Skip to main content
Log in

Rhizosphere effects of Populus euramericana Dorskamp on the mobility of Zn, Pb and Cd in contaminated technosols

  • Soils, Sec 2 • Global Change, Environ Risk Assess, Sustainable Land Use • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

This study aimed at investigating the rhizosphere effects of Populus euramericana Dorskamp on the mobility of Zn, Pb and Cd in contaminated technosols from a former smelting site.

Materials and methods

A rhizobox experiment was conducted with poplars, where the plant stem cuttings were grown in contaminated technosols for 2 months under glasshouse conditions. After plant growth, rhizosphere and bulk soil pore water (SPW) were sampled together. SPW properties such as pH, dissolved organic carbon (DOC) and total dissolved concentrations of Zn, Pb and Cd were determined. The concentrations of Zn, Pb and Cd in plant organs were also determined.

Results and discussion

Rhizosphere SPW pH increased for all studied soils by 0.3 to 0.6 units compared to bulk soils. A significant increase was also observed for DOC concentrations regardless of the soil type or total metal concentrations, which might be attributed to the plant root activity. For all studied soils, the rhizosphere SPW metal concentrations decreased significantly after plant growth compared to bulk soils which might be attributed to the increase in pH and effects of root exudates. Zn, Pb and Cd accumulated in plant organs and the higher metal concentrations were found in plant roots compared to plant shoots.

Conclusions

The restricted transfer of the studied metals to the plant shoots confirms the potential role of this species in the immobilization of these metals. Thus, P. euramericana Dorskamp can be used for phytostabilization of technosols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CEC:

Cation exchange capacity

DOC:

Dissolved organic carbon

EC:

Electrical conductivity

MDN:

Mortagne-du-Nord

PTE:

Potentially toxic element

SPW:

Soil pore water

TOC:

Total organic carbon

References

  • Afnor (1999) Recueil deNormes Françaises. Qualité des sols, Afnor Paris

  • Aran D, Maul A, Masfaraud JF (2008) A spectrophotometric measurementof soil cation exchange capacity based on cobaltihexaminechloride absorbance. C R Geosci 340:865–871

  • Benjamin MM, Leckie JO (1981a) Multiple-site adsorption of Cd, Cu, Zn, and Pb on amorphous iron oxyhydroxide. J Colloid Interface Sci 79:209–221

    Article  CAS  Google Scholar 

  • Benjamin MM, Leckie JO (1981b) Competitive adsorption of Cd, Cu, Zn, and Pb on amorphous iron oxyhydroxide. J Colloid Interface Sci 83:410–419

    Article  CAS  Google Scholar 

  • Bernal MP, McGrath MP (1994) Effects of pH and heavy-metal concentrations in solution culture on the proton release, growth and elemental composition of Alyssum murale and Raphanus sativus L. Plant Soil 166:83–92

    Article  CAS  Google Scholar 

  • Bonhomme L, Barbaroux C, Monclus R, Morabito D, Berthelot A, VillarM DE, Brignolas F (2008) Genetic variation in productivity, leaf traits, and carbon isotope discrimination in hybrid poplars cultivated on contrasting sites. Ann For Sci 65:2–8

    Article  Google Scholar 

  • Bose S, Bhattacharyya AK (2008) Heavy metals accumulation in wheat plant grown in soil amended with industrial sludge. Chemosphere 70:1264–1272

    Article  CAS  Google Scholar 

  • Bravin MN, Marti AL, Clairotte M, Hinsinger P (2009) Rhizosphere alkalisation—a major driver of copper bioavailability over a broad pH range in an acidic, copper contaminated soil. Plant Soil 318:257–268

    Article  CAS  Google Scholar 

  • Cattani I, Fragoulis G, Boccelli R, Capri E (2006) Copper bioavailability in the rhizosphere of maize (Zea mays L.) grown in two Italian soils. Chemosphere 64:1972–1979

    Article  CAS  Google Scholar 

  • Chantigny MH (2003) Dissolved and water-extractable organic matter in soils: a review on the influence of land use and management practices. Geoderma 113:357–380

