Skip to main content
Log in

Ripening reduces the shrinkage of processed dredged material

  • Sediments, Sec 5 • Sediment Management • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

The utilization of dredged material in dike construction as a substitute for traditionally used materials is considered as an option to preserve natural resources such as marsh sediments. As a prerequisite for this application, the equivalency with respect to soil physical and mechanical properties of the materials must be assessed. Previous investigations have shown pronounced differences in shrinkage behavior and desiccation cracking between sediments and dredged material. The key objective of the study was to assess whether shrinkage of processed dredged material can be reduced by further processing, i.e., dewatering, which can be referred to as ripening.

Materials and methods

To compare the shrinkage behavior of the materials, three different methods of different scales were applied. Small-scale methods conducted were the standard procedure for the determination of the shrinkage limit and the determination of the coefficient of linear extensibility (COLErod). Large-scale shrink-swell experiments were carried out in a specially constructed test system with 90 l capacity for a period of up to 385 days. Here the materials were ripened, i.e., air-dried, until shrinkage almost ceased, and a rewetting-air-drying cycle was conducted. Shrinkage and swelling were determined during the processes by measuring the changes in volume. On the ripened materials, COLErod was determined.

Results and discussion

The experiments show that the shrinkage behavior of processed dredged material can be ameliorated by ripening. COLErod of the ripened materials were about 20–80% lower than COLErod of the un-ripened materials. The large-scale shrink-swell experiments showed that shrinkage in the second drying cycle amounted to less volume than in the first drying cycle and that shrinkage behavior in contrast to the first drying cycle, where pronounced proportional shrinkage was observed, was dominated by structural and residual shrinkage in this cycle.

Conclusions

Ripening of processed dredged material is considered a useful pre-treatment option to ameliorate the shrink-swell behavior of processed dredged material and to obtain a better functional equivalency with traditionally used dike construction materials such as fine-grained marsh sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allam MM, Sridharan A (1981) Effect of wetting and drying on shear strength. J Geotech Eng Div 107(4):421–438

    Google Scholar 

  • Basma AA, Al-Homoud AS, Malkawi AIH, Al-Bashabsheh MA (1996) Swelling-shrinkage behavior of natural expansive clays. Appl Clay Sci 11(2–4):211–227

    Article  CAS  Google Scholar 

  • Beyer K, Grabe J, Timmers V (2012) Artificial weathering and drying of compacted cohesive fill in a large-scale environmental chamber. In: Unsaturated soils: research and applications. Springer, Berlin Heidelberg, pp 229–236

    Chapter  Google Scholar 

  • Brils J, de Boer P, Mulder J, de Boer E (2014) Reuse of dredged material as a way to tackle societal challenges. J Soils Sediments 14(9):1638–1641

    Article  Google Scholar 

  • Blümel W, Tamminga PG (1987) Water permeability of dredged mud. In: Hanrahan ET, Orr TLL, Widdis TF (eds) Proc. of the ninth European conference on soil mechanics and foundation engineering, Dublin, 31 August - 3 September 1987. Groundwater effects in geotechnical engineering, vol 2, pp 545–548

    Google Scholar 

  • Bronswijk JJB (1990) Shrinkage geometry of a heavy clay soil at various stresses. Soil Sci Soc Am J 54:1500–1502

    Article  Google Scholar 

  • Brown KW, Launius KW, Deuel LE Jr (1980) Physical properties of confined dredged materials. Soil Sci 129(2):95–106

    Article  Google Scholar 

  • Cantré S, Saathoff F (2013) Investigation of dredged materials in combination with geosynthetics used in dike construction. Procedia Eng 57:213–221

    Article  Google Scholar 

  • Collis-George N (1991) Drainage and soil structure: a review. Aust J Soil Res 29:923–933

    Article  Google Scholar 

  • Deng C, Teng X, Peng X, Zhang B (2014) Effects of simulated puddling intensity and pre-drying on shrinkage capacity of a paddy soil under long-term fertilization. Soil Tillage Res 140:135–143

    Article  Google Scholar 

  • Detzner H-D, Knies R (2004) Treatment and beneficial use of dredged sediments from the port of Hamburg. In: Proceedings of the world dredging congress XVII, dredging in a sensitive environment, Hamburg, Germany

  • EAK (2002) Empfehlungen für Küstenschutzwerke, korrigierte Ausgabe 2007, Die Küste 65, KFKi (Kuratorium für Forschung im Küsteningenieurwesen), 589 pp.

