Skip to main content

Advertisement

Log in

Vertical distributions of 137Cs in soils: a meta-analysis

  • SOILS, SEC 2 • GLOBAL CHANGE, ENVIRON RISK ASSESS, SUSTAINABLE LAND USE • RESEARCH ARTICLE
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

The vertical distribution of 137Cs—an artificial fallout radionuclide—is controlled by soil characteristics and processes that may differ among soil groups. The application of a single modelling approach to large number of soil profiles provides an original contribution to the literature and allows for comparison between these different soil groups.

Materials and methods

In order to quantify 137Cs migration in soils, we compiled and modelled depth-distributed data documented in the literature published before 2013. The resulting database comprised ninety-nine 137Cs profiles sampled in 14 soil groups of the World Reference Base (WRB) classification (FAO 1998) under different land uses or covers and collected at various geographical locations in the Northern hemisphere between 1992 and 2007.

Results and discussion

The 137Cs profiles were classified in seven different categories according to the shape and location of radiocaesium peak. Depth of the latter ranged between 0 and 12 cm (median of 2 cm) and maximal penetration of cesium reached from 12 to 60 cm. The 137Cs depth distributions in these soils were fitted using a diffusion-convection equation to allow comparison between different soil groups. Diffusion coefficients ranged from 0.02 to 4.44 cm2 years−1 in soils (median of 0.64 cm2 year−1), and convection velocities varied from 0 to 0.74 cm year−1 (median of 0.1 cm year−1). The model underestimated 137Cs concentrations by a median value of 1.9 % of the total inventory in soil samples collected below a 13-cm depth.

Conclusions

Global 137Cs penetration velocities ranged from 0.05 to 0.76 cm year−1 (median of 0.28 cm year−1) over a 25-year period. Our results showed that modelling 137Cs depth profile with a diffusion-convection equation allowed estimating the bioturbation and clay translocation velocity in a certain number of soil groups. This quantification is crucial as these processes partially control the development of soil surface characteristics and several soil services.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • AIEA (2010) Handbook of parameter values for the prediction of radionuclide transfer in terrestrial and freshwater environments. Technical Reports SeriEs No. 472. International Atomic Energy Agency

  • Alexakhin RM, Krouglov SV (2001) Soil as the main compartment for radioactive substances in terrestrial ecosystems. In: Bréchignac F, Howard BJ (eds) Radioactive pollutants. Impact on the environment, EDP Sciences, Les Ulis, France, pp 149–174

    Google Scholar 

  • Al-Masri M (2006) Vertical distribution and inventories of Cs-137 in the Syrian soils of the eastern Mediterranean region. J Environ Radioact 86:187–198

    Article  CAS  Google Scholar 

  • Aoyama M, Hirose K, Igarashi Y (2006) Re-construction and updating our understanding on the global weapons test 137Cs fallout. J Environ Monit 8:431–438

    Article  CAS  Google Scholar 

  • Ben Slimane A, Raclot D, Evrard O, Sanaa M, Lefèvre I, Ahmadi M, Tounsi M, Rumpel C, Ben Mammou A, Le Bissonnais Y (2013) Fingerprinting sediment sources in the outlet reservoir of a hilly cultivated catchment of Tunisia. J Soils Sediments 13:801–815

    Article  CAS  Google Scholar 

  • Bockheim J, Gennadiyev A (2000) The role of soil-forming processes in the definition of taxa in soil taxonomy and the world soil reference base. Geoderma 95:53–72

    Article  Google Scholar 

  • Bossew P, Kirchner G (2004) Modelling the vertical distribution of radionuclides in soil. Part 1: the convection–dispersion equation revisited. J Environ Radioact 73:127–150

    Article  CAS  Google Scholar 

  • Bundt M, Albrecht A, Froidevaux P, Blaser P, Flühler H (2000) Impact of preferential flow on radionuclide distribution in soil. Environ Sci Tech 34:3895–3899

    Article  CAS  Google Scholar 

  • Bunzl K (2002) Transport of fallout radiocesium in the soil by bioturbation: a random walk model and application to a forest soil with a high abundance of earthworms. Sci Total Environ 293:191–200

    Article  CAS  Google Scholar 

  • Bunzl K, Kracke W, Schimmack W, Zelles L (1998) Forms of fallout Cs-137 and Pu239 + 240 in successive horizons of a forest soil. J Environ Radioact 39:55–68

