The properties and functions of biochars in forest ecosystems

Abstract

Purpose

The production of large quantities of biochar from natural fires has been a part of human history for millennia, causing CO2 emissions to the atmosphere and exerting long-term effects on soil processes. Despite its potential importance and recent work reflecting the wide interest in biochar, a general review of our deep understanding of biochar functions within forest soils is currently lacking. Gaps in research knowledge in this field are identified in this paper.

Materials and methods

This paper summarizes recent research to provide a better understanding of the concentrations, distribution, and characteristics of biochar produced from forest wildfire and its influences on soil processes. Perspectives and recommendations for future research on biochar in post-fire forest soils are also discussed.

Results and discussion

The concentration, distribution, and characteristics of biochar produced from forest wildfire largely depend on forest landscapes, regional climates, and mostly its feedstock and fire history, like, its duration and severity. The influences of biochar on soil processes, particularly carbon and nitrogen transformations and cycling, like, nitrification and nitrous oxide emissions reduction (Clough and Condron, J Environ Qual 39:1218–1223, 2010), are also determined mainly by the fire temperature and raw materials. Mechanisms can be attributed to the adsorption of organic compounds and nutrients or changed microenvironment, termed as charsphere, by biochar. We also identify the microbial mechanisms involved in the biochar-containing soils.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abiven S, Hengartner P, Schneider MPW, Singh N, Schmidt MWI (2011) Pyrogenic carbon soluble fraction is larger and more aromatic in aged charcoal than in fresh charcoal. Soil Biol Biochem 43:1615–1617

    CAS  Article  Google Scholar 

  2. Alexis MA et al (2006) Fire impact on C and N losses and charcoal production in a scrub oak ecosystem. Biogeochemistry 82:201–216

    Article  Google Scholar 

  3. Alexis MA et al (2010) Thermal alteration of organic matter during a shrubland fire: a field study. Org Geochem 41:690–697

    CAS  Article  Google Scholar 

  4. Atkinson CJ, Fitzgerald JD, Hipps NA (2010) Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil 337:1–18

    CAS  Article  Google Scholar 

  5. Bai SH et al (2015) Wood biochar increases nitrogen retention in field settings mainly through abiotic processes. Soil Biol Biochem 90:232–240

    CAS  Article  Google Scholar 

  6. Baldock JA, Smernik RJ (2002) Chemical composition and bioavailability of thermally altered Pinus resinosa (Red pine) wood. Org Geochem 33:1093–1109

    CAS  Article  Google Scholar 

  7. Ball PN, MacKenzie MD, DeLuca TH, Montana WEH (2010) Wildfire and charcoal enhance nitrification and ammonium-oxidizing bacterial abundance in dry montane forest soils. J Environ Qual 39:1243

    CAS  Article  Google Scholar 

  8. Balshi MS, McGuire AD, Duffy P, Flannigan M, Kicklighter DW, Melillo J (2009) Vulnerability of carbon storage in North American boreal forests to wildfires during the 21st century. Glob Chang Biol 15:1491–1510

    Article  Google Scholar 

  9. Barbosa RI, Fearnside PM (2005) Above-ground biomass and the fate of carbon after burning in the savannas of Roraima, Brazilian Amazonia. For Ecol Manag 216:295–316

    Article  Google Scholar 

  10. Berglund L, Deluca T, Zackrisson O (2004) Activated carbon amendments to soil alters nitrification rates in Scots pine forests. Soil Biol Biochem 36:2067–2073

    CAS  Article  Google Scholar 

  11. Billings SA, Schlesinger WH (2015) Letter to the Editor on ‘Pyrogenic organic matter production from wildfires: a missing sink in the global carbon cycle. Glob Chang Biol 21:2831

    Article  Google Scholar 

  12. Bowman DMJS et al (2009) Fire in the Earth system. Science 324:481–484

    CAS  Article  Google Scholar 

  13. Braadbaart F, Poole I (2008) Morphological, chemical and physical changes during charcoalification of wood and its relevance to archaeological contexts. J Archaeol Sci 35:2434–2445

