Skip to main content
Log in

Effects of nitrogen deposition rates and frequencies on the abundance of soil nitrogen-related functional genes in temperate grassland of northern China

  • Soils, Sec 5 • Soil and Landscape Ecology • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Microbial processes driving nitrogen (N) cycling are hot topics in terms of increasing N deposition. Abundances of N-related functional genes (NFG) can be most responsive to N deposition and commonly used to represent N transformation rates. However, empirically simulated N deposition has been exclusively conducted through large and infrequent N fertilization, which may have caused contrasting effects on NFGs. Therefore, experiments with small and frequent N additions closed to natural deposition are necessary.

Materials and methods

Independently manipulated N addition rates (i.e., 0, 5, 10, 15, 20, and 50 g N m−2 year−1) and two frequencies (2 times per year addition as conventional large and infrequent N fertilization (2 N), and 12 times per year addition simulating small and frequent N deposition (12 N), respectively) were conducted in a long-term field experiment of a semiarid grassland in northern China. Quantification analysis using real-time PCR were carried out for NFGs, including nifH for N fixation, chiA for N mineralization, archaeal (AOA) and bacterial (AOB) amoA for nitrification, and narG, nirS, nirK, and nosZ for denitrification.

Results and discussion

NFG abundances showed distinct sensitivities to N addition rates. The nifH, AOA-amoA, nirS, and nosZ gene abundances increased due to improved available N at low N rates, but suppressed by salt toxicity and acidification at high N rates. Large changes of chiA and AOB-amoA gene abundances highlighted their great sensitivities to the N enrichment. The abundance of AOB-amoA was more sensitive to N addition than AOA-amoA, but AOA-amoA dominated in absolute numbers and they predominated the ammonia-oxidation under different conditions. The N addition frequencies caused significant lower gene abundances of nifH, nirS, and nosZ under the 2-N frequency due to stronger suppression of acidification and salt toxicity and resulted in significant higher AOB-amoA gene abundances in response to higher N availability under the 2-N frequency.

Conclusions

The NFGs abundances responded to N addition rates distinctly, highlighting that the driven processes involved in N cycling were altered by the N addition rates. The different effects of two N addition frequencies on NFG abundances demonstrated that conventional large and infrequent N fertilization cannot represent N deposition, and small and frequent N addition should be employed to project the effects of N deposition on microbial functional groups as well as on N transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Attard E, Recous S, Chabbi A, De Berranger C, Guillaumaud N, Labreuche J, Philippot L, Schmid B, Le Roux X (2011) Soil environmental conditions rather than denitrifier abundance and diversity drive potential denitrification after changes in land uses. Glob Chang Biol 17:1975–1989

    Article  Google Scholar 

  • Bai YF, Wu JG, Clark CM, Naeem S, Pan QM, Huang JH, Zhang LX, Han XG (2010) Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from inner Mongolia Grasslands. Glob Chang Biol 16:358–372

    Article  Google Scholar 

  • Barton L, Wan GGY, Buck RP, Colmer TD (2008) Does N fertiliser regime influence N leaching and quality of different-aged turfgrass (Pennisetum clandestinum) stands? Plant Soil 316:81–96

    Article  Google Scholar 

  • Bilbrough CJ, Caldwell M (1997) Exploitation of springtime ephemeral N pulses by six great basin plant species. Ecology 78:231–243

    Google Scholar 

  • Boyle-Yarwood SA, Bottomley PJ, Myrold DD (2008) Community composition of ammonia-oxidizing bacteria and archaea in soils under stands of red alder and Douglas fir in Oregon. Environ Microbiol 10:2956–2965

    Article  CAS  Google Scholar 

  • Braker G, Gesefeldt A, Witzel K-P (1998) Development of PCR primer systems for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental samples. Appl Environ Microbiol 64:3769–3775

    CAS  Google Scholar 

  • Broadbent FE (1965) Effects of fertilizer nitrogen on the release of soil nitrogen. Soil Sci Soc Am J 29:692–696

