Skip to main content
Log in

Early pedogenic evolution of constructed Technosols

  • SOILS, SEC 2 • GLOBAL CHANGE, ENVIRON RISK ASSESS, SUSTAINABLE LAND USE • RESEARCH ARTICLE
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Constructed soils are Technosols resulting from the deliberate combination of various artefacts. Similarly to natural soils, technogenic parent materials are transformed by pedogenic factors contributing to their evolution. This work was conducted to study the first stages of the pedogenesis of constructed soils.

Materials and methods

Two soils were constructed in lysimetric plots (10 × 10 m) using an engineering process by the combination of paper-mill sludge, thermally treated soil material and green waste compost. Evolution of the soil profiles, composition of soils and leachates were studied for 3 years.

Results and discussion

A strong evolution of the profiles was observed over the 3 years with rapid changes in the number and characteristics of the horizons. Significant changes in chemical weathering (decarbonatisation) and physical status (aggregation), i.e. processes similar to those occurring in natural soils were observed. Other processes specific to the technogenic materials were recorded, e.g. massive dissolution of gypsum or drainage of constitutive water. Apart from constructed Technosols classification, prediction was made on their future pedogenic evolution.

Conclusions

Constructed Technosols made of finely divided reactive organic and mineral compounds were observed to evolve quickly. Evidences of original pedogenic processes have been highlighted that could be considered as a general diagnostic characteristic of Technosols. Finally, some considerations about the application of the World Reference Base for Soil Resources to the classification of Technosols are proposed, taking into account some aspects of their pedogenesis that have been highlighted by our work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • AFNOR (Association Française de Normalisation) (2004) Evaluation de la qualité des sols volume 1: méthodes d’analyse chimique. Association Française de Normalisation, La Plaine Saint-Denis Cedex, p 461

    Google Scholar 

  • Anderson SP, Dietrich WE, Brimhall GH Jr (2002) Weathering profiles, mass balance analysis, and rates of solute loss: linkages between weathering and erosion in a small, steep catchment. Geol Soc Am Bull 114:1143–1158

    CAS  Google Scholar 

  • Badin AL, Méderel G, Béchet B, Borschneck D, Delolme C (2009) Study of the aggregation of the surface layer of Technosols from stormwater infiltration basins using grain size analyses with laser diffractometry. Geoderma 153:163–171

    Article  CAS  Google Scholar 

  • Baumgartl T (1998) Physical soil properties in specific fields of application especially in anthropogenic soils. Soil Till Res 47(1–2):51–59

    Article  Google Scholar 

  • Beyer L, Cordsen E, Blume HP, Schleuß U, Vogt B, Wu Q (1996) Soil organic matter composition in urbic anthrosols in the city of Kiel, NW-Germany, as revealed by wet chemistry and CPMAS 13C-NMR spectroscopy of whole soil samples. Soil Technol 9:121–132

    Article  Google Scholar 

  • Bradshaw AD (1983) The reconstruction of ecosystems. J Appl Ecol 20:1–17

    Article  Google Scholar 

  • Bruand A, Duval O, Gaillard H, Darthout R, Jamagne M (1996) Variabilité des propriétés de rétention en eau des sols: importance de la densité apparente. Etude et Gestion des Sols 3(1):27–40

    Google Scholar 

  • Chadwick OA, Chorover J (2001) The chemistry of pedogenic thresholds. Geoderma 100:321–353

    Article  CAS  Google Scholar 

  • Cousin I, Nicoullaud B, Coutadeur C (2003) Influence of rock fragments on the water retention and water percolation in a calcareous soil. CATENA 53(2):97–114

    Article  Google Scholar 

  • Duchaufour P (1983) Pédologie 1. Pédogénèse et classification, 2nd edn. Masson, Paris, p 491

    Google Scholar 

  • El Khalil H, Schwartz C, Elhammiani O, Kubiniok J, Morel JL, Boularbah A (2008) Contribution of technic materials to the mobile fraction of metals in urban soils in Marrakech (Morocco). J Soils Sediments 8(1):17–22

    Article  CAS  Google Scholar 

  • Farouki OT (1986) Thermal properties of soils, vol 11. Trans. Tech. Publications, Clausthal-Zellerfeld, p 136

    Google Scholar 

  • Hiller DA (2000) Properties of Urbic Anthrosols from an abandoned shunting yard in the Ruhr area, Germany. CATENA 39(4):245–266

    Article  CAS  Google Scholar 

  • IUSS Working Group WRB (2006) World reference base for soil resources 2006. A framework for international classification, correlation and communication, 2nd edn. World Soil Resources Reports, 132, pp 145

  • Jenny H (1941) Factors of soil formation: a system of quantitative pedology. McGraw Hill Book Company, New York, p 281

    Google Scholar 

  • Lefort C, Schwartz C, Florentin L, Gury M, Morel JL (2006) Determination of model substrates for the study of the pedogenesis of Technosols. Workshop on modelling of pedogenesis, pp 75–76