  14. Brodowski S, Amelung W, Haumaier L, Abetz C, Zech W (2005) Morphological and chemical properties of black carbon in physical soil fractions as revealed by scanning electron microscopy and energy-dispersive X-ray spectroscopy. Geoderma 128:116–129

    CAS  Article  Google Scholar 

  15. Brodowski S, John B, Flessa H, Amelung W (2006) Aggregate-occluded black carbon in soil. Eur J Soil Sci 57:539–546

    Article  Google Scholar 

  16. Bruckman VJ, Terada T, Uzun BB, Apaydın-Varol E, Liu J (2015) Biochar for climate change mitigation: tracing the in-situ priming effect on a forest site. Energy Procedia 76:381–387

    CAS  Article  Google Scholar 

  17. Certini G (2005) Effects of fire on properties of forest soils: a review. Oecologia 143:1–10

    Article  Google Scholar 

  18. Cheng CH, Lehmann J, Thies JE, Burton SD, Engelhard M (2006) Oxidation of black carbon by biotic and abiotic processes. Org Geochem 37:1477–1488

    CAS  Article  Google Scholar 

  19. Choromanska U, DeLuca T (2002) Microbial activity and nitrogen mineralization in forest mineral soils following heating: evaluation of post-fire effects. Soil Biol Biochem 34:263–271

    CAS  Article  Google Scholar 

  20. Chorover J, Vitousek PM, Everson DA, Esperanza AM, Turner D (1994) Solution chemistry profiles of mixed-conifer forests before and after fire. Biogeochemistry 26:115–144

    CAS  Article  Google Scholar 

  21. Clough TJ, Condron LM (2010) Biochar and the nitrogen cycle: introduction. J Environ Qual 39:1218–1223

    CAS  Article  Google Scholar 

  22. Czimczik CI, Masiello CA (2007) Controls on black carbon storage in soils. Glob Biogeochem Cycles 21:2007

    Article  CAS  Google Scholar 

  23. Czimczik CI, Preston CM, Schmidt MWI, Schulze E-D (2003) How surface fire in Siberian Scots pine forests affects soil organic carbon in the forest floor: stocks, molecular structure, and conversion to black carbon (charcoal). Glob Biogeochem Cycles 17:1020–1025

    Article  CAS  Google Scholar 

  24. David M,B et al (2009) Fire in the Earth system. Science 324:481–484

    Article  CAS  Google Scholar 

  25. DeLuca T, Zouhar K (2000) Effects of selection harvest and prescribed fire on the soil nitrogen status of ponderosa pine forests. For Ecol Manag 138:263–271

    Article  Google Scholar 

  26. DeLuca T, Nilsson MC, Zackrisson O (2002) Nitrogen mineralization and phenol accumulation along a fire chronosequence in northern Sweden. Oecologia 133:206–214

    Article  Google Scholar 

  27. DeLuca TH, MacKenzie MD, Gundale MJ, Holben WE (2006) Wildfire-produced charcoal directly influences nitrogen cycling in ponderosa pine forests. Soil Sci Soc Am J 70:448

    CAS  Article  Google Scholar 

  28. Demirbas A (2001) Carbonization ranking of selected biomass for charcoal, liquid and gaseous products. Energy Convers Manag 42:1229–1238

    CAS  Article  Google Scholar 

  29. Dharmakeerthi RS, Hanley K, Whitman T, Woolf D, Lehmann J (2015) Organic carbon dynamics in soils with pyrogenic organic matter that received plant residue additions over seven years. Soil Biol Biochem 88:268–274

    CAS  Article  Google Scholar 

  30. Ding GC, Pronk GJ, Babin D, Heuer H, Heister K, Kogel-Knabner I, Smalla K (2013) Mineral composition and charcoal determine the bacterial community structure in artificial soils. FEMS Microbiol Ecol 86:15–25