    Article  CAS  Google Scholar 

  • Cheever BM, Webster JR, Bilger EE, Thomas SA (2013) The relative importance of exogenous and substrate-derived nitrogen for microbial growth during leaf decomposition. Ecology 94:1614–1625

    Article  CAS  Google Scholar 

  • Cheng XL, Luo YQ, Su B, Verburg PSJ, Hui DF, Obrist D, Arnone JA, Johnson DW, Evans RD (2009) Responses of net ecosystem CO2 exchange to nitrogen fertilization in experimentally manipulated grassland ecosystems. Agr Forest Meteorol 149:1956–1963

    Article  Google Scholar 

  • Chon K, Chang J-S, Lee E, Lee J, Ryu J, Cho J (2009) Abundance of denitrifying genes coding for nitrate (narG), nitrite (nirS), and nitrous oxide (nosZ) reductases in estuarine versus wastewater effluent-fed constructed wetlands. Ecol Eng 37:64–69

    Article  Google Scholar 

  • Colloff MJ, Wakelin SA, Gomez D, Rogers SL (2008) Detection of nitrogen cycle genes in soils for measuring the effects of changes in land use and management. Soil Biol Biochem 40:1637–1645

    Article  CAS  Google Scholar 

  • Delorme S, Philippot L, Edel-Hermann V, Deulvot C, Mougel C, Lemanceau P (2003) Comparative genetic diversity of the narG, nosZ, and 16S rRNA genes in fluorescent pseudomonads. Appl Environ Microbiol 69:1004–1012

    Article  CAS  Google Scholar 

  • Di HJ, Cameron KC, Shen JP, Winefield CS, O’Callaghan M, Bowatte S, He JZ (2010) Ammonia-oxidizing bacteria and archaea grow under contrasting soil nitrogen conditions. FEMS Microbiol Rev 72:386–394

    Article  CAS  Google Scholar 

  • Enwall K, Philippot L, Hallin S (2005) Activity and composition of the denitrifying bacterial community respond differently to long-term fertilization. Appl Environ Microbiol 71:8335–8343

    Article  CAS  Google Scholar 

  • Erguder TH, Boon N, Wittebolle L, Marzorati M, Verstraete W (2009) Environmental factors shaping the ecological niches of ammonia-oxidizing archaea. FEMS Microbiol Rev 33:855–869

    Article  CAS  Google Scholar 

  • Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci U S A 102:14683–14688

    Article  CAS  Google Scholar 

  • Frijlink MJ, Abee T, Laanbroek HJ, De Boer W, Konings WN (1992) The bioenergetics of ammonia and hydroxylamine oxidation in Nitrosomonas europaea at acid and alkaline pH. Arch Microbiol 157:194–199

    Article  CAS  Google Scholar 

  • Galloway JN, Dedterner FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Micheals AF, Porter JH, Townsend AR, Vöosmarty CJ (2004) Nitrogen cycles: past, present, and future. Biochem 70:153–226

    CAS  Google Scholar 

  • Galloway JN, Leach AM, Bleeker A, Erisman JW (2013) A chronology of human understanding of the nitrogen cycle. Proc R Soc Lond B:368

  • Hai B, Diallo NH, Sall S, Haesler F, Schauss K, Bonzi M, Assigbetse K, Chotte JL, Munch JC, Schloter M (2009) Quantification of key genes steering the microbial nitrogen cycle in the rhizosphere of sorghum cultivars in tropical agroecosystems. Appl Environ Microbiol 75:4993–5000

    Article  CAS  Google Scholar 

  • Hallin S, Jones CM, Schloter M, Philippot L (2009) Relationship between N-cycling communities and ecosystem functioning in a 50-year-old fertilization experiment. ISME J 3:597–605

    Article  CAS  Google Scholar 

  • Hayden HL, Drake J, Imhof M, Oxley APA, Norng S, Mele PM (2010) The abundance of nitrogen cycle genes amoA and nifH depends on land-uses and soil types in South-Eastern Australia. Soil Biol Biochem 42:1774–1783

