Skip to main content
Log in

Enhanced dewatering optimizes compactibility of processed dredged material

  • Sediments, Sec 5 • Sediment Management • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

The utilization of dredged material in dike construction as a substitute for traditionally used aged marsh sediment is considered an advisable option with respect to ecological as well as economic aspects. As a prerequisite to the application, the equivalency with respect to soil physical and mechanical properties of the materials has to be verified. Previous investigations on the compactibility of dredged materials used for dike construction had shown that the bulk densities of these materials were considerably lower than bulk densities of aged marsh sediments. The aim of the investigations presented in this paper was to analyze whether the compactibility of the processed dredged material could be improved by enhanced dewatering of the material prior to construction. It was hypothesized that a decreased water content of the material would allow higher bulk densities to be achieved during construction and hence the soil physical properties would become more comparable to those of the aged marsh sediments.

Materials and methods

To examine whether the compactibility of dredged material can be enhanced by pre-drying, Proctor tests were carried out at different initial water contents. Moreover, it was examined whether the temperature of oven-drying at 30 and 105 °C affects the compactibility of these materials and whether ripening, i.e., the repeated drying and wetting of the dredged material under natural and laboratory conditions, can improve their compactibility.

Results and discussion

The investigations on the effect of the various further processing methods showed that the compactibility and therefore the suitability of processed dredged material for dike construction can be improved by air-drying. A linear relationship between dehydration and Proctor density was found. Air-drying to water contents of 10% dry weight (DW) resulted in an improvement of the Proctor density of up to 11%. However, the tests on the effect of the drying temperature on the compactibility showed that oven-drying had no additional effect on the compactibility of the dredged materials. Ripening under laboratory and natural conditions did not lead to statistically significant changes in the compactibility of the processed dredged material either.

Conclusions

Air-drying of processed dredged material to water contents less than 10% DW is considered to be a useful pre-treatment option to improve the compaction behavior of processed dredged material and to obtain a better functional equivalency with traditionally used dike construction materials such as fine-grained aged marsh sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aragón A, García MG, Filgueira RR, Pachepsky YA (2000) Maximum compactibility of argentine soils from the proctor test: the relationship with organic carbon and water content. Soil Till Res 56(3–4):197–204

    Article  Google Scholar 

  • Ball BC, Campbell DJ, Hunter EA (2000) Soil compactibility in relation to physical and organic properties at 156 sites in UK. Soil Till Res 57(1):83–91

    Article  Google Scholar 

  • Baumgartl T, Horn R (1991) Effect of aggregate stability on soil compaction. Soil Till Res 19(2–3):203–213

    Article  Google Scholar 

  • Berger K, Gröngröft A, Harms C (2011) Water balance and efficiency of landfill covers composed of layers of dredged material: results from long-term measurements in Northern Germany. Pedologist 54(3):285–293

    CAS  Google Scholar 

  • Blanco-Canqui H, Shapiro CA, Wortmann CS, Drijber RA, Mamo M, Shaver TM, Ferguson RB (2013) Soil organic carbon: the value to soil properties. J Soil Water Conserv 68(5):129A–134A

    Article  Google Scholar 

  • Brils J, de Boer P, Mulder J, de Boer E (2014) Reuse of dredged material as a way to tackle societal challenges. J Soils Sediments 14(9):1638–1641

    Article  Google Scholar 

  • Cantré S, Saathoff F (2013) Investigation of dredged materials in combination with geosynthetics used in dike construction. Procedia Eng 57:213–221

    Article  Google Scholar 

  • Cantré S, Große AK, Neumannm R, Nitschke E, Henneberg M, Saathoff F (2013) Fine-grained organic dredged materials for dike cover layers—material characterisation and experimental results. In: XX World Dredging Congress and Exhibition 1-14

  • Chenu C, Le Bissonnais Y, Arrouays D (2000) Organic matter influence on clay wettability and soil aggregate stability. SSAJ 64(4):1479–1486

    Article  CAS  Google Scholar 

  • Denef K, Six J, Bossuyt H, Frey SD, Elliott ET, Merckx R, Paustian K (2001) Influence of dry–wet cycles on the interrelationship between aggregate, particulate organic matter, and microbial community dynamics. Soil Biol Biochem 33(12):1599–1611

    Article  CAS  Google Scholar 

  • Detzner HD, Knies R (2004) Treatment and beneficial use of dredged sediments from the port of Hamburg. Proceedings of the World Dredging Congress XVII, Dredging in a Sensitive Environment, Hamburg, Germany, In

    Google Scholar 

  • Díaz Zorita M, Grosso GA (2000) Effect of soil texture, organic carbon and water retention on the compactibility of soils from the Argentinean pampas. Soil Till Res 54(1–2):121–126