    CAS  Article  Google Scholar 

  31. Dittmar T, Paeng J (2009) A heat-induced molecular signature in marine dissolved organic matter. Nat Geosci 2:175–179

    CAS  Article  Google Scholar 

  32. Ducey TF, Ippolito JA, Cantrell KB, Novak JM, Lentz RD (2013) Addition of activated switchgrass biochar to an aridic subsoil increases microbial nitrogen cycling gene abundances. Appl Soil Ecol 65:65–72

    Article  Google Scholar 

  33. Dungait JAJ, Hopkins DW, Gregory AS, Whitmore AP (2012) Soil organic matter turnover is governed by accessibility not recalcitrance. Glob Chang Biol 18:1781–1796

    Article  Google Scholar 

  34. Eckmeier E, Rösch M, Ehrmann O, Schmidt MWI, Schier W, Gerlach R (2007) Conversion of biomass to charcoal and the carbon mass balance from a slash-and-burn experiment in a temperate deciduous forest. Holocene 17:539–542

    Article  Google Scholar 

  35. Ezawa T, Yamamoto K, Yoshida S (2002) Enhancement of the effectiveness of indigenous arbuscular mycorrhizal fungi by inorganic soil amendments. Jpn Soc Soil Sci Plant Nut Tokyo 48:32–38

    Google Scholar 

  36. Filimonova S, Hilscher A, Kögel-Knabner I (2014) Nano-structural and chemical characterization of charred organic matter in a fire-affected Arenosol. Geoderma 232–234:538–546

    Article  CAS  Google Scholar 

  37. Fontaine S, Mariotti A, Abbadie L (2003) The priming effect of organic matter: a question of microbial competition? Soil Biol Biochem 35:837–843

    CAS  Article  Google Scholar 

  38. Forbes MS, Raison RJ, Skjemstad JO (2006) Formation, transformation and transport of black carbon (biochar) in terrestrial and aquatic ecosystems. Sci Total Environ 370:190–206

    CAS  Article  Google Scholar 

  39. Glaser B, Haumaier L, Guggenberger G, Zech W (1998) Black carbon in soils: the use of benzenecarboxylic acids as specific markers. Org Geochem 29:811–819

    CAS  Article  Google Scholar 

  40. Glaser B, Lehmann J, Zech W (2002) Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—a review. Biol Fertil Soils 35:219–230

    CAS  Article  Google Scholar 

  41. Gómez-Rey MX, Gonzalez-Prieto SJ (2013) Short-term impact of a wildfire on net and gross N transformation rates. Biol Fertil Soils 49:1065–1075

    Article  CAS  Google Scholar 

  42. Gonzalez-Perez JA, Gonzalez-Vila FJ, Almendros G, Knicker H (2004) The effect of fire on soil organic matter—a review. Environ Int 30:855–870

    CAS  Article  Google Scholar 

  43. Grady KC, Hart SC (2006) Influences of thinning, prescribed burning, and wildfire on soil processes and properties in southwestern ponderosa pine forests: a retrospective study. For Ecol Manag 234:123–135

    Article  Google Scholar 

  44. Groeschl DA, Johnson JE, Smith DW (1993) Wildfire effects on forest floor and surface soil in a table mountain pine-pitch pine forest. Int J Wildland Fire 3:149–154

    Article  Google Scholar 

  45. Guggenberger G et al (2008) Storage and mobility of black carbon in permafrost soils of the forest tundra ecotone in Northern Siberia. Glob Chang Biol 14:1367–1381

    Article  Google Scholar 

  46. Gundale MJ, DeLuca TH (2006) Temperature and source material influence ecological attributes of ponderosa pine and Douglas-fir charcoal. For Ecol Manag 231:86–93