    Article  CAS  Google Scholar 

  • Bunzl K, Schimmack W, Zelles L, Albers B (2000) Spatial variability of the vertical migration of fallout Cs-137 in the soil of a pasture, and consequences for long-term predictions. Radiat Environ Biophys 39:197–205

    Article  CAS  Google Scholar 

  • Cambray RS, Playford K, Lewis G, Carpenter R (1989) Radioactive fallout in air and rain: results to the end of 1988. Environmental and Medical Sciences Division, United Kingdom Atomic Energy Authority

    Google Scholar 

  • Chartin C, Evrard O, Onda Y, Patin J, Lefèvre I, Ayrault S, Lepage H, Bonté P (2013) Tracking the early dispersion of contaminated sediment along rivers draining the Fukushima radioactive pollution plume. Anthropocene 1:23–34

    Article  Google Scholar 

  • Cremers A, Elsen A, Depreter P, Maes A (1988) Quantitative-analysis of radiocesium retention in soils. Nat 335:247–249

    Article  CAS  Google Scholar 

  • De Cort M, Dubois G, Fridman SD, Germenchuk MG, Izrael YA, Janssens A, Jones AR, Kelly GN, Kvasnikova EV, Matveenko II, Nazarov IM, Pokumeiko YM, Sitak VA, Stukin ED, Tabachnyi LY, Tsaturov YS, Avdyushin SI (1996) Atlas of caesium deposition on Europe after the Chernobyl accident. EUR Report 16733, EC. Office for Official Publications of the European Communities, Luxembourg

    Google Scholar 

  • De Vos B, Van Meirvenne M, Quataert P, Deckers J, Muys B (2005) Predictive quality of pedotransfer functions for estimating bulk density of forest soils. Soil Sci Soc Am J 69:500–510

    Article  Google Scholar 

  • Elshamy M, Mathias S, Butler A (2007) Demonstration of radionuclide transport modelling under field conditions: 50-year simulation of caesium migration in soil. Tech. Rep. Imperial/ NRP_016, United Kingdom Nirex Limited

  • Elzein A, Balesdent J (1995) Mechanistic simulation of vertical distribution of carbon concentrations and residence times in soils. Soil Sci Soc Am J 59:1328–1335

    Article  CAS  Google Scholar 

  • FAO (1998) World reference base for soil resources. World Soil Resources Rep. 84, Rome

    Google Scholar 

  • Gallagher D, McGee E, Mitchell P (2001) A recent history of C-14, Cs-137, Pb-210, and Am-241 accumulation at two Irish peat bog sites: An east versus west coast comparison. Radiocarbon 43:517–525

    CAS  Google Scholar 

  • Gil-Garcia C, Rigol A, Vidal M (2009) New best estimates for radionuclide solid liquid distribution coefficients in soils. Part 1: radiostrontium and radiocaesium. J Environ Radioact 100:690–696

    Article  CAS  Google Scholar 

  • He Q, Walling D (1997) The distribution of fallout Cs-137 and Pb-210 in undisturbed and cultivated soils. App Radiat Isot 48:677–690

    Article  CAS  Google Scholar 

  • Ireson M, Butler A (2009) A review of soil bioturbation and soil development. Tech. Rep. Imperial/NRP_018, United Kingdom Nirex Limited

  • Isaksson M, Erlandsson B, Mattsson S (2001) A 10-year study of the Cs-137 distribution in soil and a comparison of Cs soil inventory with precipitation-determined deposition. J Environ Radioact 55:47–59

    Article  CAS  Google Scholar 

  • Jarvis NJ, Taylor A, Larsbo M, Etana A, Rosen K (2010) Modelling the effects of bioturbation on the re-distribution of 137Cs in an undisturbed grassland soil. Eur J Soil Sci 61:24–34

    Article  CAS  Google Scholar 

  • Karadeniz O, Yaprak G (2008) Geographical and vertical distribution of radiocesium levels in coniferous forest soils in Izmir. J Radioanal Nucl Chem 277:567–577

    Article  CAS  Google Scholar 

  • Kaste JM, Heimsath AM, Bostick BC (2007) Short-term soil mixing quantified with fallout radionuclides. Geol 35:243–246

    Article  Google Scholar 

  • Kirchner G (1998) Applicability of compartmental models for simulating the transport of radionuclides in soil. J Environ Radioact 38:339–352

