Skip to main content

Advertisement

Log in

Modeling sediment sources and yields in a Pyrenean catchment draining to a large reservoir (Ésera River, Ebro Basin)

  • SEDIMENTS, SEC 3 • HILLSLOPE AND RIVER BASIN SEDIMENT DYNAMICS • RESEARCH ARTICLE
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

The study aimed to use the Soil and Water Assessment Tool (SWAT) model to simulate erosion processes in an alpine–prealpine catchment in order to provide data and information that may be relevant for managers so as to minimize reservoir siltation and water quality degradation. The main objective was to assess sediment production across the catchment and sediment supply to the main reservoir.

Materials and methods

The Barasona reservoir catchment (1,509 km2) is located in the Central Spanish Pyrenees, in the Ebro Basin. This catchment was selected for the case study given the regional significance of the Barasona reservoir and its siltation problems. The catchment has a mountain climate, with strong altitudinal and north–south gradients. The catchment is characterized by heterogeneous topography and lithology, resulting in a varied mosaic of slopes, soil types, and land covers. The Jueu karst system and two small headwater reservoirs were parameterized and calibrated in the model. The SWAT model sediment calibration for the catchment was based on a prior monthly hydrologic calibration, and the model validation was based on the sediment depositional history of the Barasona reservoir.

Results and discussion

The simulation period (2003–2006) and the validation period (1993–2002) produced average sediment yields to the reservoir of 643,000 and 575,000 t year−1, respectively. Large variations in sediment production were found between the subcatchments in the Barasona catchment due to differences in rock outcrops, land cover, and slope gradient. Sediment loss in the Jueu karst system was 15,500 t and the two small headwater reservoirs retained 31,200 and 50,300 t. Sediment production in relation to precipitation showed high temporal variability, with specific sediment yields to the Barasona reservoir ranging from 2.74 to 8.25 t ha−1 year−1. Strong lithological control was observed for sediment production in the subcatchments. The main sediment sources were located in the badlands developed on marls in the middle part of the catchment (internal depressions).

Conclusions

The proposed model has proved useful for identifying areas where significant erosion processes take place in large alpine–prealpine catchments at a regional level and also for assessing discharge losses by the karst system and the sedimentary role of the small reservoirs. The information obtained through this research will be of interest in assessing the spatial distribution of sediment sources and areas of high sediment yield, which will be useful to establish criteria for remediation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbaspour KC, Yang J, Maximov I, Siber R, Bogner K, Mieleitner J, Zobrist J, Srinivasan R (2007) Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J Hydrol 333:413–430

    Article  Google Scholar 

  • Alatorre LC, Beguería S, García-Ruiz JM (2010) Regional scale modeling of hillslope sediment delivery: a case study in the Barasona Reservoir watershed (Spain) using WATEM/SEDEM. J Hydrol 391:109–123

    Article  Google Scholar 

  • Almorox J, De Antonio R, Saa A, Cruz Díaz M, Gasco JM (1994) Métodos de estimación de la erosión hídrica. Agrícola Española, Madrid, Spain

    Google Scholar 

  • Arnold JG, Srinivasan R, Muttiah RS, Williams JR (1998) Large area hydrologic modelling and assessment part I: model development. J Am Water Resour Assoc 34:73–89

    Article  CAS  Google Scholar 

  • Avendaño-Salas C, Sanz-Montero E, Cobo-Rayán R, Gómez-Montaña JL (1997) Sediment yield at Spanish reservoirs and its relationship with the drainage basin area. In: Proceedings of the 19th Symposium of Large Dams. ICOLD (International Committee on Large Dams), Florence, Italy, pp 863–874

  • Batalla RJ, Gómez CM, Kondolf GM (2004) Reservoir-induced hydrological changes in the Ebro River basin (NE Spain). J Hydrol 290:117–136

    Article  Google Scholar 

  • Batalla RJ, Vericat D (2011) An appraisal of the contemporary sediment yield in the Ebro Basin. J Soils Sediments 11:1070–1081

    Article  Google Scholar 

  • Brune GM (1953) Trap efficiency of reservoirs. Trans Am Geophys Union 34:407–418

    Article  Google Scholar 

  • Corine Land Cover (2000) Available at http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-clc2000-100-m-version-12-2009

  • Flynn KF, Van Liew MW (2011) Evaluation of SWAT for sediment prediction in a mountainous snowmelt-dominated catchment. Trans ASABE 54:113–122

