Skip to main content

Advertisement

Log in

Response of phosphorus fractions to land-use change followed by long-term fertilization in a sub-alpine humid soil of Qinghai–Tibet plateau

  • Soils, Sec 1 • Soil Organic Matter Dynamics and Nutrient Cycling • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Identification of phosphorus (P) species is essential to understand the transformation and availability of P in soil. However, P species as affected by land use change along with fertilization has received little attention in a sub-alpine humid soil of Tibet plateau.

Materials and methods

In this study, we investigated the changes in P species using Hedley sequential fractionation and liquid-state 31P-NMR spectroscopy in soils under meadow (M) and under cropland with (CF) or without (CNF) long-term fertilization for 26 years in a sub-alpine cold-humid region in Qinghai–Tibet plateau.

Results and discussion

Land-use change and long-term fertilization affected the status and fractions of P. A strong mineralization of organic P (OP) was induced by losing protection of soil organic matter (SOM) and Fe and Al oxides during land-use change and resulted in an increase of orthophosphate (from 56.49 mg kg−1 in M soils to 130.07 mg kg−1 in CNF soils) and great decreases of orthophosphate diesters (diester-P, from 23.35 mg kg−1 in M soils to 10.68 mg kg−1 in CNF soils) and monoesters (from 336.04 mg kg−1 in M soils to 73.26 mg kg−1 in CNF soils). Long-term fertilization boosted P supply but failed to reclaim soil diester-P (from 10.68 mg kg−1 in CNF soils to 7.79 mg kg−1 in CF soils). This may be due to the fragile protection from the combination of SOM with diester-P when long-term fertilization had only improved SOM in a slight extent.

Conclusions

These results suggest that SOM plays an important role in the soil P cycling and prevents OP mineralization and losses from soil. It is recommended that optimization of soil nutrient management integrated with SOM was required to improve the P use efficiency for the development of sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdi D, Cade-Menun BJ, Ziadi N, Parent LÉ (2014) Long-term impact of tillage practices and phosphorus fertilization on soil phosphorus forms as determined by 31P nuclear magnetic resonance spectroscopy. J Environ Qual 43:1431–1441

    Article  CAS  Google Scholar 

  • Abdi D, Cade-Menun BJ, Ziadi N, Parent LÉ (2015) Compositional statistical analysis of soil 31P-NMR forms. Geoderma 257–258:40–47

    Article  CAS  Google Scholar 

  • Ahlgren J, Djodjic F, Börjesson G, Mattsson L (2013) Identification and quantification of organic phosphorus forms in soils from fertility experiments. Soil Use Manag 29:24–35

    Article  Google Scholar 

  • Annaheim KE, Doolette AL, Smernik RJ, Mayer J, Oberson A, Frossard E et al (2015) Long-term addition of organic fertilizers has little effect on soil organic phosphorus as characterized by 31P NMR spectroscopy and enzyme additions. Geoderma 257–258:67–77

    Article  CAS  Google Scholar 

  • Aspila KI, Agemian H, Chau ASY (1976) A semi-automated method for the determination of inorganic, organic and total phosphate in sediments. Analyst 101:187–197

    Article  CAS  Google Scholar 

  • Boix-Fayos C, Calvo-Cases A, Imeson AC, Soriano-Soto MD (2001) Influence of soil properties on the aggregation of some Mediterranean soils and the use of aggregate size and stability as land degradation indicators. Catena 44(1):47–67

    Article  Google Scholar 

  • Cade-Menun BJ (2005) Characterizing phosphorus in environmental and agricultural samples by 31P nuclear magnetic resonance spectroscopy. Talanta 66:359–371

    Article  CAS  Google Scholar 

  • Cade-Menun BJ (2015) Improved peak identification in 31P-NMR spectra of environmental samples with a standardized method and peak library. Geoderma 257–258:102–114

    Article  CAS  Google Scholar 

  • Carrillo-Gonzalez R, Gonzalez-Chavez MCA, Aitkenhead-Peterson JA, Hons FM, Loeppert RH (2013) Extractable DOC and DON from a dry-land long-term rotation and cropping system in Texas, USA. Geoderma 197–198:79–86

    Article  CAS  Google Scholar 

  • Chapman HD (1965) Cation exchange capacity, methods of soil analysis. American Society of Agronomy, Madison