    Article  CAS  Google Scholar 

  • Konoplev A, Bulgakov A, Popov V, Hilton J, Comans R (1996) Long-term investigation of Cs-137 fixation by soils. Radiat Prot Dosim 64:15–18

    Article  CAS  Google Scholar 

  • Korsakissok I, Mathieu A, Didier D (2013) Atmospheric dispersion and ground deposition induced by the Fukushima nuclear power plant accident: a local-scale simulation and sensitivity study. Atmos Environ 70:267–279

    Article  CAS  Google Scholar 

  • Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World map of the Koppen Geiger climate classification updated. Meteorol Z 15(3):259–263

    Article  Google Scholar 

  • Krstic D, Nikezic D, Stevanovic N, Jelic M (2004) Vertical profile of 137Cs in soil. App Radiat Isot 61:1487–1492

    Article  CAS  Google Scholar 

  • Kruse-Irmer S, Giani L (2003) Vertical distribution and bioavailability of Cs-137 in organic and mineral soils. J Plant Nutr Soil Sci 166:635–641

    Article  CAS  Google Scholar 

  • Legarda F, Romero LM, Herranz M, Barrera M, Idoeta R, Valino F, Olondo C, Caro A (2011) Inventory and vertical migration of Cs-137 in Spanish mainland soils. J Environ Radioact 102:589–597

    Article  CAS  Google Scholar 

  • Mabit L, Benmansour M, Walling DE (2008) Comparative advantages and limitations of the fallout radionuclides Cs-137, Pb-210(ex) and Be-7 for assessing soil erosion and sedimentation. J Environ Radioactiv 99:1799–1807

    Article  CAS  Google Scholar 

  • Matisoff G, Ketterer ME, Rosen K, Mietelski JW, Vitko LF, Persson H, Lokas E (2011) Downward migration of Chernobyl-derived radionuclides in soils in Poland and Sweden. Appl Geochem 26:105–115

    Article  CAS  Google Scholar 

  • Milton G, Kramer S, Watson W, Kotzer T (2001) Qualitative estimates of soil disturbance in the vicinity of CANDU stations, utilizing measurements of Cs-137 and Pb- 210 in soil cores. J Environ Radioact 55:195–205

    Article  CAS  Google Scholar 

  • Müller-Lemans H, van Dorp F (1996) Bioturbation as a mechanism for radionuclide transport in soil: relevance of earthworms. J Environ Radioact 31:7–20

    Article  Google Scholar 

  • Parsons AJ, Foster IDL (2011) What can we learn about soil erosion from the use of 137Cs? Earth-Sci Rev 108:101–113

    Article  CAS  Google Scholar 

  • Quénard L, Samouelian A, Laroche B, Cornu S (2011) Lessivage as a major process of soil formation: a revisitation of existing data. Geoderma 167–168:135–147

    Article  Google Scholar 

  • Ritchie JC, Ritchie CA (2007) Bibliography of publications of 137cesium studies related to erosion and sediment deposition. Tech. rep., USDA Agricultural Research Service

  • Rosén K, Öborn I, Lönsjö H (1999) Migration of radiocaesium in Swedish soil profiles after the Chernobyl accident, 1987–1995. J Environ Radioact 46:45–66

    Article  Google Scholar 

  • Sawhney B (1972) Selective sorption and fixation of cations by clay minerals: a review. Clays Clay Miner 20:93–100

    Article  CAS  Google Scholar 

  • Schiffers K, Teal LR, Travis JMJ, Solan M (2011) An open source simulation model for soil and sediment bioturbation. PLoS ONE 6:e28028

    Article  CAS  Google Scholar 

  • Schimmack W, Márquez FF (2006) Migration of fallout radiocaesium in a grassland soil from 1986 to 2001. Part II: evaluation of the activity-depth profiles by transport models. Sci Total Environ 368:863–874

    Article  CAS  Google Scholar 

  • Schimmack W, Schultz W (2006) Migration of fallout radiocaesium in a grassland soil from 1986 to 2001—part I: activity-depth profiles of Cs-134 and Cs-137. Sci Total Environ 368:853–862

    Article  CAS  Google Scholar 

  • Schuller P, Ellies A, Kirchner G (1997) Vertical migration of fallout Cs-137 in agricultural soils from Southern Chile. Sci Total Environ 193:197–205