    Article  Google Scholar 

  • Fontaine TA, Cruickshank TS, Arnold JG, Hotchkiss RH (2002) Development of a snowfall-snowmelt routine for mountainous terrain for the Soil Water Assessment Tool (SWAT). J Hydrol 262:209–223

    Article  Google Scholar 

  • Francke T, López-Tarazón JA, Vericat D, Bronstert A, Batalla RJ (2008) Flood-based analysis of high-magnitude sediment transport using a non-parametric method. Earth Surf Process Landf 33:2064–2077

    Article  Google Scholar 

  • Garbrecht JD, Garbrecht GKH (2004) Siltation behind dams in antiquity. In: Rogers JR, Brown GO, Garbrecht JD (eds) Water resources and environmental history. ASCE, Reston, USA, pp 35–43

    Chapter  Google Scholar 

  • García-Ruiz JM, Valero-Garcés BL (1998) Historical geomorphic processes and human activities in the Central Spanish Pyrenees. Mt Res Dev 18:309–320

    Article  Google Scholar 

  • García-Ruiz JM, Beguería S, López-Moreno JI, Lorente A, Seeger M (2001) Los recursos hídricos superficiales del Pirineo aragonés y su evolución reciente. Geoforma Ediciones, Logroño, Spain

    Google Scholar 

  • Gassman PW, Reyes MR, Green CH, Arnold JG (2007) The Soil and Water Assessment Tool: historical development and future research directions. Trans ASABE 50:1211–1250

    Article  CAS  Google Scholar 

  • Gikas GD, Yiannakopoulou T, Tsihrintzis VA (2006) Modeling of non-point source pollution in a Mediterranean drainage basin. Environ Model Assess 11:219–233

    Article  Google Scholar 

  • Heinemann HG (1981) A new sediment trap efficiency curve for small reservoirs. Water Resour Bull 17:825–830

    Article  Google Scholar 

  • López-Moreno JI, Beguería S, García-Ruiz JM (2002) El régimen del río Ésera, Pirineo Aragonés, y su tendencia reciente. Bol Glaciol Aragon 3:131–162

    Google Scholar 

  • López-Tarazón JA, Batalla RJ, Vericat D, Francke T (2009) Suspended sediment transport in a highly erodible catchment: the river Isábena (Central Pyrenees). Geomorphology 109:210–221

    Article  Google Scholar 

  • López-Tarazón JA, Batalla RJ, Vericat D, Francke T (2012) The sediment budget of a highly dynamic mesoscale catchment: the River Isábena. Geomorphology 138:15–28

    Article  Google Scholar 

  • López-Vicente M, Lana-Renault N, García-Ruiz JM, Navas A (2011) Assessing the potential effect of different land cover management practices on sediment yield from an abandoned farmland catchment in the Spanish Pyrenees. J Soils Sediments 11:1440–1455

    Article  Google Scholar 

  • Mamede GL, Bronstert A, Francke T, Müller EN, De Araujo JC, Batalla RJ, Güntner A (2006) 1D process-based modelling of reservoir sedimentation: a case study for the Barasona Reservoir in Spain. In: Rui MLF, Alves ECTL, Leal JGAB, Cardoso AH (eds) Proceedings of the International Conference on Fluvial Hydraulics - River Flow 2006, Taylor and Francis, London, UK, Vol. 2, pp 1585-1594

  • Martínez-Casasnovas JA, Poch RM (1998) Estado de conservación de los suelos de la cuenca del embalse Joaquín Costa. Limnetica 14:83–91

    Google Scholar 

  • Molino B, Viparelli R, De Vincenzo A (2007) Effects of river network works and soil conservation measures on reservoir siltation. Int J Sediment Res 22:273–281

    Google Scholar 

  • Morellón M, Valero-Garcés BL, González-Sampériz P, Vegas-Vilarrúbia T, Rubio E, Rieradevall M, Delgado-Huertas A, Mata P, Romero O, Engstrom DR, López-Vicente M, Navas A, Soto J (2011) Climate changes and human activities recorded in the sediments of Lake Estanya (NE Spain) during the Medieval Warm Period and Little Ice Age. J Paleolimnol 46:423–452

    Article  Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I—a discussion of principles. J Hydrol 10:282–290

