Skip to main content

Advertisement

Log in

Effects of metal oxide nanoparticles on soil enzyme activities and bacterial communities in two different soil types

  • Soils, Sec 5 • Soil and Landscape Ecology • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

With the increased availability of nanoparticle-based products, their releases to soil are undoubtedly inevitable. Among the nanoparticle-based products, potential risks of metal oxide nanoparticles (MO-ENPs) have attracted increasing concerns. However, their effects on soil and soil microorganisms remain largely unknown.

Materials and methods

In this study, four metal oxide nanoparticles, i.e., zinc oxide nanoparticles (nZnO), titanium dioxide nanoparticles (nTiO2), cerium dioxide nanoparticles (nCeO2), and magnetite nanoparticles (nFe3O4), were enrolled to evaluate their impact on soil enzyme activities (invertase, urease, catalase, and phosphatase) and bacterial communities in two typical soils from northeast China (black soil and saline-alkali soil). The community structure and size were analyzed using pyrosequencing and real-time polymerase chain reaction (RT-PCR). The soils were exposed to metal oxide nanoparticles at 0.5, 1.0, and 2.0 mg g−1 for 15 and 30 days.

Results and discussion

In general, nZnO had a stronger effect on soil enzymatic activities than nTiO2, nCeO2, and nFe3O4, and saline-alkali soil was more susceptible to metal oxide nanoparticles than black soil. In RT-PCR analysis, a significant decrease (41.66, 36.34, and 47.99%, respectively) on total bacteria population was only observed in saline-alkali soil treated by 0.5, 1.0, and 2.0 mg g−1 nZnO. Meanwhile, pyrosequencing analysis revealed that the samples of saline-alkali soil treated with nZnO showed high variance in their bacterial community composition, e.g., Bacilli, Alphaproteobacteria, and Gammaproteobacteria class.

Conclusions

The results suggested that metal oxide nanoparticle incubation could influence soil enzyme activities and change soil bacterial community. Moreover, the soil type was a key component dictating the effect of metal oxide nanoparticles on the bacterial community composition and size. These findings are of great help towards building a comprehensive understanding of the potential environmental risks of metal oxide nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Achuba FI, Peretiemoclarke BO (2008) Effect of spent engine oil on soil catalase and dehydrogenase activities. Int Agrophys 22:1–4

    CAS  Google Scholar 

  • Adams LK, Lyon DY, Alvarez PJJ (2006) Comparative eco-toxicity of nanoscale TiO2, SiO2 and ZnO water suspensions. Water Res 40:3527–3532

    Article  CAS  Google Scholar 

  • Andreazza R, Pieniz S, Okeke BC, Camargo FA (2011) Evaluation of copper resistant bacteria from vineyard soils and mining waste for copper biosorption. Braz J Microbiol 42:66–74

    Article  CAS  Google Scholar 

  • Auffan M, Rose J, Bottero JY, Lowry GV, Jolivet JP, Wiesner MR (2009) Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol 4:634–641

    Article  CAS  Google Scholar 

  • Bamberger MH, Lowe FC (2010) Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME J 4:17–27

    Article  Google Scholar 

  • Ben-Moshe T, Frenk S, Dror I, Minz D, Berkowitz B (2013) Effects of metal oxide nanoparticles on soil properties. Chemosphere 90:640–646

    Article  CAS  Google Scholar 

  • Bharde A, Wani A, Shouche Y, Joy PA, Prasad BLV, Sastry M (2005) Bacterial aerobic synthesis of nanocrystalline magnetite. J Am Chem Soc 127:9326–9327

    Article  CAS  Google Scholar 

  • Brayner R, Ferrariiliou R, Brivois N, Djediat S, Benedetti MF, Fiévet F (2006) Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett 6:866–870

    Article  CAS  Google Scholar 

  • Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2:MR17–MR71

    Article  Google Scholar 

  • Chai H, Yao J, Sun J, Zhang C, Liu W, Zhu M, Ceccanti B (2015) The effect of metal oxide nanoparticles on functional bacteria and metabolic profiles in agricultural. Soil Bull Environ Contam Toxicol 94:490–495

    Article  CAS  Google Scholar 

  • Chen G, Peng Y, Sun G (2008) Effect of Puccinellia tenuiflora growth on nitrogen content of alkalized soil in Song-Nen Plain. The International Conference on Bioinformatics and Biomedical Engineering, 4318–4321

  • Collins D, Luxton T, Kumar N, Shah S, Walker VK, Shah V (2012) Assessing the impact of copper and zinc oxide nanoparticles on soil: a field study. PLoS One 7:e42663