    Article  Google Scholar 

  47. Hale SE et al (2013) Short-term effect of the soil amendments activated carbon, biochar, and ferric oxyhydroxide on bacteria and invertebrates. Environ Sci Technol 47:8674–8683

    CAS  Google Scholar 

  48. Hamer U, Marschner B (2005) Priming effects in soils after combined and repeated substrate additions. Geoderma 128:38–51

    CAS  Article  Google Scholar 

  49. Hart S, Luckai N (2013) Charcoal function and management in boreal ecosystems. J Appl Ecol 50:1197–1206

    CAS  Google Scholar 

  50. Harter J et al (2014) Linking N2O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community. ISME J 8:660–674

    CAS  Article  Google Scholar 

  51. He L, Liu Y, Zhao J, Bi Y, Zhao X, Wang S, Xing G (2015) Comparison of straw-biochar-mediated changes in nitrification and ammonia oxidizers in agricultural oxisols and cambosols. Biol Fertil Soils 52:137–149

  52. Hilscher A, Heister K, Siewert C, Knicker H (2009) Mineralisation and structural changes during the initial phase of microbial degradation of pyrogenic plant residues in soil. Org Geochem 40:332–342

    CAS  Article  Google Scholar 

  53. Jaffé R et al (2013) Global charcoal mobilization from soils via dissolution and riverine transport to the oceans. Science 340:345–347

    Article  CAS  Google Scholar 

  54. Joseph SD et al (2010) An investigation into the reactions of biochar in soil. Soil Res 48:501–515

    CAS  Article  Google Scholar 

  55. Kane ES, Hockaday WC, Turetsky MR, Masiello CA, Valentine DW, Finney BP, Baldock JA (2010) Topographic controls on black carbon accumulation in Alaskan black spruce forest soils: implications for organic matter dynamics. Biogeochemistry 100:39–56

    CAS  Article  Google Scholar 

  56. Kasin I, Ohlson M (2013) An experimental study of charcoal degradation in a boreal forest. Soil Biol Biochem 65:39–49

    CAS  Article  Google Scholar 

  57. Kaye JP, Hart SC (1998) Ecological restoration alters nitrogen transformations in a ponderosa pine-bunchgrass ecosystem. Ecol Appl 8:1052–1060

    Google Scholar 

  58. Keech O, Carcaillet C, Nilsson M-C (2005) Adsorption of allelopathic compounds by wood-derived charcoal: the role of wood porosity. Plant Soil 272:291–300

    CAS  Article  Google Scholar 

  59. Khodadad CLM, Zimmerman AR, Green SJ, Uthandi S, Foster JS (2011) Taxa-specific changes in soil microbial community composition induced by pyrogenic carbon amendments. Soil Biol Biochem 43:385–392

    CAS  Article  Google Scholar 

  60. Knicker H, Hilscher A, Gonzalezvila F, Almendros G (2008) A new conceptual model for the structural properties of char produced during vegetation fires. Org Geochem 39:935–939

    CAS  Article  Google Scholar 

  61. Kolb SE, Fermanich KJ, Dornbush ME (2009) Effect of charcoal quantity on microbial biomass and activity in temperate soils. Soil Sci Soc Am J 73:1173

    CAS  Article  Google Scholar 

  62. Koyama A, Kavanagh KL, Stephan K (2010) Wildfire effects on soil gross nitrogen transformation rates in coniferous forests of central Idaho, USA. Ecosystems 13:1112–1126

    CAS  Article  Google Scholar 

  63. Kurth VJ, MacKenzie MD, DeLuca TH (2006) Estimating charcoal content in forest mineral soils. Geoderma 137:135–139

    CAS  Article  Google Scholar 

  64. Kuzyakov Y, Subbotina I, Chen H, Bogomolova I, Xu X (2009) Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling. Soil Biol Biochem 41:210–219

    CAS  Article  Google Scholar 

  65. Kuzyakov Y, Bogomolova I, Glaser B (2014) Biochar stability in soil: decomposition during eight years and transformation as assessed by compound-specific 14C analysis. Soil Biol Biochem 70:229–236

