Skip to main content

Advertisement

Log in

Comparative analysis of bacterial community compositions between sediment and water in different types of wetlands of northeast China

  • Sediments, Sec 4 • Sediment-Ecology Interactions • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Although wetlands are one of the major ecosystems on the earth, information about the bacterial communities in different types of wetlands, especially in northeast China, has not yet been fully described. The aim of this study was to compare bacterial community compositions between sediment and water in different types of wetlands of northeast China.

Materials and methods

In this study, sediment and water samples were synchronously collected from different types of wetlands in northeast China. The bacterial communities were analyzed with Illumina MiSeq sequencing targeting the 16S rRNA gene.

Results and discussion

The results showed that the dominant phyla (relative abundance > 5%) across all sediment samples were Proteobacteria and Chloroflexi, while those across all water samples were Proteobacteria, Actinobacteria, and Bacteroidetes. Bacterial community composition was distinctly different among wetlands at the phylum and genus levels, and the indicator species for different sediment and water samples also varied greatly. The alpha diversity of bacterial community was higher in sediment samples than in water samples, and the lowest alpha diversity was detected in two coastal wetlands, both in sediment and in water samples. A heatmap analysis at the genus level and principal coordinate analysis revealed that all bacterial communities in sediment or in water samples were separated into distinct groups according to wetland type, and the communities in two coastal wetlands were highly similar to each other both in sediment and water samples, respectively. Bacterial communities in sediment were mainly affected by the available K content, followed by total C and total N, soil pH, etc., while in water, the communities were mainly affected by total P, total K, etc.

Conclusions

The results revealed that bacterial community compositions between sediment and water samples were significantly different, and the communities in two coastal wetlands were more similar than those in other wetlands. The wetland sediment samples demonstrated higher community alpha diversity than the water samples, and alpha diversity was lowest in both the sediment and water of two coastal wetlands. Moreover, bacterial communities in sediment and water were driven by different environmental factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abia ALK, Alisoltani A, Keshri J, Ubomba-Jaswa E (2018) Metagenomic analysis of the bacterial communities and their functional profiles in water and sediments of the Apies River, South Africa, as a function of land use. Sci Total Environ 616:326–334

    Article  CAS  Google Scholar 

  • Achenbach LA, Michaelidou U, Bruce RA, Fryman J, Coates JD (2001) Dechloromonas agitata gen. nov., sp. nov. and Dechlorosoma suillum gen. nov., sp. nov., two novel environmentally dominant (per) chlorate-reducing bacteria and their phylogenetic position. Int J Syst Evol Microbiol 51:527–533

    Article  CAS  Google Scholar 

  • Adeloju SB, Bond AM, Briggs MH (1984) Critical evaluation of some wet digestion methods for the stripping voltammetric determination of selenium in biological-materials. Anal Chem 56:2397–2401

    Article  CAS  Google Scholar 

  • Alonso C, Warnecke F, Amann R, Pernthaler J (2007) High local and global diversity of Flavobacteria in marine plankton. Environ Microbiol 9:1253–1266

    Article  CAS  Google Scholar 

  • Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46

    Google Scholar 

  • Barberán A, Casamayor EO (2010) Global phylogenetic community structure and β-diversity patterns in surface bacterioplankton metacommunities. Aquat Microb Ecol 59:1–10

    Article  Google Scholar 

  • Barns SM, Takala SL, Kuske CR (1999) Wide distribution and diversity of members of the bacterial kingdom Acidobacterium in the environment. Appl Environ Microbiol 65:1731–1737

    CAS  Google Scholar 

  • Barns SM, Cain EC, Sommerville L, Kuske CR (2007) Acidobacteria phylum sequences in uranium-contaminated subsurface sediments greatly expand the known diversity within the phylum. Appl Environ Microbiol 73:3113–3116

    Article  CAS  Google Scholar 

  • Biddle JF, Fitz-Gibbon S, Schuster SC, Brenchley JE, House CH (2008) Metagenomic signatures of the Peru Margin subseafloor biosphere show a genetically distinct environment. P Natl Acad Sci USA 105:10583–10588