    Article  CAS  Google Scholar 

  • Cornelis G, Ryan B, Mclaughlin MJ, Kirby JK, Beak D, Chittleborough D (2011) Solubility and batch retention of CeO2 nanoparticles in soils. Environ Sci Technol 45:2777–2782

    Article  CAS  Google Scholar 

  • De Castro JA, Pereira BA, Tassi E, Pini R, Araujo ASF, Valadão ICP (2012) Modeling the transport phenomena of TiO2 nanoparticles into leachate of municipal waste landfills. Mater Sci Forum 727-728(2):1695–1700

    Article  CAS  Google Scholar 

  • Deng H, Li XF, Cheng WD, Zhu YG (2009) Resistance and resilience of Cu-polluted soil after Cu perturbation, tested by a wide range of soil microbial parameters. FEMS Microbiol Ecol 70:137–148

    Article  Google Scholar 

  • Desai C, Jain K, Madamwar D (2008) Evaluation of in vitro Cr(VI) reduction potential in cytosolic extracts of three indigenous Bacillus sp. isolated from Cr(VI) polluted industrial landfill. Bioresour Technol 99:6059–6069

    Article  CAS  Google Scholar 

  • Dick WA, Cheng L, Wang P (2000) Soil acid and alkaline phosphatase activity as pH adjustment indicators. Soil Biol Biochem 32:1915–1919

    Article  CAS  Google Scholar 

  • Du W, Sun Y, Ji R, Zhu J, Wu J, Guo H (2011) TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J Environ Monit 13:822–828

    Article  CAS  Google Scholar 

  • Eivazi F, Tabatabai MA (1990) Factors affecting glucosidase and galactosidase activities in soils. Soil Biol Biochem 22:891–897

    Article  CAS  Google Scholar 

  • Feng Y, Zhu J (2009) Free-air CO2 enrichment (FACE) enhances the biodiversity of purple phototrophic bacteria in flooded paddy soil. Plant Soil 324:317–328

    Article  CAS  Google Scholar 

  • Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS (2007) Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol 41:8484–8490

    Article  CAS  Google Scholar 

  • Frenk S, Ben-Moshe T, Dror I, Berkowitz B, Minz D (2013) Effect of metal oxide nanoparticles on microbial community structure and function in two different soil types. PLoS One 8:e84441

    Article  Google Scholar 

  • Fu L, Yang W, Wei Y (2009) Effects of copper pollution on the activity of soil invertase and urease in loquat orchards. Acta Geochimica 28:76–80

    CAS  Google Scholar 

  • Ge Y, Schimel JP, Holden PA (2011) Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environ Sci Technol 45:1659–1664

    Article  CAS  Google Scholar 

  • Ge Y, Schimel JP, Holden PA (2012) Identification of soil bacteria susceptible to TiO2 and ZnO nanoparticles. Appl Environ Microbiol 78:6749–6758

    Article  CAS  Google Scholar 

  • Godwin HA, Chopra K, Bradley KA, Cohen Y, Harthorn BH, Hoek EM, Holden P, Keller AA, Lenihan HS, Nisbet RM, Nel AE (2009) The University of California Center for the Environmental Implications of Nanotechnology. Environ Sci Technol 43:6453–6457

    Article  CAS  Google Scholar 

  • Griffiths BS, Kuan HL, Ritz K, Glover LA, Mccaig AE, Fenwick C (2004) The relationship between microbial community structure and functional stability, tested experimentally in an upland pasture. Soil Microbial Ecol 47:104–113

    Article  CAS  Google Scholar 

  • Gu Y, Wang P, Kong CH (2009) Urease, invertase, dehydrogenase and polyphenoloxidase activities in paddy soil influenced by allelopathic rice variety. Eur J Soil Biol 45:436–441

    Article  CAS  Google Scholar 

  • Handy RD, Von dKF, Lead JR, Hassellöv M, Owen R, Crane M (2008) The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 17:287–314

    Article  CAS  Google Scholar 

  • He S, Feng Y, Ren H, Zhang Y, Gu N, Lin X (2011) The impact of iron oxide magnetic nanoparticles on the soil bacterial community. J Soils Sediments 11:1408–1417

    Article  CAS  Google Scholar 

  • Heinlaan M, Ivask A, Blinova I, Dubourguier HC, Kahru A (2008) Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71:1308–1316

    Article  CAS  Google Scholar 

  • Huang Z, Zheng X, Yan D, Yin G, Liao X, Kang Y, Yao Y, Huang D, Hao B (2008) Toxicological effect of ZnO nanoparticles based on bacteria. Langmuir 24:4140–4144