    CAS  Article  Google Scholar 

  66. Lavoie M, Starr G, Mack M, Martin T, Gholz H (2010) Effects of a prescribed fire on understory vegetation, carbon pools, and soil nutrients in a longleaf pine-slash pine forest in Florida. Nat Areas J 30:82–94

    Article  Google Scholar 

  67. LeDuc SD, Rothstein DE (2007) Initial recovery of soil carbon and nitrogen pools and dynamics following disturbance in jack pine forests: a comparison of wildfire and clearcut harvesting. Soil Biol Biochem 39:2865–2876

    CAS  Article  Google Scholar 

  68. Lehmann J (2007) A handful of carbon. Nature 447:143–144

    CAS  Article  Google Scholar 

  69. Lehmann J, Sohi SP (2008) Comment on “fire-derived charcoal causes loss of forest humus”. Science 321:1295

    CAS  Article  Google Scholar 

  70. Lehmann J, Rillig M, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota—a review. Soil Biol Biochem 43:1812–1836

    CAS  Article  Google Scholar 

  71. Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J, O’Neill B (2006) Black carbon increases cation exchange capacity in soils. Soil Sci Soc Am J 70:1719–1730

    CAS  Article  Google Scholar 

  72. Liang B et al (2010) Black carbon affects the cycling of non-black carbon in soil. Org Geochem 41:206–213

    CAS  Article  Google Scholar 

  73. Luo Y, Durenkamp M, De Nobili M, Lin Q, Brookes PC (2011) Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH. Soil Biol Biochem 43:2304–2314

    CAS  Article  Google Scholar 

  74. Luo Y, Durenkamp M, De Nobili M, Lin Q, Devonshire BJ, Brookes PC (2013) Microbial biomass growth, following incorporation of biochars produced at 350 °C or 700 °C, in a silty-clay loam soil of high and low pH. Soil Biol Biochem 57:513–523

    CAS  Article  Google Scholar 

  75. Lynch JA, Clark JS (2004) Charcoal production, dispersal, and deposition from Fort Providence experimental fire: interpreting fire regimes from charcoal records in boreal forests. Can J For Res 34:1643–1656

    Article  Google Scholar 

  76. MacKenzie MD, DeLuca TH (2006) Charcoal and shrubs modify soil processes in ponderosa pine forests of Western Montana. Plant Soil 287:257–266

    CAS  Article  Google Scholar 

  77. MacKenzie MD, DeLuca TH, Sala A (2004) Forest structure and organic matter analysis along a fire chronosequence in the low elevation forests of western Montana. Forest Ecol Manag 203:331–343

    Article  Google Scholar 

  78. Maestrini B, Herrmann AM, Nannipieri P, Schmidt MWI, Abiven S (2014) Ryegrass-derived pyrogenic organic matter changes organic carbon and nitrogen mineralization in a temperate forest soil. Soil Biol Biochem 69:291–301

    CAS  Article  Google Scholar 

  79. Major J, Lehmann J, Rondon M, Goodale C (2010) Fate of soil-applied black carbon: downward migration, leaching and soil respiration. Glob Chang Biol 16:1366–1379

    Article  Google Scholar 

  80. Makoto K, Hirobe M, DeLuca TH, Bryanin SV, Procopchuk VF, Koike T (2011) Effects of fire-derived charcoal on soil properties and seedling regeneration in a recently burned Larix gmelinii/Pinus sylvestris forest. J Soils Sediments 11:1317–1322

    CAS  Article  Google Scholar 

  81. McBeath AV, Smernik RJ, Krull ES (2013) A demonstration of the high variability of chars produced from wood in bushfires. Org Geochem 55:38–44