    Article  CAS  Google Scholar 

  • He JZ, Shen JP, Zhang LM, Zhu YG, Zheng YM, Xu MG, Di HJ (2007) Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environ Microbiol 9:2364–2374

    Article  CAS  Google Scholar 

  • Hofferle S, Nicol GW, Pal L, Hacin J, Prosser JI, Mandic-Mulec I (2010) Ammonium supply rate influences archaeal and bacterial ammonia oxidizers in a wetland soil vertical profile. FEMS Microbiol Rev 74:302–315

    Article  CAS  Google Scholar 

  • Huang T, Gao B, Hu XK, Lu X, Well R, Christie P, Bakken LR, Ju XT (2014) Ammonia-oxidation as an engine to generate nitrous oxide in an intensively managed calcareous Fluvo-aquic soil. Sci Rep 4:3950

    Google Scholar 

  • Jarrell WM, Dawson MD (1978) Sorption and availability of molybdenum in soils of western oregon. Soil Sci Soc Am J 42:412–415

    Article  CAS  Google Scholar 

  • Jia YL, Yu GR, He NP, Zhan XY, Fang HJ, Sheng WP, Zuo Y, Zhang DY, Wang QF (2014) Spatial and decadal variations in inorganic nitrogen wet deposition in China induced by human activity. Sci Rep 4:3763

    Google Scholar 

  • Jia ZJ, Conrad R (2009) Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil. Environ Microbiol 11:1658–1671

    Article  CAS  Google Scholar 

  • Jung J, Yeom J, Kim J, Han J, Lim HS, Park H, Hyun S, Park W (2011) Change in gene abundance in the nitrogen biogeochemical cycle with temperature and nitrogen addition in Antarctic soils. Res Microbiol 162:1018–1026

    Article  CAS  Google Scholar 

  • Kandeler E, Deiglmayr K, Tscherko D, Bru D, Philippot L (2006) Abundance of narG, nirS, nirK, and nosZ genes of denitrifying bacteria during primary successions of a glacier foreland. Appl Environ Microbiol 72:5957–5962

    Article  CAS  Google Scholar 

  • Kandeler E, Brune T, Enowashu E, Dorr N, Guggenberger G, Lamersdorf N, Philippot L (2009) Response of total and nitrate-dissimilating bacteria to reduced N deposition in a spruce forest soil profile. FEMS Microbiol Ecol 67:444–454

    Article  CAS  Google Scholar 

  • Kloos K, Mergel A, Rösch C, Bothe H (2001) Denitrification within the genus Azospirillum and other associative bacteria. Aust J Plant Physiol 28:991–998

    Google Scholar 

  • Kowalchuk GA, Stephen JR (2001) Ammonia-oxidizing bacteria a model for molecular microbial ecology. Annu Rev Microbiol 55:485–529

    Article  CAS  Google Scholar 

  • Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, Prosser JI, Schuster SC, Schleper C (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442:806–809

    Article  CAS  Google Scholar 

  • Levy-Booth DJ, Prescott CE, Grayston SJ (2014) Microbial functional genes involved in nitrogen fixation, nitrification and denitrification in forest ecosystems. Soil Biol Biochem 75:11–25

    Article  CAS  Google Scholar 

  • Lindsay EA, Colloff MJ, Gibb NL, Wakelin SA (2010) The abundance of microbial functional genes in grassy woodlands is influenced more by soil nutrient enrichment than by recent weed invasion or livestock exclusion. Appl Environ Microbiol 76:5547–5555

    Article  CAS  Google Scholar 

  • Michotey V, Méjean V, Patricia B (2000) Comparison of methods for quantification of cytochrome cd1-Denitrifying bacteria in environmental marine samples. Appl Environ Microbiol 66:1564–1571