    Article  CAS  Google Scholar 

  • Huang R, Fang Z, Fang X, Tsang EP (2014) Ultrasonic Fenton-like catalytic degradation of bisphenol A by ferroferric oxide (Fe3O4) nanoparticles prepared from steel pickling waste liquor. J Colloid Interf Sci 436:258–266

    Article  CAS  Google Scholar 

  • Hundrinke K, Simon M (2006) Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on algae and daphnids. Environ Sci Pollut Res 13:225–232

    Article  CAS  Google Scholar 

  • Jiang C, Sun H, Sun T, Zhang Q, Zhang Y (2009a) Immobilization of cadmium in soils by UV-mutated Bacillus subtilis 38 bioaugmentation and NovoGro amendment. J Hazard Mater 167:1170–1177

    Article  CAS  Google Scholar 

  • Jiang W, Mashayekhi H, Xing BS (2009b) Bacterial toxicity comparison between nano- and micro-scaled oxide particles. Environ Pollut 157:1619–1625

    Article  CAS  Google Scholar 

  • Jiang XT, Peng X, Deng GH, Sheng HF, Wang Y, Zhou HW, Tam NF (2013) Illumina sequencing of 16S rRNA tag revealed spatial variations of bacterial communities in a mangrove wetland. Microbial Ecol 66:96–104

    Article  Google Scholar 

  • Johansen A, Pedersen AL, Jensen KA, Karlson U, Hansen BM, Scott-Fordsmand JJ, Winding A (2008) Effects of C60 fullerene nanoparticles on soil bacteria and protozoans. Environ Toxicol Chem 27:1895–1903

    Article  CAS  Google Scholar 

  • Kaegi R, Ulrich A, Sinnet B, Vonbank R, Wichser A, Zuleeg S, Simmler H, Brunner S, Vonmont H, Burkhardt M (2008) Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environ Pollut 156:233–239

    Article  CAS  Google Scholar 

  • Kaye JP, Mcculley RL, Burke IC (2005) Carbon fluxes, nitrogen cycling, and soil microbial communities in adjacent urban, native and agricultural ecosystems. Glob Change Biol 11:575–587

    Article  Google Scholar 

  • Kızılkaya R, Bayraklı B (2005) Effects of N-enriched sewage sludge on soil enzyme activities. Appl Soil Ecol 30:192–202

    Article  Google Scholar 

  • Klaine SJ, Alvarez PJJ, Batley GE, Fernes TF, Hy RD, Lyon DY, Mahendra S, Mclaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825–1851

    Article  CAS  Google Scholar 

  • Kumar N, Shah V, Walker VK (2011) Perturbation of an arctic soil microbial community by metal nanoparticles. J Hazard Mater 190:816–822

    Article  CAS  Google Scholar 

  • Lead JR, Wilkinson KJ (2006) Aquatic colloids and nanoparticles: current knowledge and future trends. Environ Chem 3:159–171

    Article  CAS  Google Scholar 

  • Lovern SB, Strickler JR, Klaper R (2007) Behavioral and physiological changes in Daphnia magna when exposed to nanoparticle suspensions (titanium dioxide, nano-C60, and C60HxC70Hx). Environ Sci Technol 41:4465–4470

    Article  CAS  Google Scholar 

  • Luechinger NA, Athanassiou EK, Stark WJ (2008) Graphene-stabilized copper nanoparticles as an air-stable substitute for silver and gold in low-cost ink-jet printable electronics. Nanotechnology 19:193–195

    Article  Google Scholar 

  • Nannipieri P, Bollag JM (1991) Use of enzymes to detoxify pesticide-contaminated soils and waters. J Environ Qual 20:510–517

    Article  CAS  Google Scholar 

  • Nikollap Q (2010) Terrestrial nanoparticles and their controls on soil-/geo-processes and reactions. Adv Agron 107:33–91

    Article  Google Scholar 

  • Oberauner L, Zachow C, Lackner S, Högenauer C, Smolle KH, Berg G (2013) The ignored diversity: complex bacterial communities in intensive care units revealed by 16S pyrosequencing. Sci Rep 3:4422–4427

    Article  Google Scholar 

  • Perugini P, Simeoni S, Scalia S, Genta I, Modena T, Conti B, Pavanetto F (2002) Effect of nanoparticle encapsulation on the photostability of the sunscreen agent, 2-ethylhexyl-p-methoxycinnamate. Int J Pharm 246:37–45

    Article  CAS  Google Scholar 

  • Rietmeijer FJM, Mackinnon IDR (1997) Bismuth oxide nanoparticles in the stratosphere. J Geophys Res 102:6621–6627

    Article  CAS  Google Scholar 

  • Roduner E (2006) Size matters: why nanomaterials are different. Chem Soc Rev 35:583–592

