJ, Jiang DG, Zhang L, Gong YY (2017) Dietary cadmium exposure assessment among the Chinese population. Plos One 12:e0177978

    Article  Google Scholar 

  • Sui FQ, Chang JD, Tang Z, Liu WJ, Huang XY, Zhao FJ (2018) Nramp5 expression and functionality likely explain higher cadmium uptake in rice than in wheat and maize. Plant Soil 433:377–389

    Article  CAS  Google Scholar 

  • Uraguchi S, Fujiwara T (2012) Cadmium transport and tolerance in rice: perspectives for reducing grain cadmium accumulation. Rice 5:5

    Article  Google Scholar 

  • Uraguchi S, Kamiya T, Sakamoto T, Kasai K, Sato Y, Nagamura Y, Yoshida A, Kyozuka J, Ishikawa S, Fujiwara T (2011) Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains. Proc Natl Acad Sci USA 108:20959–20964

    Article  CAS  Google Scholar 

  • Wang MA, Yin LH, Peng JX, Nie LL, Li YJ, He J, Zhang W, Ao HJ (2016) Effects of vip technology on reducing cadmium content in rice. China Rice 22(1):43–47

    Google Scholar 

  • Wang P, Chen H, Kopittke PM, Zhao FJ (2019) Cadmium contamination in agricultural soils of China and the impact on food safety. Environ Pollut 249:1038–1048

    Article  CAS  Google Scholar 

  • Yang XE, Long XX, Ye HB, He ZL, Calvert DV, Stoffella PJ (2004) Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance). Plant Soil 259:181–189

    Article  CAS  Google Scholar 

  • Yasuda M, Nagai H, Takeo K, Ishii Y, Ohta K (2014) Bio-ethanol production through simultaneous saccharification and co-fermentation (SSCF) of a low-moisture anhydrous ammonia (LMAA)-pretreated napiegrass (Pennisetum purpureum Schumach). Springerplus 3:333

    Article  Google Scholar 

  • Yasuda M, Takenouchi Y, Nitta Y, Ishii Y, Ohta K (2015) Italian ryegrass (Lolium multiflorum Lam) as a high-potential bio-ethanol resource. Bioenerg Res 8:1303–1309

    Article  CAS  Google Scholar 

  • Ye SP, Yang YJ, Xin GR, Wang YT, Ruan L, Ye GR (2015) Studies of the Italian ryegrass–rice rotation system in southern China: Arbuscular mycorrhizal symbiosis affects soil microorganisms and enzyme activities in the Lolium mutiflorum L. rhizosphere. Appl Soil Ecol 90:26–34

    Article  Google Scholar 

  • Zhang J, Zhang WX, You L, Yin LG, Du YH, Yang J (2014) Modified method combining in situ detoxification with simultaneous saccharification and cofermentation (SSCF) as a single step for converting exploded rice straw into ethanol. J Agr Food-Chem 62:7486–7495

    Article  CAS  Google Scholar 

  • Zhao FJ, Ma Y, Zhu YG, Tang Z, McGrath SP (2015) Soil contamination in China: current status and mitigation strategies. Environ Sci Technol 49:750–759

    Article  CAS  Google Scholar 

  • Zhu HH, Xu C, Zhu QH, Huang DY (2018) Strategies to enable the safe use of cadmium-contaminated paddy soils in Southern China. In: Luo YM, Tu C (eds) Twenty years of research and development on soil pollution and remediation in China. Springer, Singapore, pp 429–439

    Chapter  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the assistance and field management provided by Mr. Dangli Wang.

Funding

This work was funded by the Jiangsu Science and Technology Support Program for Social Development (No. BE2014709).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingsheng Cai.

Ethics declarations

This research does not involve studies with human participants and/or animals.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Claudio Colombo

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1197 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Z., Wang, Y., Fang, Z. et al. Italian ryegrass–rice rotation system for biomass production and cadmium removal from contaminated paddy fields. J Soils Sediments 20, 874–882 (2020). https://doi.org/10.1007/s11368-019-02470-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-019-02470-9

Keywords

Navigation