    CAS  Article  Google Scholar 

  82. McHenry MP (2010) Carbon-based stock feed additives: a research methodology that explores ecologically delivered C biosequestration, alongside live weights, feed use efficiency, soil nutrient retention, and perennial fodder plantations. J Sci Food Agric 90:183–187

    CAS  Article  Google Scholar 

  83. Mikutta R, Kleber M, Torn MS, Jahn R (2006) Stabilization of soil organic matter: association with minerals or chemical recalcitrance? Biogeochemistry 77:25–56

    CAS  Article  Google Scholar 

  84. Mitchell PJ, Simpson AJ, Soong R, Simpson MJ (2015) Shifts in microbial community and water-extractable organic matter composition with biochar amendment in a temperate forest soil. Soil Biol Biochem 81:244–254

    CAS  Article  Google Scholar 

  85. Monleon VJ, Cromack J, Kermit LJD (1997) Short-and long-term effects of prescribed underburning on nitrogen availability in ponderosa pine stands in central Oregon. Can J For Res 27:369–378

    Article  Google Scholar 

  86. Moss RH et al (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756

    CAS  Article  Google Scholar 

  87. Nelson SJ, Johnson KB, Kahl JS, Haines TA, Fernandez IJ (2007) Mass balances of mercury and nitrogen in burned and unburned forested watersheds at Acadia National Park, Maine, USA. Environ Monit Assess 126:69–80

    CAS  Article  Google Scholar 

  88. Nocentini C, Guenet B, Di Mattia E, Certini G, Bardoux G, Rumpel C (2010) Charcoal mineralisation potential of microbial inocula from burned and unburned forest soil with and without substrate addition. Soil Biol Biochem 42:1472–1478

    CAS  Article  Google Scholar 

  89. Noyce GL, Basiliko N, Fulthorpe R, Sackett TE, Thomas SC (2015) Soil microbial responses over 2 years following biochar addition to a north temperate forest. Biol Fertil Soils 51:649–659

    CAS  Article  Google Scholar 

  90. Ohlson M, Tryterud E (2000) Interpretation of the charcoal record in forest soils: forest fires and their production and deposition of macroscopic charcoal. Holocene 10:519–525

    Article  Google Scholar 

  91. Ohlson M, Dahlberg B, Økland T, Brown KJ, Halvorsen R (2009) The charcoal carbon pool in boreal forest soils. Nat Geosci 2:692–695

    CAS  Article  Google Scholar 

  92. Ohlson M, Kasin I, Wist AN, Bjune AE (2013) Size and spatial structure of the soil and lacustrine charcoal pool across a boreal forest watershed. Quat Res 80:417–424

    Article  Google Scholar 

  93. Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11:789–799

    CAS  Article  Google Scholar 

  94. Pietikäinen J, Kiikkilä O, Fritze H (2000) Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus. Oikos 89:231–242

    Article  Google Scholar 

  95. Pluchon N, Vincent AG, Gundale MJ, Nilsson M-C, Kardol P, Wardle DA (2016) The impact of charcoal and soil mixtures on decomposition and soil microbial communities in boreal forest. Appl Soil Ecol 99:40–50

    Article  Google Scholar 

  96. Prommer J et al (2014) Biochar decelerates soil organic nitrogen cycling but stimulates soil nitrification in a temperate arable field trial. PLoS One 9(1):e86388

    Article  CAS  Google Scholar 

  97. Randerson JT, Chen Y, van der Werf GR, Rogers BM, Morton DC (2012) Global burned area and biomass burning emissions from small fires. J Geophys Res 117:G04012. doi:10.1029/2012JG002128

    Article  CAS  Google Scholar 

  98. Rapp M (1990) Nitrogen status and mineralization in natural and disturbed Mediterranean forests and coppices. Plant Soil 128:21–30

    CAS  Article  Google Scholar 

  99. Rumpel C, Chaplot V, Planchon O, Bernadou J, Valetin C, Mariotti A (2006) Preferential erosion of black carbon on steep slopes with slash and burn agriculture. Catena 65:30–40