    Article  Google Scholar 

  • Bouvier TC, del Giorgio PA (2002) Compositional changes in free-living bacterial communities along a salinity gradient in two temperate estuaries. Limnol Oceanogr 47:453–470

    Article  CAS  Google Scholar 

  • Bowman JP, McCuaig RD (2003) Biodiversity, community structural shifts, and biogeography of prokaryotes within Antarctic continental shelf sediment. Appl Environ Microbiol 69:2463–2483

    Article  CAS  Google Scholar 

  • Bowman JP, Nichols DS (2005) Novel members of the family Flavobacteriaceae from Antarctic maritime habitats including Subsaximicrobium wynnwilliamsii gen. nov., sp. nov., Subsaximicrobium saxinquilinus sp. nov., Subsaxibacter broadyi gen. nov., sp. nov., Lacinutrix copepodicola gen. nov., sp. nov., and novel species of the genera Bizionia, Gelidibacter and Gillisia. Int J Syst Evol Microbiol 55:1471–1486

    Article  CAS  Google Scholar 

  • Brune A, Ludwig W, Schink B (2002) Propionivibrio limicola sp. nov., a fermentative bacterium specialized in the degradation of hydroaromatic compounds, reclassification of Propionibacter pelophilus as Propionivibrio pelophilus comb. nov. and amended description of the genus Propionivibrio. Int J Syst Evol Microbiol 52:441–444

    Article  Google Scholar 

  • Burton TM, Uzarski DG (2009) Biodiversity in protected coastal wetlands along the west coast of Lake Huron. Aquat Ecosyst Health 12:63–76

    Article  Google Scholar 

  • Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R (2010a) PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26:266–267

    Article  CAS  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Tumbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010b) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  Google Scholar 

  • Carignan V, Villard MA (2002) Selecting indicator species to monitor ecological integrity: a review. Environ Monit Assess 78:45–61

    Article  Google Scholar 

  • Casas V, Rohwer F (2007) Phage metagenomics. Methods Enzymol 421:259–268

    Article  CAS  Google Scholar 

  • Chen X, Feng SG, Zhang HX, Wang YF, Bai ZH, Gu LK (2011) Investigation of bacterial community diversity in water of Zoige alpine wetland. Acta Ecol Sin 31:205–211

    Article  CAS  Google Scholar 

  • Corteselli EM, Aitken MD, Singleton DR (2017) Rugosibacter aromaticivorans gen. nov., sp. nov., a bacterium within the family Rhodocyclaceae, isolated from contaminated soil, capable of degrading aromatic compounds. Int J Syst Evol Microbiol 67:311–318

    Article  CAS  Google Scholar 

  • Davidsson TE, Stepanauskas R, Leonardson L (1997) Vertical patterns of nitrogen transformations during infiltration in two wetland soils. Appl Environ Microbiol 63:3648–3656

    CAS  Google Scholar 

  • De Cáceres M, Legendre P, Moretti M (2010) Improving indicator species analysis by combining groups of sites. Oikos 119:1674–1684

    Article  Google Scholar 

  • De Carvalho CC, Da Fonseca MMR (2005) The remarkable Rhodococcus erythropolis. Appl Microbiol Biotehnol 67:715–726

    Article  CAS  Google Scholar 

  • DeLong EF, Karl DM (2005) Genomic perspectives in microbial oceanography. Nature 437:336–342

    Article  CAS  Google Scholar 

  • Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366

    Google Scholar 

  • Dufresne A, Ostrowski M, Scanlan DJ, Garczarek L, Mazard S, Palenik BP, Paulsen IT, de Marsac NT, Wincker P, Dossat C, Ferriera S, Johnson J, Post AF, Hess WR, Partensky F (2008) Unravelling the genomic mosaic of a ubiquitous genus of marine cyanobacteria. Genome Biol 9:R90

    Article  CAS  Google Scholar 

  • Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998

    Article  CAS  Google Scholar 

  • Fahrbach M, Kuever J, Meinke R, Kämpfer P, Hollender J (2006) Denitratisoma oestradiolicum gen. nov., sp. nov., a 17 β-oestradioldegrading, denitrifying betaproteobacterium. Int J Syst Evol Microbiol 56:1547–1552

