Skip to main content

Advertisement

Log in

Physical properties of structural soils containing waste materials to achieve urban greening

  • SUITMA 8: Soils and Sediments in Urban and Mining Areas
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

The densification and expansion of urban areas will increase the streams of waste materials such as bricks, concrete and street sweeping waste. In parallel, green areas offer the potential to overcome many challenges that face growing/expanding cities but require the use of large amounts of natural resources such as natural topsoil and aggregates. In this work, various waste materials mixed with organic debris are tested for greening applications in urban environments as an alternative to the consumption of natural resources.

Materials and methods

Five combinations of artefacts were studied either as “growing material” (i.e. dedicated to plant growth) or “structural material” (as support for traffic). These constructed Technosols were studied in situ in lysimeters under two sets of contrasting climatic conditions at two sites in France (Angers, oceanic climate, and Homécourt semi-continental climate). They were planted with trees (Acer platanoides) and with ryegrass (Lolium perenne L.).

Results and discussion

Compared to natural soils, the constructed Technosols exhibited high porosities and highly saturated hydraulic conductivities (up to 0.76 m3 m−3, and to 34.74 cm h−1, respectively). The physical properties–i.e. macroporosity and microporosity–of these artificial soils revealed high water supply for plants, with available soil water ranging from 0.5 to 2.9 mm cm−1. Tree and ryegrass roots were able to grow in the entire soil volume available in the lysimeters. Organic matter nature and soil pH conditions appeared to be the main drivers of plant development.

Conclusions

Constructed Technosols are suitable for vegetation growth and constitute a valuable alternative to the consumption of natural arable earth for urban greening applications, e.g. gardens, parks, and tree lines. Furthermore, they can provide high levels of relevant ecosystem functions in cities such as water retention and infiltration, plant settlement, carbon sequestration and even biodiversity habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • ADEME (2012) Les déchets- Chiffres Clés (Edition 2012)

  • Baetens JM, Verbist K, Cornelis WM, Gabriels D, Soto G (2009) On the influence of coarse fragments on soil water retention. Water Resour Res 45:W07408

    Article  Google Scholar 

  • Bartens J, Day SD, Harris JR, Wynn TM, Dove JE (2009) Transpiration and root development of urban trees in structural soil stormwater reservoirs. Environ Manag 44:646–657

    Article  Google Scholar 

  • Bartens J, Wiseman PE, Smiley ET (2010) Stability of landscape trees in engineered and conventional urban soil mixes. Urban For Urban Green 9:333–338

    Article  Google Scholar 

  • Böhm W (1979) Methods of studying root systems. Springer-Verlag, Berlin

  • Brakensiek DL, Rawls WJ (1994) Soil containing rock fragments: effects on infiltration. Catena 23:99–110

    Article  Google Scholar 

  • Cameira MR, Fernando RM, Pereira LS (2003) Soil macropore dynamics affected by tillage and irrigation for a silty loam alluvial soil in southern Portugal. Soil Till Res 70:131–140

    Article  Google Scholar 

  • Cannavo P, Michel JC (2013) Peat particle size effects on spatial root distribution, and changes on hydraulic and aeration properties. Sci Hortic 151:11–21

    Article  Google Scholar 

  • Cannavo P, Vidal-Beaudet L, Grosbellet C (2014) Prediction of long-term sustainability of constructed urban soil: impact of high amounts of organic matter on soil physical properties and water transfer. Soil Use Manag 30:272–284

    Google Scholar 

  • Core Team R (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Cousin I, Nicoullaud B, Coutadeur C (2003) Influence of rock fragments on the water retention and water percolation in a calcareous soil. Catena 53:97–114

    Article  Google Scholar 

  • Craul PJ (1999) Urban soils, applications and practices. Wiley, New York

  • Dexter AR (1988) Advances in characterization of soil structure. Soil Till Res 11:199–283

    Article  Google Scholar 

  • Djedjig R, Bozonnet E, Belarbi R (2013) Experimental study of the urban microclimate mitigation potential of green roofs and green walls in street canyons. Int J Low-Carbon Technol. doi:10.1093/ijlct/ctt019

    Google Scholar 

  • Grabosky J, Bassuk N (1995) A new urban tree soil to safely increase rooting volumes under sidewalks. J Arboric 21:187–201

    Google Scholar 

  • Grabosky J, Haffner E, Bassuk N (2009) Plant available moisture in stone-soil media for use under pavement while allowing urban tree root growth. Arboricult Urban For 35:271–278

    Google Scholar 

  • Hanna K, Lassabatere L, Bechet B (2009) Zinc and lead transfer in a contaminated roadside soil: experimental study and modeling. J Hazard Mater 161:1499–1505