    Article  Google Scholar 

  100. Rumpel C, González-Pérez JA, Bardoux G, Largeau C, Gonzalez-Vila FJ, Valentin C (2007) Composition and reactivity of morphologically distinct charred materials left after slash-and-burn practices in agricultural tropical soils. Org Geochem 38:911–920

    CAS  Article  Google Scholar 

  101. Saito M, Marumoto T (2002) Inoculation with arbuscular mycorrhizal fungi: the status quo in Japan and the future prospects. Plant Soil 244:273–279

    CAS  Article  Google Scholar 

  102. Santin C et al (2015a) Towards a global assessment of pyrogenic carbon from vegetation fires. Glob Chang Biol 22:76–91

    Article  Google Scholar 

  103. Santin C, Doerr SH, Preston CM, Gonzalez-Rodriguez G (2015b) Pyrogenic organic matter production from wildfires: a missing sink in the global carbon cycle. Glob Chang Biol 21:1621–1633

    Article  Google Scholar 

  104. Santos F, Torn MS, Bird JA (2012) Biological degradation of pyrogenic organic matter in temperate forest soils. Soil Biol Biochem 51:115–124

    CAS  Article  Google Scholar 

  105. Schmidt MW et al (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56

    CAS  Article  Google Scholar 

  106. Singh N, Abiven S, Torn MS, Schmidt MWI (2012) Fire-derived organic carbon in soil turns over on a centennial scale. Biogeosciences 9:2847–2857

    CAS  Article  Google Scholar 

  107. Singh N, Abiven S, Maestrini B, Bird JA, Torn MS, Schmidt MWI (2014) Transformation and stabilization of pyrogenic organic matter in a temperate forest field experiment. Glob Chang Biol 20:1629–1642

    Article  Google Scholar 

  108. Smith JL, Collins HP, Bailey VL (2010) The effect of young biochar on soil respiration. Soil Biol Biochem 42:2345–2347

    CAS  Article  Google Scholar 

  109. Sohi SP, Krull E, Lopez-Capel E, Bol R (2010) A review of biochar and its use and function in soil. Adv Agron 105:47–82

    CAS  Article  Google Scholar 

  110. Song Y, Zhang X, Ma B, Chang SX, Gong J (2014) Biochar addition affected the dynamics of ammonia oxidizers and nitrification in microcosms of a coastal alkaline soil. Biol Fertil Soils 50:321–332

    CAS  Article  Google Scholar 

  111. Soucémarianadin LN, Quideau SA, MacKenzie MD, Munson AD, Boiffin J, Bernard GM, Wasylishen RE (2015) Total and pyrogenic carbon stocks in black spruce forest floors from eastern Canada. Org Geochem 82:1–11

    Article  CAS  Google Scholar 

  112. Stark JM, Hart SC (1997) High rates of nitrification and nitrate turnover in undisturbed coniferous forests. Nature 385:61–64

    CAS  Article  Google Scholar 

  113. Steinbeiss S, Gleixner G, Antonietti M (2009) Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biol Biochem 41:1301–1310

    CAS  Article  Google Scholar 

  114. Steiner C, Das K, Garcia M, Forster B, Zech W (2008) Charcoal and smoke extract stimulate the soil microbial community in a highly weathered xanthic Ferralsol. Pedobiologia 51:359–366

    Article  CAS  Google Scholar 

  115. Thies JE, Rillig M (2009) Characteristics of biochar: biological properties. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan, London, pp 85–105

    Google Scholar 

  116. Tong L, Zhou J, Bai SH, Xu C, Qian Y, Gao Y, Xu Z (2015) Automatic estimation of soil biochar changes via hyperspectral unmixing. In: Zhou J, Bai X, Caelli T (eds) Computer vision and pattern recognition in environmental informatics. IGI Global, Hershey, pp 220–247