    Article  CAS  Google Scholar 

  • Fang L, Chen L, Liu Y, Tao W, Zhang ZZ, Liu HY, Tang Y (2015) Planktonic and sedimentary bacterial diversity of Lake Sayram in summer. Microbiologyopen 4:814–825

    Article  CAS  Google Scholar 

  • Feng BW, Li XR, Wang JH, Hu ZY, Meng H, Xiang LY, Quan ZX (2009) Bacterial diversity of water and sediment in the Changjiang estuary and coastal area of the East China Sea. FEMS Microbiol Ecol 70:236–248

    Article  CAS  Google Scholar 

  • Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364

    Article  Google Scholar 

  • Gower JC (1966) Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53:325–338

    Article  Google Scholar 

  • Guo XP, Lu DP, Niu ZS, Feng JN, Chen YR, Tou FY, Liu M, Yang Y (2018) Bacterial community structure in response to environmental impacts in the intertidal sediments along the Yangtze Estuary, China. Mar Pollut Bull 126:141–149

    Article  CAS  Google Scholar 

  • Gutknecht JLM, Goodman RM, Balser TC (2006) Linking soil process and microbial ecology in freshwater wetland ecosystems. Plant Soil 289:17–34

    Article  CAS  Google Scholar 

  • Hartman WH, Richardson CJ, Vilgalys R, Bruland GL (2008) Environmental and anthropogenic controls over bacterial communities in wetland soils. P Natl Acad Sci USA 105:17842–17847

    Article  Google Scholar 

  • He T, Guan W, Luan ZY, Xie SG (2015) Spatiotemporal variation of bacterial and archaeal communities in a pilot-scale constructed wetland for surface water treatment. Appl Microbiol Biotechnol 100:1479–1488

    Article  CAS  Google Scholar 

  • Jackson ML (1958) Soil chemical analysis. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Jackson EF, Jackson CR (2008) Viruses in wetland ecosystems. Freshw Biol 53:1214–1227

    Article  Google Scholar 

  • Jing RY, Liu JJ, Yu ZH, Liu XB, Wang GH (2014) Phylogenetic distribution of the capsid assembly protein gene (g20) of cyanophages in paddy floodwaters in northeast China. PLoS One 9:e88634

    Article  CAS  Google Scholar 

  • Jones DL, Willett VB (2006) Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biol Biochem 38:991–999

    Article  CAS  Google Scholar 

  • Junk WJ, An S, Finlayson CM, Gopal B, Květ J, Mitchell SA, Mitsch WJ, Robarts RD (2013) Current state of knowledge regarding the world’s wetlands and their future under global climate change: a synthesis. Aquat Sci 75:151–167

    Article  CAS  Google Scholar 

  • Kasalický V, Jezbera J, Hahn MW, Šimek K (2013) The diversity of the Limnohabitans genus, an important group of freshwater bacterioplankton, by characterization of 35 isolated strains. PLoS One 8:e58209

    Article  CAS  Google Scholar 

  • Keller JK (2011) Wetlands and the global carbon cycle, what might the simulated past tell us about the future? New Phytol 192:789–792

    Article  CAS  Google Scholar 

  • Kolukirik M, Ince O, Cetecioglu Z, Celikkol S, Ince BK (2011) Spatial and temporal changes in microbial diversity of the Marmara Sea sediments. Mar Pollut Bull 62:2384–2394

    Article  CAS  Google Scholar 

  • Kostanjsek R, Lapanje A, Drobne D, Svetlana Perovic S, Perovic A, Zidar P, Štrus J, Hollert H, Karaman G (2005) Bacterial community structure analyses to assess pollution of water and sediments in the Lake Shkodra/Skadar, Balkan Peninsula. Environ Sci Pollut Res 12:361–368

    Article  CAS  Google Scholar 

  • Kozak A, Celewicz-Goldyn S, Kuczyńska-Kippen N (2019) Cyanobacteria in small water bodies: the effect of habitat and catchment area conditions. Sci Total Environ 646:1578–1587