    Article  CAS  Google Scholar 

  • Nelson DW, Sommers LE (1982) Dry combustion method using medium temperature resistance furnace. In: Page AL, Miller RH, Keeney D (eds) Methods of soil analysis. Part 2. Chemical and Microbial Properties. ASA and SSSA, Madison

    Google Scholar 

  • Ochoa-Hueso R, Maestre FT, de Los RA, Valea S, Theobald MR, Vivanco MG, Manrique E, Bowker MA (2013) Nitrogen deposition alters nitrogen cycling and reduces soil carbon content in low-productivity semiarid Mediterranean ecosystems. Environ Pollut 179:185–193

    Article  CAS  Google Scholar 

  • Okano Y, Hristova KR, Leutenegger CM, Jackson LE, Denison RF, Gebreyesus B, Lebauer D, Scow KM (2004) Application of real-time PCR to study effects of ammonium on population size of ammonia-oxidizing bacteria in soil. Appl Environ Microbiol 70:1008–1016

    Article  CAS  Google Scholar 

  • Petersen DG, Blazewicz SJ, Firestone M, Herman DJ, Turetsky M, Waldrop M (2012) Abundance of microbial genes associated with nitrogen cycling as indices of biogeochemical process rates across a vegetation gradient in Alaska. Environ Microbiol 14:993–1008

    Article  CAS  Google Scholar 

  • Rösch C, Mergel A, Bothe H (2002) Biodiversity of denitrifying and dinitrogen-fixing bacteria in an acid forest soil. Appl Environ Microbiol 68:3818–3829

    Article  Google Scholar 

  • Ramirez KS, Craine JM, Fierer N (2012) Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Glob Chang Biol 18:1918–1927

    Article  Google Scholar 

  • Rotthauwe JH, Witzel KP, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker molecular fine scale analysis of natural ammoniaoxidizing populations. Appl Environ Microbiol 63:4704–4712

    CAS  Google Scholar 

  • Rousk J, Baath E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4:1340–1351

    Article  Google Scholar 

  • Sala OE, Chapin FSR, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774

    Article  CAS  Google Scholar 

  • Shen JP, Zhang LM, Zhu YG, Zhang JB, He JZ (2008) Abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities of an alkaline sandy loam. Environ Microbiol 10:1601–1611

    Article  CAS  Google Scholar 

  • Shen JP, Xu ZH, He JZ (2014) Frontiers in the microbial processes of ammonia oxidation in soils and sediments. J Soils Sediments 14:1023–1029

    Article  CAS  Google Scholar 

  • Stevens CJ, Dise NB, Mountford JO, Gowing DJ (2004) Impact of nitrogen deposition on the species richness of grasslands. Science 303:1876–1879

    Article  CAS  Google Scholar 

  • Stevens CJ, Dupre C, Dorland E, Gaudnik C, Gowing DJ, Bleeker A, Diekmann M, Alard D, Bobbink R, Fowler D, Corcket E, Mountford JO, Vandvik V, Aarrestad PA, Muller S, Dise NB (2010) Nitrogen deposition threatens species richness of grasslands across Europe. Environ Pollut 158:2940–2945

    Article  CAS  Google Scholar 

  • Töwe S, Albert A, Kleineidam K, Brankatschk R, Dumig A, Welzl G, Munch JC, Zeyer J, Schloter M (2010) Abundance of microbes involved in nitrogen transformation in the rhizosphere of Leucanthemopsis alpina (L.) Heywood grown in soils from different sites of the Damma glacier forefield. Microb Ecol 60:762–770

    Article  Google Scholar 

  • Throbäck IN, Enwall K, Jarvis A, Hallin S (2004) Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiol Rev 49:401–417

    Article  Google Scholar 

  • Treseder KK (2008) Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies. Ecol Lett 11:1111–1120

    Article  Google Scholar 

  • Veresoglou SD, Chen BD, Rillig MC (2012) Arbuscular mycorrhiza and soil nitrogen cycling. Soil Biol Biochem 46:53–62