  • Gray CW, Allbrook R (2002) Relationships between shrinkage indices and soil properties in some New Zealand soils. Geoderma 108(3):287–299

    Article  CAS  Google Scholar 

  • Groenevelt PH, Grant CD (2001) Re-evaluation of the structural properties of some British swelling soils. Eur J Soil Sci 52(3):469–477

    Article  Google Scholar 

  • Gröngröft A, Tresselt K, Harms C, Miehlich G (2001) Design and effectiveness of a landfill cover system based on sludge as barrier material, In: Christensen TH, Cossu R, Stegmann R (eds) Proceedings Sardinia 2001, Eighth International Waste Management and Landfill Symposium, Calgari: CISA. Vol. III, pp 317–324

  • Gröngröft A, Tresselt K, Berger K, Melchior S, Türk M, & Miehlich G (2002) Austrocknungsverhalten einer mineralischen Oberflächendichtung aus Hafenschlick; Ergebnisse eines fünfjährigen Feldversuchs. Höxteraner Berichte zu angewandten Umweltwissenschaften, Bd, 3

  • Gröngröft A, Gebert J, Eschenbach A (2014) Water balance of dikes constructed with dredged material – results from a long-term field test. In: Saathoff F, Cantré S (eds) Proceedings of the South Baltic conference on dredged materials in dike construction. Universität Rostock, Rostock, pp 61–66

    Google Scholar 

  • Horn R, Peng X, Fleige H, Dörner J (2014) Pore rigidity in structured soils—only a theoretical boundary condition for hydraulic properties? J Soil Sci Plant Nutr 60(1):3–14

    Article  Google Scholar 

  • HPA (2016) Teilbericht Umlagerung von Baggergut nach Neßsand. Unpublished report

  • HPA (2017) Teilbericht Umlagerung von Baggergut nach Neßsand. Unpublished report

  • IGBE (1993) Bodenmechanische Untersuchung von Proben aus der Betriebsanlage METHA, 2. Überprüfung der Standardeinbaumethode. Institut für Grundbau, Bodenmechanik und Energiewasserbau, Universität Hannover

  • Kodikara J, Barbour S L, Fredlund D G (1999) Changes in clay structure and behaviour due to wetting and drying. In Proceedings 8th Australia New Zealand conference on geomechanics: consolidating knowledge (p. 179). Australian Geomechanics Society

  • LAGA Ad-hoc-AG “Deponietechnische Vollzugsfragen” (2008) Eignungsbeurteilung von METHA Material zur Herstellung von mineralischen Dichtungen in Oberflächenabdichtungssystemen von Deponien 16.06.2008

  • Lucian C (2016) Prediction of expansive soil based on the coefficient of linear extensibility (COLE). IJOER 2(9):71–76

    Google Scholar 

  • Luther-Mosebach J, Kalinski K, Gröngröft A, Eschenbach A (2016) CO2 fluxes in subtropical dryland soils—a comparison of the gradient and the closed chamber method. J Plant Nutr Soil Sci 000:1–10

    Google Scholar 

  • Netzband A, Christiansen H, Maaß B, Werner G (1998) Relocation of dredged material from Hamburg harbor in the River Elbe. Water Sci Technol 37(6–7):241–248

    Article  CAS  Google Scholar 

  • Oing K, Gröngröft A, Eschenbach A (2014) Gleichwertigkeit von Baggergut mit üblichen Bodenmaterialien im Deichbau: Schrumpfungsverhalten und Schadstofffreisetzungspotenzial von aufbereitetem Baggergut. In: Henneberg M (ed) Schriftenreihe Umweltingenieurwesen 47:105–109

  • Parker JC, Amos DF, & Kaster DL (1977) An Evaluation of Several Methods of Estimating Soil Volume Change 1. Soil Science Society of America Journal 41(6), 1059–1064

  • Oing K, Gröngröft A, Eschenbach A (2018) Enhanced dewatering optimizes compactibility of processed dredged material. J Soils Sediments 18(9):3020–3030

    Article  CAS  Google Scholar 

  • Peng X, Horn R (2007) Anisotropic shrinkage and swelling of some organic and inorganic soils. Eur J Soil Sci 58(1):98–107

    Article  Google Scholar 

  • Peng X, Horn R (2013) Identifying six types of soil shrinkage curves from a large set of experimental data. Soil Soil Sci Soc Am J 77(2):372–381

