Skip to main content
Log in

Machine learning methods for estimation the indicators of phosphogypsum influence in soil

  • Soils, Sec 2 • Global Change, Environ Risk Assess, Sustainable Land Use • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

The full understanding of the effect of mineral waste-based fertilizer in soil is still unrelieved, because of the extreme complex chemical composition and plethora of their action pathways. The purposes of this paper is to quantify the input of PG into the soil ecosystem process, considering the direct effects of PG as a whole on soil environment using of a plethora of chemical, toxicological, and biological tests.

Materials and methods

Greenhouse experiment includes different PG doses (0, 1%, 3%, 7.5%, 15%, 25%, and 40%) and two-time collection points after treatments—7 and 28 days. For each treatment and each time collection point, we measure (i) soil pH, bioavailable (H20 and NH4COOH-extractable) element content (S, P, K, Na, Mg, Ca, Fe, Zn, Sr, Ba, F); (ii) soil enzyme activities—dehydrogenase, urease, acid phosphatase, FDA; (iii) soil CO2 respiration activity with and without glucose addition; (iv) Eisenia fetida, Sinapis alba, and Avena sativa responses. Finally, we combine the ordinary chemical, toxicology, and biological measuring of soil properties with state-of-the-art mathematical analysis, namely (i) support vector machines (used for prediction), (ii) mutual information test (variable importance tasks), (iii) t-SNE and LLE algorithms (used for unsupervised classification).

Results and discussion

The results show similarity between the 0%, 1%, and 3% PG treatments in all collection times based on the toxicological and biological properties. Beyond 7.5% PG, some biological test was significantly inhibited in response to trace element stress. Among all tested parameters, soil urease activities, soil respiration activities after glucose addition, S. alba root lengths, and E. fetida survival rates show sensitivity to PG addition. Furthermore, the machine learning algorithms revealed that only several elements (mobile and water-soluble forms of Ca, Ba, Sr, S, and Na; water-soluble F) could be responsible to elevated soil toxicity for those indicators. SVR models were able to predict soil biological and ecotoxicity properties, and increasing numbers of randomly selected training examples from 50 to 90% of initial experimental data significantly improved model performance.

Conclusions

At this study, we demonstrate benefits of unsupervised machine learning methods for investigating toxicity of man-made substances in soil that can be further applied to risk assessments of various toxins, which are of significant interest to environmental protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Al-Hwaiti M, Al-Khashman O (2015) Health risk assessment of heavy metals contamination in tomato and green pepper plants grown in soils amended with phosphogypsum waste materials. Environ Geochem Health 37:287–304

    Article  CAS  Google Scholar 

  • Alvarenga P, Clemente R, Garbisu C, Becerril JM (2018) Indicators for monitoring mine site rehabilitation. In: Bio-Geotechnologies for Mine Site Rehabilitation. Elsevier, pp 49–66

  • Ascari JP, Mendes IRN (2018) Desenvolvimento agronômico e produtivo da soja sob diferentes doses de gesso agrícola. Revista Agrogeoambiental 9

  • Ayadi A, Chorriba A, Fourati A, Gargouri-Bouzid R (2015) Investigation of the effect of phosphogypsum amendment on two Arabidopsis thaliana ecotype growth and development. Environ Technol 36:1547–1555

    Article  CAS  Google Scholar 

  • Blum SC, Caires EF, Alleoni LRF (2013) Lime and phosphogypsum application and sulfate retention in subtropical soils under no-till system. J Soil Sci Plant Nutr 13(2):279–300

    Google Scholar 

  • Boluda R, Roca-Pérez L, Marimón L (2011) Soil plate bioassay: an effective method to determine ecotoxicological risks. Chemosphere 84:1–8

    Article  CAS  Google Scholar 

  • Bouma J (2014) Soil science contributions towards sustainable development goals and their implementation: linking soil functions with ecosystem services. J Plant Nutri Soil Sci 177(2):111–120

    Article  CAS  Google Scholar 

  • Bünemann EK, Bongiorno G, Bai Z, Creamer RE, De Deyn G, de Goede R, Fleskens L, Geissen V, Kuyper TW, Mäder P, Pulleman M, Sukkel W, van Groenigen JW, Brussaard L (2018) Soil quality – a critical review. Soil Biol Biochem 120:105–125

    Article  CAS  Google Scholar 

  • Bunte K, Biehl M, Hammer B (2012) A general framework for dimensionality reducing data visualization mapping. Neural Comp 24(3):771–804

    Article  Google Scholar 

  • Burns RG, DeForest JL, Marxsen J, Sinsabaugh RL, Stromberger ME, Wallenstein MD, Weintraub MN, Zoppini A (2013) Soil enzymes in a changing environment: Current knowledge and future directions. Soil Biol Biochem 58:216–234