    Article  CAS  Google Scholar 

  • Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13:87–115

    Article  Google Scholar 

  • Vitousek PM (1997) Human domination of earth’s ecosystems. Science 277:494–499

    Article  CAS  Google Scholar 

  • Wakelin SA, Gregg AL, Simpson RJ, Li GD, Riley IT, McKay AC (2009) Pasture management clearly affects soil microbial community structure and N-cycling bacteria. Pedobiologia 52:237–251

    Article  CAS  Google Scholar 

  • Waldrop MP, Zak DR (2006) Response of oxidative enzyme activities to nitrogen deposition affects Soil concentrations of dissolved organic carbon. Ecosystems 9:921–933

    Article  CAS  Google Scholar 

  • Wallenstein MD, Myrold DD, Firestone M, Voytek M (2006) Environmetal controls on denitrifying cimmunities and denitrification rates insights from molecular methods. Ecol Appl 16:2143–2152

    Article  Google Scholar 

  • Wang YZ, Xu ZH, Zhou QX (2014) Impact of fire on soil gross nitrogen transformations in forest ecosystems. J Soils Sediments 14:1030–1040

    Article  CAS  Google Scholar 

  • Weng BS, Xie XJ, Yang JJ, Liu JC, Lu HL, Yan CL (2013) Research on the nitrogen cycle in rhizosphere of Kandelia obovata under ammonium and nitrate addition. Mar Pollut Bull 76:227–240

    Article  CAS  Google Scholar 

  • Xiao X, Yin X, Lin J, Sun L, You Z, Wang P, Wang F (2005) Chitinase genes in lake sediments of Ardley Island, Antarctica. Appl Environ Microbiol 71:7904–7909

    Article  CAS  Google Scholar 

  • Xu ZH, Chen CR (2006) Fingerprinting global climate change and forest management within rhizosphere carbon and nutrient cycling processes. Environ Sci Pollut Res 13:293–298

    Article  Google Scholar 

  • Xu ZH, Chen CR, He JZ, Liu JX (2009) Trends and challenges in soil research 2009: linking global climate change to local long-term forest productivity. J Soils Sediments 9:83–88

    Article  Google Scholar 

  • Yergeau E, Kang S, He Z, Zhou J, Kowalchuk GA (2007) Functional microarray analysis of nitrogen and carbon cycling genes across an Antarctic latitudinal transect. ISME J 1:163–179

    Article  CAS  Google Scholar 

  • Zhang XM, Liu W, Schloter M, Zhang GM, Chen QS, Huang JH, Li LH, Elser JJ, Han XG (2013) Response of the abundance of key soil microbial nitrogen-cycling genes to multi-factorial global changes. PLoS One 8:e76500

    Article  CAS  Google Scholar 

  • Zhang YH, Han X, He NP, Long M, Huang JH, Zhang GM, Wang QB, Han XG (2014a) Increase in ammonia volatilization from soil in response to N deposition in Inner Mongolia grasslands. Atmos Environ 84:156–162

    Article  Google Scholar 

  • Zhang YH, Lü XT, Isbell F, Stevens C, Han X, He NP, Zhang GM, Yu Q, Huang JH, Han XG (2014b) Rapid plant species loss at high rates and at low frequency of N addition in temperate steppe. Glob Chang Biol 20:3520–3529

    Article  Google Scholar 

Download references

Acknowledgments

We thank Jianjun Chen, Jian Xu, Shuchao Wang, and Dongsheng Miao, for the assistance in sampling and sample measurement. This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB15010401 and XDB15010403) and the National Natural Science Foundation of China (31170433 and 31307337).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhihong Xu or Xingguo Han.

Additional information

Responsible editor: Yanfen Wang

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ning, Q., Gu, Q., Shen, J. et al. Effects of nitrogen deposition rates and frequencies on the abundance of soil nitrogen-related functional genes in temperate grassland of northern China. J Soils Sediments 15, 694–704 (2015). https://doi.org/10.1007/s11368-015-1061-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-015-1061-2

Keywords

Navigation