    Article  CAS  Google Scholar 

  • Peng X, Horn R, Smucker A (2007) Pore shrinkage dependency of inorganic and organic soils on wetting and drying cycles. Soil Sci Soc Am J 71(4):1095–1104

    Article  CAS  Google Scholar 

  • Peng X, Dörner J, Zhao Y, Horn R (2009) Shrinkage behaviour of transiently-and constantly-loaded soils and its consequences for soil moisture release. Eur J Soil Sci 60(4):681–694

    Article  Google Scholar 

  • Pons L, Van der Molen W (1973) Soil genesis under dewatering regimes during 1000 years of polder development. Soil Sci 116:228–235

    Article  CAS  Google Scholar 

  • Pons LJ, Zonneveld IS (1965) Soil ripening and soil classification. Initial soil formation in alluvial deposits and a classification of the resulting soils. Int. Inst. Land Reclam. Improv. Publ. No. 13. H. Veenman and Zonen, Wageningen

  • Quirk JP, Murray RS (1971) Towards a model for soil structural behavior. Aust J Soil Res 29:829–867

    Article  Google Scholar 

  • Rijniersce K (1983) A simulation model for physical soil ripening in the Ijsselmeerpolders. In Proceeding of Overdruk uit: polders of the world: papers international symposium, Lelistad, Netherlands, pp 407–417

  • Rizkallah V, Blümel W (1995) Geotechnische Aspekte bei der Deponierung von Elbschlick. Jahrbuch der Hafenbautechnischen Gesellschaft 50:155–161

    Google Scholar 

  • Saathoff F, Cantré S, Sikora Z (2015) South Baltic guideline for the application of dredged materials, coal combustion products and geosynthetics in Dike construction. Annex II. PDF auf www.dredgdikes.eu

  • Schafer WM, Singer MJ (1976a) A new method of measuring shrink-swell potential using soil pastes. Soil Sci Soc Am J 40:805–806

    Article  Google Scholar 

  • Schafer WM, Singer MJ (1976b) Influence of physical and mineralogical properties on swelling soils in Yolo County, California. Soil Sci Soc Am J 40:557–562

    Article  CAS  Google Scholar 

  • Tresselt K (2000) Feldversuche zur Wirksamkeit von Oberflächendichtungssystemen mit Dichtungen aus Hafenschlick. Hamburger Bodenkundliche Arbeiten 46:1–280

    Google Scholar 

  • Tresselt K, Miehlich G, Gröngröft A, Melchior S, Berger K, Harms C (1998) Harbor sludge as barrier material in landfill cover systems. Water Sci Technol 37(6–7):307–313

    Article  CAS  Google Scholar 

  • Tripathy S, Subba Rao KS, Fredlund DG (2002) Water content–void ratio swell–shrink paths of compacted expansive soils. Can Geotech J 39:938–959

    Article  Google Scholar 

  • Vaught R, Brye KR, Miller DM (2006) Relationships among coefficient of linear extensibility and clay fractions in expansive, stoney soils. Soil Sci Soc Am J 70:1983–1990

    Article  CAS  Google Scholar 

  • Vermeulen J, Van Dijk SG, Grotenhuis JTC, Rulkens WH (2005) Quantification of physical properties of dredged sediments during physical ripening. Geoderma 129(3):147–166

    Article  CAS  Google Scholar 

  • Widomski MK, Stępniewski W, Horn R, Bieganowski A, Gazda L, Franus M, Pawłowska M (2015) Shrink-swell potential, hydraulic conductivity and geotechnical properties of clay materials for landfill liner construction. Int Agrophys 29(3):365–375

    Article  CAS  Google Scholar 

  • Wilding LP, Tessier D (1988) Genesis of Vertisols: shrink-swell phenomena. In: Wilding LP, Puentes R (eds) Vertisols: their distribution, properties, classification and management. Texas A&M University Printing Center, College Station, pp 55–81

    Google Scholar 

  • Wysocka A, Stêpniewski W, Horn R (2006) Shrinkage properties of three clay materials at different temperatures. Int Agrophys 20(3):255

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Julia Gebert for valuable advice and ideas during the preparation of this manuscript.

Funding

This study was funded by the Hamburg Port Authority (HPA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katja Oing.

Additional information

Responsible editor: Sabine Ulrike Gerbersdorf

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oing, K., Gröngröft, A. & Eschenbach, A. Ripening reduces the shrinkage of processed dredged material. J Soils Sediments 20, 571–583 (2020). https://doi.org/10.1007/s11368-019-02384-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-019-02384-6

Keywords

Navigation