    Article  CAS  Google Scholar 

  • Caldwell BA (2005) Enzyme activities as a component of soil biodiversity: a review. Pedobiologia 49(6):637–644

    Article  CAS  Google Scholar 

  • Carmeis Filho ACA, Penn CJ, Crusciol CAC, Calonego JC (2017) Lime and phosphogypsum impacts on soil organic matter pools in a tropical Oxisol under long-term no-till conditions. Agr Ecosyst Environ 241:11–23

    Article  CAS  Google Scholar 

  • Chae Y, Kim D, An YJ (2018) Effects of fluorine on crops, soil exoenzyme activities, and earthworms in terrestrial ecosystems. Ecotoxicol Environ Saf 151:21–27

    Article  CAS  Google Scholar 

  • Chaudhari MS (2016) Acute toxicity of diammonium phosphate to earthworm (Eudrilus eugeniae). J Entomol Zool Stud 4(6):501–503

    Google Scholar 

  • Cheng Z, Lee L, Dayan S, Grinshtein M, Shaw R (2011) Speciation of heavy metals in garden soils: evidences from selective and sequential chemical leaching. J Soils Sediments 11:628–638

    Article  CAS  Google Scholar 

  • Cipullo S, Snapira D, Prpich G, Campo P, Coulona F (2019) Prediction of bioavailability and toxicity of complex chemical mixtures through machine learning models. Chemosphere 215:388–395

    Article  CAS  Google Scholar 

  • Cui X, Wang XD, Fan WH, Wang JM, Cui KY (2011) Effects of fluoride on soil properties and yield and quality of maize. Chin J Eco-Agric 19(4):897–901

    Article  CAS  Google Scholar 

  • Delgado A, Madrid A, Kassem S, Andre L, del Carmen del Campillo M (2002) Phosphorus fertilizer recovery from calcareous soils amended with humic and fulvic acids. Plant Soil 2:277–286

    Article  Google Scholar 

  • Deng J, Chen X, Wang R et al (2017) LS-SVM data mining analysis: how does biochar influence soil net nitrogen mineralization in the field? J Soils Sediments 17(3):827–840

    Article  CAS  Google Scholar 

  • Eivazi F, Tabatabai MA (1977) Phosphatases in soils. Soil Biol Biochem 9:167–172

    Article  CAS  Google Scholar 

  • Elloumi N, Zouari M, Chaari L, Abdallah FB, Woodward S, Kallel M (2015) Effect of phosphogypsum on growth, physiology, and the antioxidative defense system in sunflower seedlings. Environ Sci Pollut Res 22:14829–14840

    Article  CAS  Google Scholar 

  • Fox DR (2015) Selection bias correction for species sensitivity distribution modeling and hazardous concentration estimation: correction for SSD modeling. Environ Toxicol Chem 34:2555–2563

    Article  CAS  Google Scholar 

  • Gisbrecht A, Hammer B (2015) Data visualization by nonlinear dimensionality reduction. Wiley Interdiscip Rev Data Min Knowl Discov 5(2):51–73

    Article  Google Scholar 

  • Haney RL, Franzluebbers AJ (2009) Soil CO2 evolution: response from arginine additions. Appl Soil Ecol 42:324–327

    Article  Google Scholar 

  • Hentati O, Abrantes N, Caetano AL, Bouguerra S, Gonçalves F, Römbke J, Pereira R (2015) Phosphogypsum as a soil fertilizer: ecotoxicity of amended soil and elutriates to bacteria, invertebrates, algae and plants. J Hazard Mater 294:80–89

    Article  CAS  Google Scholar 

  • Hurtado MD, Enamorado SM, Andreu L, Delgado A, Abril JM (2011) Drain flow and related salt losses as affected by phosphogypsum amendment in reclaimed marsh soils from SW Spain. Geoderma 161:43–49

    Article  CAS  Google Scholar 

  • Inbar Y, Boehm MJ, Hoitink HJ (1991) Hydrolysis of fluorescein diacetate in sphagnum peat container media for predicting suppressiveness to damping-off caused by Pythium ultimum. Soil Biol Biochem 23:479–483

    Article  CAS  Google Scholar 

  • International Atomic Energy Agency Report (2013) Radiation protection and management of norm residues in the phosphate industry. 308 P. https://www-pub.iaea.org/MTCD/Publications/PDF/Pub1582_web.pdf. checked 19.11.2018

  • ISO 14240-1:1 (1997) Soil quality - determination of soil microbial biomass - Part 1: substrate-induced respiration method

  • ISO 16072 (2002) Soil quality - laboratory methods for determination of microbial soil respiration