    Article  CAS  Google Scholar 

  • Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75:5111–5120

    Article  CAS  Google Scholar 

  • Lee YJ, Romanek CS, Wiegel J (2007) Clostridium aciditolerans sp. nov., an acid-tolerant spore-forming anaerobic bacterium from constructed wetland sediment. Int J Syst Evol Microbiol 57:311–315

    Article  CAS  Google Scholar 

  • Lefèvre CT, Frankel RB, Abreu F, Lins U, Bazylinski DA (2011) Culture-independent characterization of a novel, uncultivated magnetotactic member of the Nitrospirae phylum. Environ Microbiol 13:538–549

    Article  CAS  Google Scholar 

  • Li P, Li SN, Zhang Y, Cheng HM, Zhou HL, Qiu LG, Diao XP (2018) Seasonal variation of anaerobic ammonium oxidizing bacterial community and abundance in tropical mangrove wetland sediments with depth. Appl Soil Ecol 130:149–158

    Article  Google Scholar 

  • Liu JJ, Zheng CY, Song CC, Guo SD, Liu XB, Wang GH (2014) Conversion from natural wetlands to paddy field alters the composition of soil bacterial communities in Sanjiang Plain, Northeast China. Ann Microbiol 64:1395–1403

    Article  CAS  Google Scholar 

  • Lozupone CA, Knight R (2007) Global patterns in bacterial diversity. P Natl Acad Sci USA 104:11436–11440

    Article  CAS  Google Scholar 

  • Mao DH, Wang ZM, Luo L, Ren CY, Jia MM (2016) Monitoring the evolution of wetland ecosystem pattern in northeast China from 1990 to 2013 based on remote sensing. J Nat Resour 31:1253–1263 (in Chinese)

    Google Scholar 

  • Mausbach MJ, Parker WB (2001) Background and history of the concept of hydric soils. In: Richardson JL, Vepraskas MJ (eds) Wetland soils: genesis, hydrology, landscapes, and classification. CRC, Florida, pp 19–33

    Google Scholar 

  • Mcbride MJ, Liu W, Lu X, Zhu X, Zhang W (2014) The family Cytophagaceae. In: Rosenberg E et al (eds) The prokaryotes. Springer, Berlin, pp 577–593

    Google Scholar 

  • McJannet D, Wallace J, Keen R, Hawdon A, Kemei J (2012) The filtering capacity of a tropical riverine wetland: I. Water balance. Hydrol Process 26:40–52

    Article  CAS  Google Scholar 

  • Mehlich A (1984) Mehlich 3 soil test extractant: a modification of Mehlich 2 extractant. Commun Soil Sci Plan 15:1409–1416

    Article  CAS  Google Scholar 

  • Milligan GW (1985) Cluster-analysis for researchers-Romesburg, Hc. J Classif 2:133–137

    Article  Google Scholar 

  • Miranda KM, Espey MG, Wink DA (2001) A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide-Biol Ch 5:62–71

    Article  CAS  Google Scholar 

  • Mitsch WJ, Gosselink JG (2007) Wetlands. Wiley, New Jersey

    Google Scholar 

  • Nally RM, Fleishman E (2004) A successful predictive model of species richness based on indicator species. Conserv Biol 18:646–654

    Article  Google Scholar 

  • Nedashkovskaya OI, Kim SB, Lee KH, Mikhailov VV, Bae KS (2005) Gillisia mitskevichiae sp. nov., a novel bacterium of the family Flavobacteriaceae, isolated from sea water. Int J Syst Evol Microbiol 55:321–323

    Article  CAS  Google Scholar 

  • Niederberger TD, Sohm JA, Gunderson TE, Parker AE, Tirindelli J, Capone DG, Carpenter EJ, Cary SC (2015) Microbial community composition of transiently wetted Antarctic Dry Valley soils. Front Microbiol 6:9

    Google Scholar 

  • Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. United States Department of Agriculture, Washington

    Google Scholar 

  • Partensky F, Blanchot J, Vaulot D (1999) Differential distribution and ecology of Prochlorococcus and Synechococcus in oceanic waters: a review. In: Charpy L, Larkum AWD (eds) Marine cyanobacteria. Musée Oceanographique, Monaco, pp 457–476