    Article  CAS  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelation and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    Article  CAS  Google Scholar 

  • Curl EA, Truelove B (1986) The rhizosphere. Springer, Berlin, p 286

    Book  Google Scholar 

  • Darrah PR, Jones DL, Kirk GJD, Roose T (2006) Modelling the rhizosphere: a review of methods for ‘upscaling’ to the whole-plant scale. Eur J Soil Sci 57:13–25

    Article  Google Scholar 

  • Di Baccio D, Castagna A, Tognetti R, Ranieri A, Sebastiani L (2014) Early responses to cadmium of two poplar clones that differ in stress tolerance. Plant Physiol 171:1693–1705

    Article  CAS  Google Scholar 

  • Durand TC, Hausman JF, Carpin S (2010) Zinc and cadmium effects on growth and ion distribution in Populus tremula x Populus alba. Biol Plant 54:191–194

    Article  CAS  Google Scholar 

  • Durand TC, Baillif P, Albe’Ric P, Carpin S, Label P, Hausman JF, Morabito D (2011) Cadmium and zinc are differentially distributed in Populus tremula x P. Alba exposed to metal excess. Plant Biosyst 145:397–405

    Article  Google Scholar 

  • Ernst WHO (1996) Bioavailability of heavy metals and decontamination of soils by plants. Appi Geochem 11:163–167

    Article  CAS  Google Scholar 

  • Fitz WJ, Wenzel WW, Zhang H et al (2003) Rhizosphere characteristics of the arsenic hyperaccumulator Pteris vittata L. and monitoring of phytoremoval efficiency. Environ Sci Technol 37:5008–5014

    Article  CAS  Google Scholar 

  • Gahoonia TS, Claassen N, Jungk A (1992) Mobilization of phosphate in different soils by ryegrass supplied with ammonium or nitrate. Plant Soil 140:241–248

    Article  Google Scholar 

  • Gonzaga MIS, Ma LQ, Santos JAG, Matias MIS (2009) Rhizosphere characteristics of two arsenic hyperaccumulating Pteris ferns. Sci Total Environ 407:4711–4716

    Article  CAS  Google Scholar 

  • Grant CA, Bailey LD, Harapiak JT, Flore NA (2002) Effect of phosphate source, rate and cadmium content and use of Penicillium bilaii on phosphorus, zinc and cadmium concentration in durum wheat grain. J Sci Food Agric 82:301–8

    Article  CAS  Google Scholar 

  • Hamon RE, McLaughlin MJ, Naidu R, Correll R (1998) Long-term changes in cadmium bioavailability. Environ Sci Technol 32:3699–703

    Article  CAS  Google Scholar 

  • Haynes RJ (1990) Active ion uptake and maintenance of cation–anion balance: a critical examination of their role in regulating rhizosphere pH. Plant Soil 126:247–264

    Article  CAS  Google Scholar 

  • Hees PAWV, Lundstrom US, Giesler R (2000) Low molecular weight organic acids and their complexes in soil solution-composition, distribution and seasonal variation in three podzolized soils. Geoderma 94:173–200

    Article  Google Scholar 

  • Hinsinger P (1998) How do plant roots acquire mineral nutrients? Chemical processes involved in the rhizosphere. Adv Agron 64:225–265

    Article  CAS  Google Scholar 

  • Hinsinger P (2001) Bioavailability of trace elements as related to root-induced chemical changes in the rhizosphere. In: Gobran GR, Wenzel WW, Lombi E (eds) Trace elements in the rhizosphere. CRC, Boca Raton, pp 25–41

    Google Scholar 

  • Hinsinger P, Plassard C, Jaillard B (2005) Rhizosphere: a new frontier for soil biogeochemistry. J Geochem Explor 88:210–213

    Article  CAS  Google Scholar 

  • ISO (1999) Soil Quality. Guidance on the ecotoxicological characterizationof soils and soil materials Guidelines no ISO TC 190/SC 7 ISO/DIS15799. ISO Geneva, Switzerland