    Article  Google Scholar 

  • DIN 18122-1 (1997) Baugrund, Untersuchung von Bodenproben - Zustandsgrenzen (Konsistenzgrenzen) - Teil 1: Bestimmung der Fließ- und Ausrollgrenze. Beuth Verlag Berlin

  • DIN 18127 (2008) Baugrund, Untersuchung von Bodenproben - Proctorversuch. Beuth Verlag Berlin

  • DIN EN 15936-11 (2012) Schlamm, behandelter Bioabfall, Boden und Abfall - Bestimmung des gesamten organischen Kohlenstoffs (TOC) mittels trockener Verbrennung. Beuth Verlag Berlin

  • DIN EN ISO 17892-3 (2016) Geotechnische Erkundung und Untersuchung - Laborversuche an Bodenproben - Teil 3: Bestimmung der Korndichte. Beuth Verlag Berlin

  • DIN ISO 11277 (2002) Bodenbeschaffenheit - Bestimmung der Partikelgrößenverteilung in Mineralböden - Verfahren mittels Siebung und Sedimentation. Beuth Verlag Berlin

  • DIN ISO 11461 (2014) Bodenbeschaffenheit - Bestimmung des Wassergehalts des Bodens als Volumenanteil mittels Stechzylinder - Gravimetrisches Verfahren. Beuth Verlag Berlin

  • Farooq K, Khalid U, Mujtaba H (2016) Prediction of compaction characteristics of fine-grained soils using consistency limits. Arab J Sci Eng 41(4):1319–1328

    Article  CAS  Google Scholar 

  • Göngröft A, Eschenbach A (2015) Abschlussbericht - Analyse der Zusammensetzung und Qualität der organischen Substanz frischer Sedimente aus dem Hamburger Hafen. Unveröff. Abschlussbericht an HPA

  • Gröngröft A, Tresselt K, Harms C, Miehlich G (2001) Design and effectiveness of a landfill cover system based on sludge as barrier material. In: Christensen TH, Cossu R, Stegmann R (eds) Proceedings Sardinia 2001, eighth international waste management and landfill symposium, Calgari: CISA. Vol. III, pp 317–324

    Google Scholar 

  • Gröngröft A, Gebert J, Berger K, Maaß B (2005) Verwendung von Baggergut als Material für die Dichtung von Deponien, den Deichbau, zur Verfüllung und zur Bodenverbesserung. Hamb Bodenkundl Arb 56:209–223

    Google Scholar 

  • Gröngröft A, Gebert J, Eschenbach A (2014) Water balance of dikes constructed with dredged material—results from a long-term field test. In: Saathoff F, Cantré S (eds) Proceedings of the South Baltic Conference on Dredged Materials in Dike Construction. Universität Rostock, Rostock, pp 61–66

    Google Scholar 

  • Große AK, Saathoff F (2014) Geotechnical characterization of different fine-grained, organic dredged material batches from the Baltic Sea area: peculiarities and adaptions. In: Saathoff F, Cantré S (eds) Proceedings of the South Baltic Conference on Dredged Materials in Dike Construction. Universität Rostock, Rostock, pp 17–30

    Google Scholar 

  • IGBE (1993) Bodenmechanische Untersuchung von Proben aus der Betriebsanlage METHA, 2. Überprüfung der Standardeinbaumethode. Institut für Grundbau, Bodenmechanik und Energiewasserbau, Universität Hannover

  • Hamza MA, Anderson WK (2005) Soil compaction in cropping systems: a review of the nature, causes and possible solutions. Soil Till Res 82(2):121–145

    Article  Google Scholar 

  • Kropp J, Roithmeier O, Hattermann F, Rachimow C, Lüttger A, Wechsung F, Lasch P, Christiansen ES, Reyer C, Suckow F, Gutsch M, Holsten A, Kartschall T, Wodinski M, Hauf Y, Conradt T, Österle H, Walther C, Lissner T, Lux N, Tekken V, Ritchie S, Kossak J, Klaus M, Costa L, Vetter T, Klose M (2009) Klimawandel in Sachsen-Anhalt - Verletzlichkeiten gegenüber den Folgen des Klimawandels. Abschlussbericht des Potsdam-Instituts für Klimafolgenforschung (PIK)

  • LAGA Ad-hoc-AG Deponietechnische Vollzugsfragen (2008) Eignungsbeurteilung von METHA-Material zur Herstellung von mineralischen Dichtungen in Oberflächenabdichtungssystemen von Deponien 16.06.2008