    Google Scholar 

  • Perkins TL, Clements K, Baas JH, Jago CF, Jones DL, Malham SK, McDonald JE (2014) Sediment composition influences spatial variation in the abundance of human pathogen indicator bacteria within an estuarine environment. PLoS One 9:e112951

    Article  CAS  Google Scholar 

  • Pommier T, Canback B, Riemann L, Bostrom KH, Simu K, Lundberg P, Tunlid A, Hagstrom A (2007) Global patterns of diversity and community structure in marine bacterioplankton. Mol Ecol 16:867–880

    Article  CAS  Google Scholar 

  • Price MN, Dehal PS, Arkin AP (2009) Fast tree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 26:1641–1650

    Article  CAS  Google Scholar 

  • R Development Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Roh SW, Lee M, Lee HW, Yim KJ, Heo SY, Kim N, Yoon C, Nam YD, Kim JY, Hyun DW, Bae JW, Jeong JB, Kang H, Kim D (2013) Gillisia marina sp. nov., from seashore sand, and emended description of the genus Gillisia. Int J Syst Evol Microbiol 63:3640–3645

    Article  CAS  Google Scholar 

  • Sadaie T, Sadaie A, Takada M, Hamano K, Ohnishi J, Ohta N, Matsumoto K, Sadaie Y (2007) Reducing sludge production and the domination of Comamonadaceae by reducing the oxygen supply in the wastewater treatment procedure of a food-processing factory. Biosci Biotechnol Biochem 71:791–799

    Article  CAS  Google Scholar 

  • Sekiguchi Y, Yamada T, Hanada S, Ohashi A, Harada H, Kamagata Y (2003) Anaerolinea thermophila gen. nov., sp. nov. and Caldilinea aerophila gen. nov., sp nov., novel filamentous thermophiles that represent a previously uncultured lineage of the domain Bacteria at the subphylum level. Int J Syst Evol Microbiol 53:1843–1851

    Article  CAS  Google Scholar 

  • Sergeev VN, Gerasimenko LM, Zavarzin GA (2002) The proterozoic history and present state of cyanobacteria. Microbiology 71:623–637

    Article  CAS  Google Scholar 

  • Sun L, Toyonaga M, Ohashi A, Matsuura N, Tourlousse DM, Meng XY, Meng X, Tamaki H, Hanada S, Cruz R, Yamaguchi T, Sekiguchi Y (2016) Isolation and characterization of Flexilinea flocculi gen. nov., sp. nov., a filamentous, anaerobic bacterium belonging to the class Anaerolineae in the phylum Chloroflexi. Int J Syst Evol Microbiol 66:988–996

    Article  CAS  Google Scholar 

  • Tripathi BM, Kim M, Singh D, Lee-Cruz L, Lai-Hoe A, Ainuddin AN, Go R, Rahim RA, Husni MH, Chun J, Adams JM (2012) Tropical soil bacterial communities in Malaysia: pH dominates in the equatorial tropics too. Microb Ecol 64:474–484

    Article  Google Scholar 

  • Van Trappen S, Vandecandelaere I, Mergaert JS, Swings J (2004) Gillisia limnaea gen. nov., sp. nov., a new member of the family Flavobacteriaceae isolated from a microbial mat in Lake Fryxell, Antarctica. Int J Syst Evol Microbiol 54:445–448

    Article  CAS  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  CAS  Google Scholar 

  • Wang GH, Asakawa S, Kimura M (2011) Spatial and temporal changes of cyanophage communities in paddy field soils as revealed by the capsid assembly protein gene g20. FEMS Microbiol Ecol 76:352–359

    Article  CAS  Google Scholar 

  • Wang Y, Sheng HF, He Y, Wu JY, Jiang YX, Tam NFY, Zhou HW (2012) Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of illumina tags. Appl Environ Microbiol 78:8264–8271

    Article  CAS  Google Scholar 

  • Wang L, Liu XS, Yu SL, Shi XC, Wang XL, Zhang XH (2017) Bacterial community structure in intertidal sediments of Fildes Peninsula, maritime Antarctica. Polar Biol 40:339–349