    Google Scholar 

  117. Turcios MM, Jaramillo MMA, do Vale JF, Fearnside PM, Barbosa RI (2016) Soil charcoal as long-term pyrogenic carbon storage in Amazonian seasonal forests. Glob Chang Biol 22:190–197

    Article  Google Scholar 

  118. Turner MG, Romme WH, Smithwick EA, Tinker DB, Zhu J (2011) Variation in aboveground cover influences soil nitrogen availability at fine spatial scales following severe fire in subalpine conifer forests. Ecosystems 14:1081–1095

    CAS  Article  Google Scholar 

  119. Wardle DA, Nilsson MC, Zackrisson O (2008a) Fire-derived charcoal causes loss of forest humus. Science 320:629

    CAS  Article  Google Scholar 

  120. Wardle DA, Nilsson MC, Zackrisson O (2008b) Response to comment on “fire-derived charcoal causes loss of forest humus”. Science 321:1295

    CAS  Article  Google Scholar 

  121. Warnock DD, Lehmann J, Kuyper TW, Rillig MC (2007) Mycorrhizal responses to biochar in soil—concepts and mechanisms. Plant Soil 300:9–20

    CAS  Article  Google Scholar 

  122. Warnock DD, Mummey DL, McBride B, Major J, Lehmann J, Rillig MC (2010) Influences of non-herbaceous biochar on arbuscular mycorrhizal fungal abundances in roots and soils: results from growth-chamber and field experiments. Appl Soil Ecol 46:450–456

    Article  Google Scholar 

  123. Weng ZH, Van Zwieten L, Singh BP, Kimber S, Morris S, Cowie A, Macdonald LM (2015) Plant-biochar interactions drive the negative priming of soil organic carbon in an annual ryegrass field system. Soil Biol Biochem 90:111–121

    CAS  Article  Google Scholar 

  124. Whitman T, Lehmann J (2015) A dual-isotope approach to allow conclusive partitioning between three sources. Nat Commun. doi:10.1038/ncomms9708

    Google Scholar 

  125. Wolf M, Lehndorff E, Wiesenberg LBG, Stockhausen M, Schwark L, Amelung W (2013) Towards reconstruction of past fire regimes from geochemical analysis of charcoal. Org Geochem 55:11–21

    CAS  Article  Google Scholar 

  126. Woolf D, Amonette JE, Street-Perrott FA, Lehmann J, Joseph S (2010) Sustainable biochar to mitigate global climate change. Nat Commun 1:1–9

    Article  CAS  Google Scholar 

  127. Wright RJ, Hart SC (1997) Nitrogen and phosphorus status in a ponderosa pine forest after 20 years of interval burning. Ecoscience 4:526–533

    Google Scholar 

  128. Zackrisson O, Nilsson MC, Wardle DA (1996) Key ecological function of charcoal from wildfire in the Boreal forest. Oikos 77:10–19

    Article  Google Scholar 

  129. Zhu B, Gutknecht JLM, Herman DJ, Keck DC, Firestone MK, Cheng W (2014) Rhizosphere priming effects on soil carbon and nitrogen mineralization. Soil Biol Biochem 76:183–192

    CAS  Article  Google Scholar 

  130. Zimmermann M et al (2012) Rapid degradation of pyrogenic carbon. Glob Chang Biol 18:3306–3316

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Science Foundation of China (41520104001, 41301250), the National Basic Research Program of China (2014CB441003), and the Fundamental Research Funds for the Central Universities in China.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jianming Xu.

Additional information

Responsible editor: Zhihong Xu

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 38 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., Yu, Z., Zhang, K. et al. The properties and functions of biochars in forest ecosystems. J Soils Sediments 16, 2005–2020 (2016). https://doi.org/10.1007/s11368-016-1483-5

Download citation

Keywords

  • Biochar
  • Carbon sequestration
  • Distribution
  • Forest
  • Microbial mechanisms
  • Nitrogen
  • Wildfire