    Google Scholar 

  • Chhabra R, Abrol IP, Singh MV (1981) Dynamics of phosphorus during land-use change of sodic soils. Soil Sci 132(5):319–324

    Article  CAS  Google Scholar 

  • Chung H, Grove JH, Six J (2008) Indications for soil carbon saturation in a temperate agroecosystem. Soil Sci Soc Am J 72(4):1132–1139

    Article  CAS  Google Scholar 

  • Condron LM, Frossard E, Tiessen H, Newmans RH, Stewart JWB (1990) Chemical nature of organic phosphorus in cultivated and uncultivated soils under different environmental conditions. J Soil Sci 41(1):41–50

    Article  CAS  Google Scholar 

  • Daroub SH, Pierce FJ, Ellis BG (2000) Phosphorus fractions and fate of phosphorus-33 in soils under plowing and no-tillage. Soil Sci Soc Am J 64:170–176

    Article  CAS  Google Scholar 

  • Delgado A, Ruíz JR, Del Campillo MDC, Kassem S, Andreu L (2000) Calcium- and iron-related phosphorus in calcareous and calcareous marsh soils: sequential chemical fractionation and 31P nuclear magnetic resonance study. Commun Soil Sci Plant Anal 31:2483–2499

    Article  CAS  Google Scholar 

  • Ding SM, Xu D, Li B, Fan CX, Zhang CS (2010) Improvement of 31P-NMR spectral resolution by 8-hydroxyquinoline precipitation of paramagnetic Fe and Mn in environmental samples. Environ Sci Technol 44(7):2555–2561

    Article  CAS  Google Scholar 

  • Drosos M, Nebbioso A, Mazzei P, Vinci G, Spaccini R, Piccolo A (2017) A molecular zoom into soil Humeome by a direct chemical sequential fractionation of soil. Sci Total Environ 586:807–816

    Article  CAS  Google Scholar 

  • Frossard E, Condron LM, Oberson A, Sinaj S, Fardeau JC (2000) Processes governing phosphorus availability in temperate soils. J Environ Qual 29(1):15–23

    Article  CAS  Google Scholar 

  • George TS, Giles CD, Menezes-Blackburn D, Condron LM, Gama-Rodrigues AC, Jaisi D, Lang F, Neal AL, Stutter MI, Almeida DS, Bol R, Cabugao KG, Celi L, Cotner JB, Feng G, Goll DS, Hallama M, Krueger J, Plassard C, Rosling A, Darch T, Fraser T, Giesler R, Richardson AE, Tamburini F, Shand CA, Lumsdon DG, Zhang H, Blackwell MSA, Wearing C, Mezeli MM, Almås ÅR, Audette Y, Bertrand I, Beyhaut E, Boitt G, Bradshaw N, Brearley CA, Bruulsema TW, Ciais P, Cozzolino V, Duran PC, Mora ML, de Menezes AB, Dodd RJ, Dunfield K, Engl C, Frazão JJ, Garland G, González Jiménez JL, Graca J, Granger SJ, Harrison AF, Heuck C, Hou EQ, Johnes PJ, Kaiser K, Kjær HA, Klumpp E, Lamb AL, Macintosh KA, Mackay EB, McGrath J, McIntyre C, McLaren T, Mészáros E, Missong A, Mooshammer M, Negrón CP, Nelson LA, Pfahler V, Poblete-Grant P, Randall M, Seguel A, Seth K, Smith AC, Smits MM, Sobarzo JA, Spohn M, Tawaraya K, Tibbett M, Voroney P, Wallander H, Wang L, Wasaki J, Haygarth PM (2018) Organic phosphorus in the terrestrial environment: a perspective on the state of the art and future priorities. Plant Soil 427:191–208

    Article  CAS  Google Scholar 

  • Green VS, Cavigelli MA, Dao TH, Flanagan DC (2005) Soil physical properties and aggregate-associated C, N, and P distributions in organic and conventional cropping systems. Soil Sci 170(10):822–831

    Article  CAS  Google Scholar 

  • Guggenberger G, Christensen BT, Rubæk G, Zech W (1996) Land-use and fertilization effects on P forms in two European soils: resin extraction and 31P-NMR analysis. Eur J Soil Sci 47:605–614