  • ISO 10390 (2005) Soil quality – Determination of pH. InternationalOrganization for Standardization, Geneva

  • Kaiser K, Guggenberger G, Haumaier L, Zech W (2002) The composition of dissolved organic matter in forest soil solutions: changes induced by seasons and passage through the mineral soil. Org Geochem 33:307–318

    Article  CAS  Google Scholar 

  • Kalbitz K, Solinger S, Park JH, Michalzik B, Matzner E (2000) Controls on the dynamics of dissolved organic matter in soils: a review. Soil Sci 165:277–304

    Article  CAS  Google Scholar 

  • Khalid M, Soleman N, Jones DL (2007) Grassland plants affect dissolved organic carbon and nitrogen dynamics in soil. Soil Biol Biochem 39:378–381

    Article  CAS  Google Scholar 

  • Kim KR, Owens G, Kwon SIK (2010a) Influence of Indian mustard (Brassica Juncea) on rhizosphere soil solution chemistry in long-term contaminated soils: a rhizobox study. J Environ Sci 22:98–105

    Article  CAS  Google Scholar 

  • Kim KR, Owens G, Naidu R (2010b) Effect of root-induced chemical changes on dynamics and plant uptake of heavy metals in rhizosphere soils. Pedosphere 20(494):504

    Google Scholar 

  • Kirk GJD, Santos EE, Findenegg GR (1999) Phosphate solubilisation by organic anion excretion from rice (Oryza sativa L.) growing in aerobic soil. Plant Soil 211:11–8

    Article  CAS  Google Scholar 

  • Knight BP, Chaudri AM, McGrath SP, Giller KE (1998) Determination of chemical availability of cadmium and zinc in soils using inert soil moisture samplers. Environ Pollut 99:293–298

  • Lim JM, Salido AL, Butcher D (2004) Phytoremediation of lead using Indian mustard (Brassica juncea) with EDTA and electrodics. Microchem J 76:3–9

    Article  CAS  Google Scholar 

  • Liu D, Jiang W, Liu C, Xin C, Hou W (2000) Uptake and accumulation of lead by roots, hypocotyls and shoots of Indian mustard [Brassica juncea (L.)]. Bioresour Technol 71(273):277

    Google Scholar 

  • Lorenz SE, Hamon RE, McGrath SP (1994) Differences between soil solutions obtained from rhizosphere and non-rhizosphere soils by water displacement and soil centrifugation. Eur J Soil Sci 45:431–438

    Article  CAS  Google Scholar 

  • Lorenz SE, Hamon RE, Holm PE, Domingues HC et al (1997) Cadmium and zinc in plants and soil solutions from contaminated soils. Plant Soil 189:21–31

    Article  CAS  Google Scholar 

  • Luo YM, Christie PAJ, Baker M (2000) Soil solution Zn and pH dynamics in non-rhizosphere soil and in the rhizosphere of Thlaspi caerulescens grown in a Zn/Cd-contaminated soil. Chemosphere 41:161–164

    Article  CAS  Google Scholar 

  • Luster J, Menon M, Hermle S, Schulin R, Georg-Gunthardt MS, Nowack B (2008) Initial changes in refilled lysimeters built with metal polluted topsoil and acidic or calcareous subsoils as indicated by changes in drainage water composition. Water Air Soil Pollut 8:163–176

    Article  CAS  Google Scholar 

  • Martınez-Alcala I, Clemente R, Bernal MP (2009) Metal availability and chemical properties in the rhizosphere of Lupinus albus L. growing in a high-metal calcareous soil. Water Air Soil Pollut 201:283–293

    Article  CAS  Google Scholar 

  • McLaughlin MJ, Maier NA, Freeman K, Tiller KG, Williams CMJ, Smart MK (1995) Effect of potassic and phosphatic fertilizer type, fertilizer Cd concentration and zinc rate on cadmium uptake by potatoes. Fertil Res 40:63–70

    Article  CAS  Google Scholar 

  • Moritsuka N, Yanai J, Kosaki T (2000) Non-destructive method for determining temporal and spatial changes of the soil solution chemistry in the rhizosphere. Soil Sci Plant Nutr 46:713–719