    Article  Google Scholar 

  • Weelink SA, Van Doesburg W, Saia FT, Rijpstra WIC, Röling WFM, Smidt H, Stams AJM (2009) A strictly anaerobic betaproteobacterium Georgfuchsia toluolica gen. nov., sp. nov. degrades aromatic compounds with Fe (III), Mn (IV) or nitrate as an electron acceptor. FEMS Microbiol Ecol 70:575–585

    Article  CAS  Google Scholar 

  • Wiegel J, Tanner R, Rainey FA (2006) An introduction to the family Clostridiaceae. In: Dworkin W, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes, 3rd edn. Springer, New York, pp 654–678

    Chapter  Google Scholar 

  • Yamada T, Sekiguchi Y, Hanada S, Imachi H, Ohashi A, Harada H, Kamagata Y (2006) Anaerolinea thermolimosa sp. nov., Levilinea saccharolytica gen. nov., sp. nov. and Leptolinea tardivitalis gen. nov., sp. nov., novel filamentous anaerobes, and description of the new classes Anaerolineae classis nov. and Caldilineae classis nov. in the bacterial phylum Chloroflexi. Int J Syst Evol Microbiol 56:1331–1340

    Article  CAS  Google Scholar 

  • Yannarell AC, Triplett EW (2005) Geographic and environmental sources of variation in lake bacterial community composition. Appl Environ Microbiol 71:227–239

    Article  CAS  Google Scholar 

  • Ye WJ, Liu XL, Lin SQ, Tan J, Pan JL, Li DT, Yang H (2009) The vertical distribution of bacterial and archaeal communities in the water and sediment of Lake Taihu. FEMS Microbiol Ecol 70:263–276

    Article  CAS  Google Scholar 

  • Zehr JP, Ward BB (2002) Nitrogen cycling in the ocean: new perspectives on processes and paradigms. Appl Environ Microbiol 68:1015–1024

    Article  CAS  Google Scholar 

  • Zhang H, Chang YQ, Zheng WS, Chen GJ, Du ZJ (2017) Salinimicrobium flavum sp. nov., isolated from coastal sediment. Int J Syst Evol Microbiol 67:4083–4088

    Article  CAS  Google Scholar 

  • Zhang HH, Wang Y, Chen SN, Zhao ZF, Feng J, Zhang ZH, Lu KY, Jia JY (2018) Water bacterial and fungal community compositions associated with urban lakes, Xi’an, China. Int J Environ Res Public Health 15:469

    Article  CAS  Google Scholar 

  • Zhang HH, Feng J, Chen SN, Zhao ZF, Li BQ, Wang Y, Jia JY, Li SL, Wang Y, Yan MM, Lu KY, Hao HY (2019) Geographical patterns of nirS gene abundance and nirS-type denitrifying bacterial community associated with activated sludge from different wastewater treatment plants. Microb Ecol 77:304–316

    Article  CAS  Google Scholar 

  • Zhao X, Li DY, Xu SH, Guo ZH, Zhang Y, Man L, Jiang BH, Hu XM (2017) Clostridium guangxiense sp. nov. and Clostridium neuense sp. nov., two phylogenetically closely related hydrogen-producing species isolated from lake sediment. Int J Syst Evol Microbiol 67:710–715

    Article  CAS  Google Scholar 

  • Zhou ZC, Meng H, Liu Y, Gu JD, Li M (2017) Stratified bacterial and archaeal community in mangrove and intertidal wetland mudflats revealed by high throughput 16S rRNA gene sequencing. Front Microbiol 8:2148

    Article  Google Scholar 

  • Zubkov MV, Fuchs BM, Archer SD, Kiene RP, Amann R, Burkill PH (2001) Linking the composition of bacterioplankton to rapid turnover of dissolved dimethylsulphoniopropionate in an algal bloom in the North Sea. Environ Microbiol 3:304–311

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (41571246) and National Key Research and Development Program of China (2017YFD0200604).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanghua Wang.

Additional information

Responsible editor: Haihan Zhang

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 533 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Li, X., Liu, J. et al. Comparative analysis of bacterial community compositions between sediment and water in different types of wetlands of northeast China. J Soils Sediments 19, 3083–3097 (2019). https://doi.org/10.1007/s11368-019-02301-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-019-02301-x

Keywords

Navigation