  • ISO 19204 (2017) Soil quality - procedure for site-specific ecological risk assessment of soil contamination (soil quality TRIAD approach)

  • Jager T (2011) Some Good Reasons to ban EC x and related concepts in ecotoxicology. Environ Sci Technol 45:8180–8181

    Article  CAS  Google Scholar 

  • Kammoun M, Ghorbel I, Charfeddine S, Kamoun L, Gargouri-Bouzid R, Nouri-Ellouz O (2017) The positive effect of phosphogypsum-supplemented composts on potato plant growth in the field and tuber yield. J Environ Manag 200:475–483

    Article  CAS  Google Scholar 

  • Klose S, Tabatabai M (2000) Urease activity of microbial biomass in soils as affected by cropping systems. Biol Fertil Soils 31:191–199

    Article  CAS  Google Scholar 

  • Konarbaeva G (1997) Fluorine in the crusty solonetzes of Western Siberia and the impact of phosphogypsum on its content. Eurasian Soil Sci 30:977–981

    Google Scholar 

  • Kraskov A, Stögbauer H, Grassberger P (2004) Estimating mutual information. Phys Rev E 69. https://doi.org/10.1103/PhysRevE.69.066138

  • Li H, Leng W, Zhou Y, Chen F, Xiu Z, Yang D (2014) Evaluation models for soil nutrient based on support vector machine and artificial neural networks. Sci World J 478569:7. https://doi.org/10.1155/2014/478569

    Article  CAS  Google Scholar 

  • Liu Z, Rong Q, Zhou W, Liang G (2017) Effects of inorganic and organic amendment on soil chemical properties, enzyme activities, microbial community and soil quality in yellow clayey soil. PLOS One 12. https://doi.org/10.1371/journal.pone.0172767

  • Liu J, Liu M, Wu M et al (2018) Soil pH rather than nutrients drive changes in microbial community following long-term fertilization in acidic Ultisols of southern China. J Soils Sediments 18:1853–1864

    Article  CAS  Google Scholar 

  • Maaten LVD, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9:2579–2605

    Google Scholar 

  • McBride M (1989) Reactions controlling heavy metal solubility in soils. Adv Soil Sci 26:1–56

    Google Scholar 

  • Morgado RG, Loureiro S, González-Alcaraz MN (2018) Changes in Soil Ecosystem Structure and Functions Due to Soil Contamination. Soil Pollution. Elsevier, pp 59–87

  • Morgan JE, Morgan AJ (1988) Calcium-lead interactions involving earthworms. Part 2: The effect of accumulated lead on endogenous calcium in Lumbricus rubellus. Environ Pollut 55(1):41–54

    Article  CAS  Google Scholar 

  • Negrão S, Schmöckel SM, Tester M (2017) Evaluating physiological responses of plants to salinity stress. Ann Bot 119(1):1–11

    Article  Google Scholar 

  • Niell S, Jesús F, Díaz R, Mendoza Y, Notte G, Santos E, Gérez N, Cesio V, Cancela H, Heinzen H (2018) Beehives biomonitor pesticides in agroecosystems: simple chemical and biological indicators evaluation using Support Vector Machines (SVM). Ecol Ind 91:149–154

    Article  CAS  Google Scholar 

  • Nikolaeva OV, Terekhova VA (2017) Improvement of laboratory phytotest for the ecological evaluation of soils. Eurasian Soil Sci 50:1105–1114

    Article  Google Scholar 

  • OECD Guideline for testing chemicals 222 (2004). Earthworm reproduction test (Eisenia fetida/Eisenia andrei)

  • Palmer DS, Mišin M, Fedorov MV, Llinas A (2015) Fast and general method to predict the physicochemical properties of druglike molecules using the integral equation theory of molecular liquids. Mol Pharm 12:3420–3432

    Article  CAS  Google Scholar 

  • Pan Y, Koopmans GF, Bonten LTC et al (2014) Influence of pH on the redox chemistry of metal (hydr)oxides and organic matter in paddy soils. J Soils Sediments 14:1713–1726

    Article  CAS  Google Scholar 

  • Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blindel M, Prettenhofer P, Wiess R, Dubourg V et al (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830

    Google Scholar 

  • Pereira R, Cachada A, Sousa JP, Niemeyer J, Markwiese J, Andersen CP (2018) Ecotoxicological effects and risk assessment of pollutants. Soil Pollution. Elsevier, pp 91–216

  • Pickering WF (1985) The mobility of soluble fluoride in soils. Environ Pollut Series B 9:281–308

    Article  CAS  Google Scholar 

  • Reinwarth B, Miller JK, Glotzbach C et al (2017) Applying regularized logistic regression (RLR) for the discrimination of sediment facies in reservoirs based on composite fingerprints. J Soils Sediments 17(6):1777–1795