    Article  CAS  Google Scholar 

  • Schuller P, Bunzl K, Voigt G, Ellies A, Castillo A (2004) Global fallout Cs-137 accumulation and vertical migration in selected soils from South Patagonia. J Environ Radioactiv 71:43–60

    Article  CAS  Google Scholar 

  • Sigurgeirsson MA, Arnalds O, Palsson SE, Howard BJ, Gudnason K (2005) Radiocaesium fallout behaviour in volcanic soils in Iceland. J Environ Radioact 79:39–53

    Article  CAS  Google Scholar 

  • Smith JT, Elder DG (1999) A comparison of models for characterizing the distribution of radionuclides with depth in soils. Eur J Soil Sci 50:295–307

    Article  CAS  Google Scholar 

  • Soil Survey Staff (1999) Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys, 2nd edn. US Department of Agriculture, Agriculture Handbook, N° 436, Washington

    Google Scholar 

  • Szerbin P, Koblinger-Bokori E, Koblinger L, Vegvari I, Ugron A (1999) Caesium- 137 migration in Hungarian soils. Sci Total Environ 227:215–227

    Article  CAS  Google Scholar 

  • Tamura T, Jacobs D (1960) Structural implications in cesium sorption. Health Phys 2:391–398

    Article  CAS  Google Scholar 

  • Turner NB, Ryan JN, Saiers JE (2006) Effect of desorption kinetics on colloid facilitated transport of contaminants: cesium, strontium, and illite colloids. Water Resour Res 42:W12S09

    Article  Google Scholar 

  • Tyler A, Carter S, Davidson D, Long D, Tipping R (2001) The extent and significance of bioturbation on Cs-137 distributions in upland soils. Catena 43:81–99

    Article  CAS  Google Scholar 

  • UNSCEAR (1982) Ionizing radiation: sources and biological effects report to the general assembly, with annexes. Tech. rep., United Nations, New York

  • Vandebroek L, Van Hees M, Delvaux B, Spaargaren O, Thiry Y (2012) Relevance of radiocaesium interception potential (RIP) on a worldwide scale to assess soil vulnerability to 137Cs contamination. J Environ Radioact 104:87–93

    Article  CAS  Google Scholar 

  • VandenBygaart A, Protz R, Tomlin A, Miller J (1998) Cs-137 as an indicator of earthworm activity in soils. Appl Soil Ecol 9:167–173

    Article  Google Scholar 

  • Wilkinson MT, Richards PJ, Humphreys GS (2009) Breaking ground: pedological, geological, and ecological implications of soil bioturbation. Earth Sci Rev 97:257–272

    Article  Google Scholar 

  • Zhang X, Qi Y, Walling DE, He X, Wen A, Fu J (2006) A preliminary assessment of the potential for using Pb-210(ex) measurement to estimate soil redistribution rates on cultivated slopes in the Sichuan hilly basin of China. Catena 68:1–9

    Article  Google Scholar 

  • Zhang X, Long Y, He X, Fu J, Zhang Y (2008) A simplified (CS)-C-137 transport model for estimating erosion rates in undisturbed soil. J Environ Radioactiv 99:1242–1246

    Article  CAS  Google Scholar 

  • Zheng JJ, He XB, Walling D, Zhang XB, Flanagan D, Qi YQ (2007) Assessing soil erosion rates on manually-tilled hillslopes in the Sichuan hilly basin using Cs-137 and Pb-210(ex) measurements. Pedosphere 17:273–283

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Jérôme Balesdent for his helpful advises, as well to Dr. Frédéric Golay, Dr. Cédric Galusinski and Dr. Gloria Faccanoni for their help with model simulations. We thank the French Research Agency (ANR) that funded the Agriped project (ANR 10 Blanc 605). M. Jagercikova received a PhD fellowship from the French National Institute of Agronomy (INRA). We are also grateful to Dr. Luise Giani, Dr. Gwen Milton, Dr. Concepción Olondo Castro and Dr. Klas Rosén for kindly providing their soil datasets and additional information regarding their studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie Cornu.

Additional information

Responsible editor: Ying Ouyang

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLS 82 kb)

ESM 2

(PDF 1323 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jagercikova, M., Cornu, S., Le Bas, C. et al. Vertical distributions of 137Cs in soils: a meta-analysis. J Soils Sediments 15, 81–95 (2015). https://doi.org/10.1007/s11368-014-0982-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-014-0982-5

Keywords

Navigation