    Article  CAS  Google Scholar 

  • Murillo JM, Marañó T, Cabrera NF, Lopez R (1999) Accumulation of heavy metals in sunflower and sorghum plants affected by the Guadiamar spill. Sci Total Environ 242(281):292

    Google Scholar 

  • Naidu R, Harter RD (1998) Effect of different organic ligands on cadmium sorption by and extractability from soils. Soil Sci Soc Am J 62:644–650

    Article  CAS  Google Scholar 

  • Nan Z, Zhao C, Li J, Chen F, Sun W (2002) Relations between soil properties and selected heavy metal concentrations in spring wheat grown in contaminated soils. Water Air Soil Pollut 133:205–213

    Article  CAS  Google Scholar 

  • Navarro MC, Pe’rez-Sirvent C, Martínez-Sánchez MJ, Vidal J, Tovar PJ, Bech J (2008) Abandoned mine sites as a source of contamination by heavy metals: a case study in a semi-arid zone. J Geochem Explor 96:183–193

    Article  CAS  Google Scholar 

  • Nishizono H, Ichilawa H, Suzuki S, Ishii F (1987) The role of the root cell wall in the heavy metal tolerance of Athyrium yokoscense. Plant Soil 101:15–20

    Article  CAS  Google Scholar 

  • Nye PH (1981) Changes of pH across the rhizosphere induced by roots. Plant Soil 61:7–26

    Article  CAS  Google Scholar 

  • Pottier M, García de la Torreb SV, Victora C, Davida CL, Chalot M, Thominea S (2015) Genotypic variations in the dynamics of metal concentrations in poplar leaves: a field study with a perspective on phytoremediation. Environ Pollut 199:73–82

    Article  CAS  Google Scholar 

  • Qasim B, Motelica-Heino M (2014) Potentially toxic element fractionation in technosoils using two sequential extraction schemes. Environ Sci Pollut Res 21:5054–5065

    Article  CAS  Google Scholar 

  • Qasim B, Motelica-Heino M, Joussein E, Soubrand M, Gauthier A (2015) Potentially toxic elements phytoavailability assessment in Technosols from former smelting and mining areas. Environ Sci Pollut Res 22:5961–5974

    Article  CAS  Google Scholar 

  • Razo I, Carrizales L, Castro J, Dıaz-Barriga F, Montoroy M (2004) Arsenic and heavy metal pollution of soil, water and sediments in a semi-arid climate mining area in Mexico. Water Air Soil Pollut 152:129–152

    Article  CAS  Google Scholar 

  • Reeves RD, Baker AJM (2000) Metal-accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals. Wiley-Interscience, New York, pp 193–230

    Google Scholar 

  • Roemkins PFAM, Bouwman LA, Boon GT (1999) Effect of plant growth on copper solubility and speciation in soil solution samples. Environ Pollut 106:215–231

    Google Scholar 

  • Salt DE, Blaylock M, Kumar PBAN, Dushenkov V, Ensley BD, Chet I et al (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13:468–474

    Article  CAS  Google Scholar 

  • Sas L, Rengel Z, Tang C (2001) Excess cation uptake and extrusion of protons and organic acid anions by Lupinus albus under phosphorus deficiency. Plant Sci 160:1191–1198

    Article  CAS  Google Scholar 

  • Sauvé S, McBride MB, Norvell WA, Hendershot WH (1997) Copper solubility and speciation of in situ contaminated soils: effects of copper level, pH and organic matter. Water Air Soil Pollut 100:133–149

    Article  Google Scholar 

  • Schwab AP, He Y, Banks MK (2005) The influence of organic ligands on the retention of lead in soil. Chemosphere 61:856–866

    Article  CAS  Google Scholar 

  • Tao S, Liu WX, Chen YJ, Xu FL et al (2004) Evaluation of factors influencing root-induced changes of copper fractionation in rhizosphere of a calcareous soil. Environ Pollut 129:5–12