    Article  CAS  Google Scholar 

  • Huot H, Séré G, Charbonnier P, Simonnot MO, Morel JL (2015) Lysimeter monitoring as assessment of the potential for revegetation to manage former iron industry settling ponds. Sci Total Environ 526:29–40

    Article  CAS  Google Scholar 

  • IUSS Working Group WRB. World reference base for soil resources (2014) International soil classification system for naming soils and creating legends for soil maps. Report N°106. FAO, Rome

  • Kodesova R, Šimůnek J, Nikodem A, Jirku V (2010) Estimation of the dual permeability model parameters using tension disk infiltrometer and Guelph permeameter. Vadose Zone J 9:213–225

    Article  Google Scholar 

  • Lemaire F, Sorin X, (1996) Artificialisation du milieu de culture dans les espaces verts urbains. In: Les Colloques. La plante dans la ville, Angers (France), 5–7 Novembre 1996, INRA Ed., Angers, France, pp 247–256

  • Loh FCW, Grabosky JC, Bassuk NL (2003) Growth response of Ficus benjamina to limited volume and soil dilution in a skeletal soil container study. Urban For Urban Green 2:53–62

    Article  Google Scholar 

  • Ma D, Shao M, Zhang J, Wang Q (2010) Validation of an analytical method for determining soil hydraulic properties of stony soils using experimental data. Geoderma 159:262–269

    Article  Google Scholar 

  • Mallants D, Jacques D, Tseng PH, van Genuchten MT, Feyen J (1997) Comparison of three hydraulic property measurement methods. J Hydrol 199:295–318

    Article  Google Scholar 

  • Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. SIAM J Appl Math 11:431–441

    Article  Google Scholar 

  • Marshall RE Farahbakhsh K (2013) Systems approaches to integrated solid waste management in developing countries. Waste Management. ISBN: 0470999675

  • Morel JL, Schwartz Florentin, L. C (2005) Urban soils. Encyclopedia of soils in the environment, Elsevier, pp 202–208

  • Mualem Y (1976) A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour Res 12:513–522

    Article  Google Scholar 

  • NF EN 933-1 (2012) Essais pour déterminer les caractéristiques géométriques des granulats - Partie 1: détermination de la granularité - Analyse granulométrique par tamisage

  • NF ISO 10390 (2005) Qualité du sol - Détermination du pH

  • NF ISO 11263 (1995) Qualité du sol - Dosage du phosphore - Dosage spectrométrique du phosphore soluble dans une solution d’hydrogénocarbonate de sodium

  • NF ISO 13878 (1998) Qualité du sol - Détermination de la teneur totale en azote par combustion sèche (“analyse élémentaire”)

  • NF ISO 14235 (1998) Qualité du sol - Dosage du carbone organique par oxydation sulfochromique

  • NF P94-054 (1991) Sols : reconnaissance et essais - Détermination de la masse volumique des particules solides des sols - Méthode du pycnomètre à eau

  • Nielsen TS, Hansen KB (2007) Do green areas affect health? Results from Danish survey on the use of green areas and health indicators. Health Place 13:839–850

    Article  Google Scholar 

  • Novak V, Knava K, Simunek J (2011) Determining the influence of stones on hydraulic conductivity of saturated soils using numerical method. Geoderma 161:177–181

    Article  Google Scholar 

  • Ojeda G, Mattana S, Bonmati M, Woche SK, Bachmann J (2011) Soil wetting-drying and water-retention properties in a mine-soil treated with composted and thermally-dried sludges. Eur J Soil Sci 62:696–708

    Article  CAS  Google Scholar 

  • Pagliai M, Vignozzi N (2002) Soil pore system as an indicator of soil quality. In: Pagliai M, Jones R (eds) Sustainable soil management for environmental protection. Soil physics aspects. Catena, Reiskirchen, pp. 71–82

    Google Scholar 

  • Poesen J, Lavee H (1994) Rock fragments in top soils: significance and processes. Catena 23:1–28

    Article  Google Scholar 

  • Ramos TB, Goncalves MC, Martins JC, van Genuchten MT, Pires FP (2006) Estimation of soil hydraulic properties from numerical inversion of tension disk infiltrometer data. Vadose Zone J 5:684–696

    Article  Google Scholar 

  • Recous S. (1995) Réponse des matières organiques des sols aux changements atmosphériques globaux. II. Effet de la température sur la minéralisation d’un résidu végétal (maïs) et de la matière organique des sols. In: Perrier A, Saugier B (eds) Dossiers de l’environnement de l’INRA n°8, Paris, pp 81–86

  • Rokia S, Séré G, Schwartz C, Deeb M, Fournier F, Nehls T, Damas O, Vidal-Beaudet L (2014) Modelling agronomic properties of Technosols constructed with urban wastes. Waste Manag 34:2155–2162