    Article  CAS  Google Scholar 

  • Rodríguez-Pérez R, Vogt M, Bajorath J (2017) Influence of varying training set composition and size on support vector machine-based prediction of active compounds. J Chem Inf Model 57(4):710–716. https://doi.org/10.1021/acs.jcim.7b00088

    Article  CAS  Google Scholar 

  • Roweis ST, Saul L (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290:2323–2326. https://doi.org/10.1126/science.290.5500.2323

    Article  CAS  Google Scholar 

  • Russian National Report (2015) On the state and protection of the environment issued annually by the Ministry of Natural Resources and Environment (in Russian)

  • Saadaoui E, Ghazel N, Ben Romdhane C, Massoudi N (2017) Phosphogypsum: potential uses and problems – a review. Int J Environ Studies 74:558–567

    Article  CAS  Google Scholar 

  • Saha JK, Kundu S (2003) Determination of fluoride in soil water extract through ion chromatography. Commun Soil Sci Plant Anal 34:181–188

    Article  CAS  Google Scholar 

  • Shatar TM, Mcbratney AB (2004) Boundary-line analysis of field-scale yield response to soil properties. J Agric Sci 142:553–560

    Article  Google Scholar 

  • Tabatabai MA (1977) Effects of trace elements on urease activity in soils. Soil Biol Biochem 9(1):9–13

    Article  CAS  Google Scholar 

  • Tayibi H, Choura M, López FA, Alguacil FJ, López-Delgado A (2009) Environmental impact and management of phosphogypsum. J Environ Manag 90:2377–2386

    Article  CAS  Google Scholar 

  • Telesiński A, Siwczyk F, Zakrzewska H (2012) An attempt to determination of the 50% phytotoxicity threshold for different fluoride concentrations affecting the spring wheat (Triticum aestivum L.) and white mustard (Sinapis alba L.) seedlings. Fluoride 45(3/1):213–214

    Google Scholar 

  • Thalmann A (1968) Zur methodic derestimung der. Dehydrogenaseaktivität i. Boden mittels. Triphenyltetrazoliumchlorid (TTC). Landwirdschaft. Forschung 21:249–258

    CAS  Google Scholar 

  • Twarakavi NCK, Šimůnek J, Schaap MG (2009) Development of pedotransfer functions for estimation of soil hydraulic parameters using support vector machines. Soil Sci Soc Am J 73(5):1443–1452

    Article  CAS  Google Scholar 

  • Vapnik VN (1995) The nature of statistical learning theory. Springer, New York

    Book  Google Scholar 

  • Vapnik VN, Golowich S, Smola A (1997) Support vector method for function approximation, regression estimation, and signal processing. In: Mozer MC, Jordan MI, Petsche T (eds) Advances in neural information processing systems, vol 9. MIT Press, Cambridge, pp 281–287

    Google Scholar 

  • Vyshpolsky F, Mukhamedjanov K, Bekbaev U, Ibatullin S, Yuldashev T, Noble AD, Mirzabaev A, Aw-Hassan A, Qadir M (2010) Optimizing the rate and timing of phosphogypsum application to magnesium-affected soils for crop yield and water productivity enhancement. Agric Water Manag 97:1277–1286. https://doi.org/10.1016/j.agwat.2010.02.020

    Article  Google Scholar 

  • Wu CH, Ho JM, Lee DT (2004) Travel time prediction with support vector regression. IEEE Trans Intell Transp Syst 5(4):276–281

    Article  Google Scholar 

  • Yakovlev AS, Kaniskin MA, Terekhova VA (2013) Ecological evaluation of artificial soils treated with phosphogypsum. Eurasian Soil Sci 46:697–703

    Article  CAS  Google Scholar 

  • Zaman AU (2014) Identification of key assessment indicators of the zero waste management systems. Ecol Ind 36:682–693

    Article  Google Scholar 

  • Zhu J, Wang J, Ding Y, Liu B, Xiao W (2018) A systems-level approach for investigating organophosphorus pesticide toxicity. Ecotox Environ Saf 149:26–35

Download references

Acknowledgments

The research was supported by the Skoltech Next Generation Program and the Russian Found of Basic Research (Project No. 16-34-00063 mol_a). We are grateful to Anastasia Sharapkova (Rosetta Stone MSU) for proofreading the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria A. Pukalchik.

Additional information

Responsible editor: Xiuping Jia

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(XLSX 40 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pukalchik, M.A., Katrutsa, A.M., Shadrin, D. et al. Machine learning methods for estimation the indicators of phosphogypsum influence in soil. J Soils Sediments 19, 2265–2276 (2019). https://doi.org/10.1007/s11368-019-02253-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-019-02253-2

Keywords

Navigation