    Article  CAS  Google Scholar 

  • Guo JH, Liu XJ, Zhang Y, Shen JL, Han WX, Zhang WF, Christie P, Goulding KWT, Vitousek PM, Zhang FS (2010) Significant acidification in major Chinese croplands. Science 327(5968):1008–1010

    Article  CAS  Google Scholar 

  • Halajnia A, Haghnia GH, Fotovat A, Khorasani R (2009) Phosphorus fractions in calcareous soils amended with P fertilizer and cattle manure. Geoderma 150:209–213

    Article  CAS  Google Scholar 

  • Hedley MJ, Stewart JWB, Chauhan BS (1982) Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Sci Soc Am J 46:970–976

    Article  CAS  Google Scholar 

  • Huang JS (2007) A gasometric procedure to measure residual lime in container substrates. Hortscience 42(7):1685–1689

    Article  CAS  Google Scholar 

  • Koch M, Kruse J, Eichler-Löbermann B, Zimmer D, Willbold S, Leinweber P, Siebers N (2018) Phosphorus stocks and speciation in soil profiles of a long-term fertilizer experiment: evidence from sequential fractionation, P K-edge XANES, and 31P NMR spectroscopy. Geoderma 316:115–126

    Article  CAS  Google Scholar 

  • Li XG, Li FM, Rengel Z, Zhan ZY, Singh B (2007) Soil physical properties and their relations to organic carbon pools as affected by land use in an alpine pastureland. Geoderma 139:98–105

    Article  CAS  Google Scholar 

  • Li XG, Zhang PL, Yin P, Li YK, Ma QF, Long RJ, Li FM (2009) Soil organic carbon and nitrogen fractions and water-stable aggregation as affected by cropping and grassland land-use change in an arid sub-alpine soil. Land Degrad Dev 20(2):176–186

    Article  Google Scholar 

  • Li YY, Dong SK, Wen L, Wang XX, Wu Y (2014) Soil carbon and nitrogen pools and their relationship to plant and soil dynamics of degraded and artificially restored grasslands of the Qinghai–Tibetan Plateau. Geoderma 213:178–184

    Article  CAS  Google Scholar 

  • Li M, Mazzei P, Cozzolino V, Monda H, Hu ZY, Piccolo A (2015) Optimized procedure for the determination of P species in soil by liquid-state 31P-NMR spectroscopy. Chem Biol Technol Agric 2:7

    Article  CAS  Google Scholar 

  • Li M, Cozzolino V, Mazzei P, Drosos M, Monda H, Hu ZY, Piccolo A (2018) Effects of microbial bioeffectors and P amendments on P forms in a maize cropped soil as evaluated by 31P-NMR spectroscopy. Plant Soil 427:87–104

    Article  CAS  Google Scholar 

  • Mao X, Xu X, Lu K, Gielen G, Luo J, He L, Donnison A, Xu Z, Xu J, Yang W, Song Z, Wang H (2015) Effect of 17 years of organic and inorganic fertilizer applications on soil phosphorus dynamics in a rice-wheat rotation cropping system in eastern China. J Soils Sediments 15:1889–1899

    Article  CAS  Google Scholar 

  • Maranguit D, Guillaume T, Kuzyakov Y (2017) Land-use change affects phosphorus fractions in highly weathered tropical soils. Catena 149:385–393

    Article  CAS  Google Scholar 

  • McLaren TI, Smernik RJ, Guppy CN, Bell MJ, Tighe MK (2014) The organic P composition of Vertisols as determined by 31P NMR spectroscopy. Soil Sci Soc Am J 78:1893–1902

    Article  CAS  Google Scholar 

  • Meyer S, Leifeld J, Bahn M, Fuhrer J (2012) Land-use change in subalpine grassland soils: effect on particulate organic carbon fractions and aggregation. J Plant Nutr Soil Sci 175:401–409

    Article  CAS  Google Scholar 

  • Motavalli P, Miles R (2002) Soil phosphorus fractions after 111 years of animal manure and fertilizer applications. Biol Fertil Soils 36(1):35–42

    Article  CAS  Google Scholar 

  • Murphy PNC, Bell A, Turner BL (2009) Phosphorus speciation in temperate basaltic grassland soils by solution 31P NMR spectroscopy. Eur J Soil Sci 60(4):638–651

    Article  CAS  Google Scholar 

  • Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA circular 939. United States Department of Agriculture, Washington, DC