    Article  CAS  Google Scholar 

  • Sarah P (2002) Spatial patterns of soil moisture as affected by shrubs, in different climatic conditions. Environ Monit Assess 73:237–241

    Article  Google Scholar 

  • Schaap MG, Leij FJ, van Genuchten MT (2001) ROSETTA: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J Hydrol 251:163–176

    Article  Google Scholar 

  • Schwartz RC, Evett SR (2002) Estimating hydraulic properties of a fine textured soil using a disc infiltrometer. Soil Sci Soc Am J 66:1409–1423

    Article  CAS  Google Scholar 

  • Seber GAF, Wild CJ (2003) Nonlinear regression. Wiley, New York

    Google Scholar 

  • Séré G, Ouvrard S, Magnenet V, Pey B, Morel JL, Schwartz C (2012) Predictability of the evolution of the soil structure using water flow modeling for a constructed technosol. Vadose Zone J 11 0-0

  • Séré G, Ouvrard S, Schwartz C, Renat JC, Morel JL (2008) Soil construction: a step for ecological reclamation of derelict lands. J Soils Sediments 8:130–136

    Article  Google Scholar 

  • Séré G, Schwartz C, Ouvrard S, Renat JC, Watteau F, Villemin G, Morel JL (2010) Early pedogenic evolution of constructed Technosol. J Soils Sediments 10:1246–1254

    Article  Google Scholar 

  • Šimůnek J, van Genuchten MT (1996) Estimating unsaturated soil hydraulic properties from tension disc infiltrometer data by numerical inversion. Water Resour Res 32:2683–2696

    Article  Google Scholar 

  • Simůnek J, van Genuchten MT (1997) Estimating unsaturated soil hydraulic properties from multiple tension disc infiltrometer data. Soil Sci 162(6):383–398

  • Šimůnek J, Angulo-Jaramillo R. Schaap MG, Vandervaere JP, van Genuchten MT (1998) Using an inverse method to estimate the hydraulic properties of crusted soils from tension-disc infiltrometer data. Geoderma 86:61–81

    Article  Google Scholar 

  • Šimůnek J, van Genuchten MT, Sejna M (2008) Development and applications of the HYDRUS and STANMOD software packages and related codes. Vadose Zone J 7:587–600

    Article  Google Scholar 

  • Tardieu F, Manichon H (1986) Caractérisation en tant que capteur d’eau de l’enracinement du maïs en parcelle cultivée. Agronomie 6:345–354

    Article  Google Scholar 

  • Tetegan M, Nicoullaud B, Baize D, Bouthier A, Cousin I (2011) The contribution of rock fragments to the available water content of stony soils: proposition of new pedotransfer functions. Geoderma 165:40–49

    Article  Google Scholar 

  • Ugolini FC, Corti G, Agnelli A, Certini G (1998) Under and overestimation of soil properties in stony soils. 16th World Congress of Soil Science. Montpellier, France

  • Urban J (2013) Two different approaches to improve growing conditions for trees. Arboricultural Consult 46:5–12

    Google Scholar 

  • van Genuchten MT (1980) A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898

    Article  Google Scholar 

  • Yilmaz D, Dal L (2015) Hydraulic properties estimation of an experimental urban soil column constructed with waste brick and compost. Int J Pure Appl Sci 1:9–15

    Google Scholar 

  • Yilmaz D, Lassabatere L, Deneele D, Angulo-Jaramillo R, Legret M (2013) Influence of carbonation on the microstructure and hydraulic properties of a basic oxygen furnace slag. Vadose Zone J. doi:10.2136/vzj2012.0121

    Google Scholar 

  • Yuan HP, Shen LY (2011) Trend of the research on construction and demolition waste management. Waste Manag 31:670–679

    Article  Google Scholar 

  • Zhou BB, Shao MA, Shao HB (2009) Effect of rock fragments on water movement and solute transport in a loess plateau soil. C R Géosci 341:462–472

    Article  Google Scholar 

Download references

Acknowledgments

This study was conducted as part of the SITERRE project funded by the ADEME Environmental Agency. The authors would also like to thank Y. Barraud-Roussel, S. Delepine-Bourgeois, C. Mazzega, D. Lemesle, L. Pineau, R. Baldo and M. Malacarne for their valuable assistance in carrying out the experiments and collecting the data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Emmanuel Peyneau.

Additional information

Responsible editor: Fanghua Hao

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yilmaz, D., Cannavo, P., Séré, G. et al. Physical properties of structural soils containing waste materials to achieve urban greening. J Soils Sediments 18, 442–455 (2018). https://doi.org/10.1007/s11368-016-1524-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-016-1524-0

Keywords

Navigation