    Article  CAS  Google Scholar 

  • Thiry M, van Oort F (1999) Les phases minérales majeures et mineures d’une friche industrielle de métallurgie des métaux non ferreux: état d’altération, évolution géochimique et devenir des métaux polluants du site de Mortagne-du-Nord, In: Les cahiers des clubs CRIN, acte du colloque ‘La Spéciation des Métaux dans le Sol’. Association ECRIN, Paris, pp. 108–159

  • Thiry M, Huet-Taillanter S, Schmitt JM (2002) La friche industrielle de Mortagne-du-Nord (59) -I- Prospection du site, composition des scories, hydrochimie, hydrologie et estimation des flux. Bull Soc Géol Fr 173:369–381

    Article  CAS  Google Scholar 

  • Uren NC, Reisenauer HM (1988) The role of root exudates in nutrient acquisition. In: Tinker PB, Lauchli A (eds) Advances in plant nutrition, vol 3. Praeger, New York, pp 79–114

    Google Scholar 

  • Vazquez S, Agha R, Granado A, Sarro MJ et al (2006) Use of white lupin plant for phytostabilization of Cd and as polluted acid soil. Water Air Soil Pollut 177:349–365

    Article  CAS  Google Scholar 

  • Vijver M, Jager T, Posthuma L, Peijnenburg W (2003) Metal uptake from soils and soil-sediment mixtures by larvae of Tenebrio molitor (L.) (Coleoptera). Ecotoxicol Environ Saf 54:277–289

    Article  CAS  Google Scholar 

  • Weng L, Temminghoff EJM, Lofts S, Tipping E, Van Riemsdijk WH (2002) Complexation with dissolved organic matter and solubility control of heavy metals in a sandy soil. Environ Sci Technol 36:4804–4810

    Article  CAS  Google Scholar 

  • Wenzel WW, Brandstetter A, Wutte H, Lombi E, Prohaska T, Stingeder G et al (2002) Arsenic in field-collected soil solutions and extracts of contaminated soils and its implication to soil standards. J Plant Nutr Soil Sci 165:221–228

    Article  CAS  Google Scholar 

  • Wenzel WW, Bunkowski M, Puschenreiter M, Horak O (2003) Rhizosphere characteristics of indigenously growing nickel hyperaccumulator and excluder plants on serpentine soil. Environ Pollut 123:131–138

    Article  CAS  Google Scholar 

  • Yanai J, Araki S, Kyuma K (1995) Effects of plant growth on the dynamics of the soil solution composition in the root zone of maize in four Japanese soils. Soil Sci Plant Nutr 41:195–206

    Article  CAS  Google Scholar 

  • Yanai J, Robinson D, Young IM, Kyuma K, Kosaki K (1998) Effects of the chemical form of inorganic nitrogen fertilizers on the dynamics of the soil solution composition and on nutrient uptake by wheat. Soil Sci Plant Nutr 202:263–270

    CAS  Google Scholar 

  • Yang J, Ma Z, Ye Z, Guo X, Qiu R (2010) Heavy metal (Pb, Zn) uptake and chemical changes in rhizosphere soils of four wetland plants with different radial oxygen loss. J Environ Sci 22:69–702

    Google Scholar 

  • Zhang J, Liu J, Li C, Nie Y, Jin Y (2008) Comparison of the fixation ofheavy metals in raw material, clinker and mortar using a BCRsequential extraction procedure and NEN7341 test. Cem ConcrRes 38:675–680

Download references

Acknowledgments

The authors wish to acknowledge the Ministry of Higher Education and Scientific Research (Baghdad, Iraq) for their financial support and are grateful to Florie Miard (Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGG), Orleans, France) for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bashar Qasim.

Additional information

Responsible editor: Stefan Norra

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qasim, B., Motelica-Heino, M., Bourgerie, S. et al. Rhizosphere effects of Populus euramericana Dorskamp on the mobility of Zn, Pb and Cd in contaminated technosols. J Soils Sediments 16, 811–820 (2016). https://doi.org/10.1007/s11368-015-1270-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-015-1270-8

Keywords

Navigation