    Google Scholar 

  • Perrier ER, Kellogg M (1960) Colorimetric determination of soil organic matter. Soil Sci 90(2):104–106

    Article  CAS  Google Scholar 

  • Richardson AE, Lynch JP, Ryan PR, Delhaize E, Smith FA, Smith SE, Harvey PR, Ryan MH, Veneklaas EJ, Lambers H, Oberson A, Culvenor RA, Simpson RJ (2011) Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant Soil 349:121–156

    Article  CAS  Google Scholar 

  • Shen P, Xu MG, Zhang HM, Yang XY, Huang SM, Zhang SX, He X (2014) Long-term response of soil Olsen P and organic C to the depletion or addition of chemical and organic fertilizers. Catena 118:20–27

    Article  CAS  Google Scholar 

  • Shi Y, Lalande R, Hamel C, Ziadi N, Gagnon B, Hu ZY (2013) Seasonal variation of microbial biomass, activity, and community structure in soil under different tillage and phosphorus management practices. Biol Fertil Soils 49(7):803–818

    Article  CAS  Google Scholar 

  • Tiessen HJ, Moir JO (1993) Characterization of available P by sequential extraction, soil sampling and methods of analysis. Lewis Publishers, Boca Raton

    Google Scholar 

  • Turner BL, Haygarth PM (2005) Phosphatase activity in temperate pasture soils: potential regulation of labile organic phosphorus turnover by phosphodiesterase activity. Sci Total Environ 344(1–3):27–36

    Article  CAS  Google Scholar 

  • Vincent AG, Turner BL, Tanner EVJ (2010) Soil organic phosphorus dynamics following perturbation of litter cycling in a tropical moist forest. Eur J Soil Sci 61(1):48–57

    Article  CAS  Google Scholar 

  • Walker TW, Adams AFR (1958) Studies on soil organic matter: I. Influence of phosphorus content of parent materials on accumulations of carbon, nitrogen, sulfur, and organic phosphorus in grassland soils. Soil Sci 85(6):307–318

    Article  CAS  Google Scholar 

  • Wei K, Chen ZH, Zhang XP, Liang WJ, Chen LJ (2014) Tillage effects on phosphorus composition and phosphatase activities in soil aggregates. Geoderma 217–218:37–44

    Article  CAS  Google Scholar 

  • Wei K, Bao HX, Huang SM, Chen LJ (2017) Effects of long-term fertilization on available P, P composition and phosphatase activities in soil from the Huang-Huai-Hai plain of China. Agric Ecosyst Environ 237:134–142

    Article  CAS  Google Scholar 

  • Xin XL, Zhang JB, Zhu AN, Zhang CZ (2016) Effects of long-term (23 years) mineral fertilizer and compos application on physical properties of fluvo-aquic soil in the North China plain. Soil Tillage Res 156:166–172

    Article  Google Scholar 

  • Xue QY, Shamsi IH, Sun DS, Ostermann A, Zhang QC, Zhang YS, Lin XY (2013) Impact of manure application on forms and quantities of phosphorus in a Chinese Cambisol under different land use. J Soils Sediments 13(5):837–845

    Article  Google Scholar 

  • Yin AJ, Gao C, Zhang M, Wu PB, Yang XH (2017) Rapid changes in phosphorus species in soils developed on reclaimed tidal flat sediments. Geoderma 307:46–53

    Article  CAS  Google Scholar 

  • Zhang M, Li CL, Li YC, Harris WG (2014) Phosphate minerals and solubility in native and agricultural calcareous soils. Geoderma 232–234:164–171

    Article  CAS  Google Scholar 

Download references

Funding

This work was jointly supported by China Postdoctoral Science Foundation funded Project (2016M601095), National Natural Science Fund Projects of China (41701561), National Key Research and Development Project of China (2016YFD0800104-4), and Sino-Danish Joint Doctoral Promotion Programme (Chinese Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meng Li or Zhengyi Hu.

Additional information

Responsible editor: Yongfu Li

Electronic supplementary material

ESM 1

(JPG 222 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Li, M., Wang, G. et al. Response of phosphorus fractions to land-use change followed by long-term fertilization in a sub-alpine humid soil of Qinghai–Tibet plateau. J Soils Sediments 19, 1109–1119 (2019). https://doi.org/10.1007/s11368-018-2132-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-018-2132-y

Keywords

Navigation