  • Lehmann A (2006) Technosol and other proposals on urban soils for the WRB (World Reference Base for Soil Resources). Int Agrophys 20:129–134

    Google Scholar 

  • Lehmann A, Stahr K (2007) Nature and significance of anthropogenic urban soils. J Soils Sediments 7:247–260

    Article  CAS  Google Scholar 

  • Lemaire F, Rossignol JP (1999) Stress factors related to urban soils. Acta horticulturae 496:347–351

    Google Scholar 

  • Lorenz K, Kandeler E (2005) Biochemical characterization of urban soil profiles from Stuttgart, Germany. Soil Biol Biochem 37(7):1373–1385

    Article  CAS  Google Scholar 

  • Monserié MF, Watteau F, Villemin G, Ouvrard S, Morel JL (2009) Technosol genesis: identification of organo-mineral associations in a young Technosol derived from coking plant waste materials. J Soils Sediments 9:537–546

    Article  Google Scholar 

  • Morel JL, Habib L, Plantureux S, Guckert A (1991) Influence of maize root mucilage on soil aggregate stability. Plant Soil 136:111–119

    Article  Google Scholar 

  • Morel JL, Schwartz C, Florentin L, de Kimpe C (2005) Urban soils. In: D Hillel (ed) Encyclopedia of soils in the environment, vol 1–4. Elsevier, Oxford, pp 202–208

    Google Scholar 

  • Nehls T, Hartstock S, Stoffregen H, Wessolek G (2007) Stability of preferential flow paths in paved urban soils. Geophys Research, Abstracts 9

  • Payet C (2001) Les végétaux comme facteur d’évolution des boues urbaines en stockage prolongé, Mémoire de Thèse de doctorat en Sciences Agronomiques, INPL, pp 145

  • Pedro G (1964) Contribution à l'étude expérimentale de l'altération géochimique des roches cristallines. Centre National de Recherches Agronomiques, pp 345

  • Rossiter DG (2007) Classification of urban and industrial soils in the World Reference Base for Soil Ressources. J Soils Sediments 7:96–100

    Article  CAS  Google Scholar 

  • Scalenghe R, Ferraris S (2009) The first forty years of a Technosol. Pedosphere 19(1):40–52

    Article  Google Scholar 

  • Schleuß U, Wu Q, Blume HP (1998) Variability of soils in urban and periurban areas in Northern Germany. CATENA 33(3–4):255–270

    Article  Google Scholar 

  • Scholtus N, Leclerc-Cessac E, De Donato P, Morel JL, Simonnot MO (2009) Eluto-frontal chromatography to simulate chemical weathering of COx by low-molecular-weight organic compounds and early pedogenesis processes. Eur J Soil Sci 60(1):71–83

    Article  CAS  Google Scholar 

  • Schwartz C, Florentin L, Morel JL (2003) Impact d’activités militaires de la première Guerre Mondiale sur la qualité des sols. INPL(ENSAIA)/INRA, pp 28

  • Séré G (2007) Fonctionnement et évolution pédogénétique de Technosols issus d’un procédé de construction de sol. Mémoire de Thèse de doctorat en Sciences Agronomiques, INPL, pp 227

  • Séré G, Schwartz C, Ouvrard S, Sauvage C, Renat JC, Morel JL (2008) Soil construction: a step for ecological reclamation of derelict lands. J Soils Sediments 8(2):130–136

    Article  Google Scholar 

  • Simonson RW (1959) Outline of a generalized theory of soil genesis. Soil Sci Soc Am Proc 23:152–156

    Article  CAS  Google Scholar 

  • Sommer M (2006) Influence of soil pattern on matter transport in and from terrestrial biogeosystems—a new concept for landscape pedology. Geoderma 133:107–123

    Article  CAS  Google Scholar 

  • Villemin G, Watteau F, Morel JL (2007) La visualisation et la micro-analyse des composts en microscopie électronique: une clef pour la qualité, la fabrication et l’utilisation des composts. Techniques, Sciences et Méthodes 5:67–78

    Google Scholar 

  • Zanuzzi A, Arocena JM, van Mourik JM, Faz Cano A (2009) Amendments with organic and industrial wastes stimulate soil formation in mine tailings as revealed by micromorphology. Geoderma 154:69–75

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project is supported by the GISFI programme (www.gisfi.fr); it was financed by the Etat Français (ANRT), Région Lorraine (CPER), ADEME and received technical support from Etablissement Public Foncier de Lorraine and Arcelor-Mittal Real Estate France. The authors wish to thank Stéphane Colin, Alain Rakoto and Jean-Claude Bégin for their precious technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffroy Séré.

Additional information

Responsible editor: Andreas Lehmann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Séré, G., Schwartz, C., Ouvrard, S. et al. Early pedogenic evolution of constructed Technosols. J Soils Sediments 10, 1246–1254 (2010). https://doi.org/10.1007/s11368-010-0206-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-010-0206-6

Keywords

Navigation