  • Luther-Mosebach J, Kalinski K, Gröngröft A, Eschenbach A (2018) CO2 fluxes in subtropical dryland soils—a comparison of the gradient and the closed chamber method. J Plant Nutr Soil Sci 181(1):21–30

    Article  CAS  Google Scholar 

  • Mai S, Elsner A, Meyer V, Zimmermann C (2004) Änderung des Sturmflutrisikos der niedersächsischen Küste bei Klimawandel. Proceedings der Konferenz 'Klimaänderung und Küstenschutz' an der Universität Hamburg, S. 281–290, GKSS Forschungszentrum Geesthacht

  • Müller H, Borchardt J (2014) Load bearing capacity of a selected dredged material—evaluation for its applicability on the East Zingst dike projekt. In: Saathoff F, Cantré S (eds) Proceedings of the South Baltic Conference on dredged materials in dike construction. Universität Rostock, Rostock, pp 111–118

    Google Scholar 

  • Netzband A, Reincke H, Bergemann M (2002) The River Elbe. J Soils Sediments 2(3):112–116

    Article  CAS  Google Scholar 

  • Oing K, Gröngröft A, Eschenbach A (2014) Gleichwertigkeit von Baggergut mit üblichen Bodenmaterialien im Deichbau: Schrumpfungsverhalten und Schadstofffreisetzungspotenzial von aufbereitetem Baggergut. In M. Henneberg (eds), Schriftenreihe Umweltingenieurwesen 47:105–109

  • Paradelo R, Barral MT (2013) Influence of organic matter and texture on the compactibility of technosols. Catena 110:95–99

    Article  CAS  Google Scholar 

  • Pons LJ, Zonneveld IS (1965) Soil ripening and soil classification. Initial soil formationin alluvial deposits and a classification of the resulting soils. Int. Inst. Land Reclam. Improv. Publ. No. 13. H. Veenman and Zonen, Wageningen

  • Rijniersce K (1983) A simulation model for physical soil ripening in the Ijsselmeerpolders. In: Proceeding of Overdruk uit: polders of the world: papers international symposium, Lelistad, Netherlands, pp 407–417

  • Saathoff F, Cantré S, Sikora Z (2015) South Baltic guideline for the application of dredged materials, coal combustion products and geosynthetics in dike construction. DredgDikes_Guideline _Annex_II_online. pdf i

  • Smith CW, Johnston MA, Lorentz S (1997) Assessing the compaction susceptibility of South African forestry soils. II. Soil properties affecting compactibility and compressibility. Soil Till Res 43(3):335–354

    Article  Google Scholar 

  • Soane BD (1975) Studies on some soil physical properties in relation to cultivations and traffic. Technical Bulletin, Ministry of Agriculture, Fisheries and Food

  • Soane BD (1990) The role of organic matter in soil compactibility: a review of some practical aspects. Soil Till Res 16(1–2):179–201

    Article  Google Scholar 

  • von Storch H, Claussen M (eds) (2011) Klimabericht für die Metropolregion. Springer-Verlag, Hamburg

    Google Scholar 

  • Sunil BM, Deepa AV (2016) Influence of drying temperature on three soils physical properties. Geotech Geol Eng 34:777–778. https://doi.org/10.1007/s10706-016-0001-2

    Article  Google Scholar 

  • Sunil BM, Krishnappa H (2012) Effect of drying on the index properties of lateritic soils. Geotech Geol Eng 30:869–979

    Article  Google Scholar 

  • Tresselt K, Miehlich G, Groengroeft A, Melchior S, Berger K, Harms C (1998) Harbour sludge as barrier material in landfill cover systems. Water Sci Technol 37(6–7):307–313

    Article  CAS  Google Scholar 

  • Vermeulen J, Grotenhuis T, Joziasse J, Rulkens W (2003) Ripening of clayey dredged sediments during temporary upland disposal a bioremediation technique. J Soils Sediments 3(1):49–59

    Article  CAS  Google Scholar 

  • Zhang H, Hartge KH (1992) Zur Auswirkung organischer Substanz verschiedener Humifizierungsgrade auf die Aggregatstabilität durch Reduzierung der Benetzbarkeit. Z Pflanzenernähr Bodenkd 155(2):143–149

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by Hamburg Port Authority (HPA). The authors would like to thank Julia Gebert for valuable advice and ideas during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katja Oing.

Additional information

Responsible editor: Jos Brils

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oing, K., Gröngröft, A. & Eschenbach, A. Enhanced dewatering optimizes compactibility of processed dredged material. J Soils Sediments 18, 3020–3030 (2018). https://doi.org/10.1007/s11368-018-1958-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-018-1958-7

Keywords

Navigation