    Article  CAS  Google Scholar 

  • Sakaguchi T, Burgess JG, Matsunaga T (1993) Magnetite formation by a sulphate-reducing bacterium. Nature 365:47–49

    Article  CAS  Google Scholar 

  • Schinner F, Mersi WV (1990) Xylanase-, CM-cellulase- and invertase activity in soil: an improved method. Soil Biol Biochem 22:511–515

    Article  CAS  Google Scholar 

  • Schloss PD, Gevers D, Westcott SL (2011) Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS One 6:e27310

    Article  CAS  Google Scholar 

  • Shoultswilson WA, Reinsch BC, Tsyusko OV, Bertsch PM, Lowry GV, Unrine JM (2011) Role of particle size and soil type in toxicity of silver nanoparticles to earthworms. Soil Sci Soc Am J 75:365–377

    Article  CAS  Google Scholar 

  • Tassi E, Pini R, Gorini F, Valadao I, Castro JAD (2012) Chemical and physical properties of soil influencing TiO2 nanoparticles availability in terrestrial ecosystems. J Int Res Dev 6:1034–1038

    CAS  Google Scholar 

  • Tassi E, Giorgetti L, Morelli E, Peraltavidea JR, Gardeatorresdey JL, Barbafieri M (2017) Physiological and biochemical responses of sunflower (Helianthus annuus L.) exposed to nano-CeO2 and excess boron: modulation of boron phytotoxicity. Plant Physiol Biochem 110:50–58

    Article  CAS  Google Scholar 

  • Tong Z, Bischoff M, Nies L, Bruce Applegate A, RFT (2007) Impact of fullerene (C60) on a soil microbial community. Environ Sci Technol 41:2985–2991

    Article  CAS  Google Scholar 

  • Wang J, Zhang X, Chen Y, Sommerfeld M, Hu Q (2008) Toxicity assessment of manufactured nanomaterials using the unicellular green alga Chlamydomonas reinhardtii. Chemosphere 73:1121–1128

    Article  CAS  Google Scholar 

  • Wang H, Wick RL, Xing B (2009) Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans. Environ Pollut 157:1171–1177

    Article  CAS  Google Scholar 

  • Wang F, Yao J, Chen H, Chen K, Trebše P, Zaray G (2010) Comparative toxicity of chlorpyrifos and its oxon derivatives to soil microbial activity by combined methods. Chemosphere 78:319–326

    Article  CAS  Google Scholar 

  • Warheit DB, Hoke RA, Finlay C, Donner EM, Reed KL, Sayes CM (2007) Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management. Toxicol Lett 171:99–110

    Article  CAS  Google Scholar 

  • Wilson MA, Tran NH, Milev AS, Kannangara GSK, Volk H, Lu GQM (2008) Nanomaterials in soils. Geoderma 146:291–302

    Article  CAS  Google Scholar 

  • Xiong J, Liu Y, Lin X, Zhang H, Zeng J, Hou J, Yang Y, Yao T, Knight R, Chu H (2012) Geographic distance and pH drive bacterial distribution in alkaline lake sediments across Tibetan Plateau. Environ Microbiol 14:2457–2466

    Article  CAS  Google Scholar 

  • Xu J, Yuan X, Lang P (1997) The determination of enzymic activity and its inhibition on catalase by ultraviolet spectrophotometry. Environ Chem 16:73–76

    CAS  Google Scholar 

  • Yang Z, Chen J, Dou R, Gao X, Mao C, Wang L (2015) Assessment of the phytotoxicity of metal oxide nanoparticles on two crop plants, maize (Zea mays L.) and Rice (Oryza sativa L.) Int J Environ Res Public Health 12:15100–15109

    Article  CAS  Google Scholar 

  • Yao RJ, Yang JS, Liu GM (2006) Characteristics and agro-biological management of saline-alkalized land in Northeast China. Soils 38:256–262

    Google Scholar 

  • Zhu X, Zhu L, Duan Z, Qi R, Li Y, Lang Y (2008) Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to zebrafish (Danio rerio) early developmental stage. J Environ Sci Hlth Part A 43:278–284

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by International Science and Technology Cooperation Program of China (2014DFA31740).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiang Gao or Li Wang.

Additional information

Responsible editor: Jizheng He

Electronic supplementary material

ESM 1

(PDF 71 kb)

ESM 2

(PDF 71 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, T., Liu, D., Chen, J. et al. Effects of metal oxide nanoparticles on soil enzyme activities and bacterial communities in two different soil types. J Soils Sediments 18, 211–221 (2018). https://doi.org/10.1007/s11368-017-1716-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-017-1716-2

Keywords

Navigation