    Article  Google Scholar 

  • Navas A, García-Ruiz JM, Machín J, Lasanta T, Walling D, Quine T, Valero B (1997) Soil erosion on dry farming land in two changing environments of the central Ebro Valley, Spain. In: Walling DE, Probst JL (eds) Human impact on erosion and sedimentation. IAHS Publ 245, IAHS Press, Wallingford, UK, pp 13–20

    Google Scholar 

  • Navas A, Valero B, Machín J, Walling D (1998) Los sedimentos del embalse de Joaquín Costa y la historia de su depósito. Limnetica 14:93–112

    Google Scholar 

  • Navas A, Valero-Garcés BL, Machín J (2004) An approach to integrated assessment of reservoir siltation: the Joaquín Costa reservoir as a case study. Hydrol Earth Syst Sci 8:1193–1199

    Article  CAS  Google Scholar 

  • Navas A, Valero-Garcés BL, Gaspar L, Machín J (2009) Reconstructing the history of sediment accumulation in the Yesa reservoir: an approach for management of mountain reservoirs. Lake Reserv Manage 25:15–27

    Article  Google Scholar 

  • Navas A, Valero-Garcés BL, Gaspar L, Palazón L, Machín J (2011) Radionuclides and stable elements in the sediments of the Yesa reservoir (Central Spanish Pyrenees). J Soils Sediments 11:1082–1098

    Article  CAS  Google Scholar 

  • Neitsch SL, Arnold JG, Kiniry JR, Srinivasan R, Williams JR (2010) Soil and Water Assessment Tool input/output file documentation: Version 2009 USDA. Soil and Water Research Laboratory/Blackland Research Center, Texas, USA

  • Olivera F, Valenzuela M, Srinivasan R, Choi J, Cho H, Koka S, Agrawal A (2006) ArcGIS-SWAT: a geodata model and GIS interface for SWAT. J Am Water Resour Assoc 42:295–309

    Article  Google Scholar 

  • Palazón L, Navas A (2011) Application and validation of SWAT model to an alpine catchment in the Central Spanish Pyrenees. In: Kiniry D, Smith C, Srinivasan R (eds) 2011 International SWAT Conference—Conference Proceedings. Toledo, USA, pp 162-172

  • Palazón L, Navas A (2013) Sediment production of an alpine catchment with SWAT. Z Geomorphol 57:69–85

    Article  Google Scholar 

  • Rahman K, Maringanti C, Beniston M, Widmer F, Abbaspour K, Lehman A (2013) Streamflow modeling in a highly managed mountainous glacier watershed using SWAT: the Upper Rhone River watershed case in Switzerland. Water Resour Manag 27:323–339

    Google Scholar 

  • Rijckborst H (1967) Hydrology of the Upper Garonne basin (Valle de Arán, Spain). Leidse Geol Meded 40:1–74

    Google Scholar 

  • Rostamian R, Jaleh A, Afyuni M, Mousavi SF, Heidarpour M, Jalalian A, Abbaspour KC (2008) Application of a SWAT model for estimating runoff and sediment in two mountainous basins in central Iran. Hydrol Sci J 53:977–988

    Article  Google Scholar 

  • Stratton BT, Sridhar V, Gribb MM, McNamara JP, Narasimhan B (2009) Modeling the spatially varying water balance processes in a semi-arid mountainous watershed of Idaho. J Am Water Resour Assoc 45:1390–1408

    Article  Google Scholar 

  • SWAT (2011) Soil and Water Assessment Tool: SWAT model software. US Department of Agriculture-Agricultural Research Service, Grassland, Soil & Water Research Laboratory, Temple, Texas, USA, Available at: http://swatmodel.tamu.edu/software/swat-model/

    Google Scholar 

  • Valero-Garcés BL, Navas A, Machín J, Walling D (1999) Sediment sources and siltation in mountain reservoirs: a case study from the Central Spanish Pyrenees. Geomorphology 28:23–41

    Article  Google Scholar 

  • Vicente-Serrano SM, Beguería S, López-Moreno JI, García-Vera MA, Stepanek P (2009) A complete daily rainfall database for north-east Spain: reconstruction, quality control and homogeneity. Int J Climatol 30:1146–1163

    Article  Google Scholar 

  • Verdú JM, Batalla RJ, Martínez-Casasnovas JA (2006a) Estudio hidrológico de la cuenca del río Isábena (Cuenca del Ebro) I: Variabilidad de la precipitación. Ing Agua 13:321–330

    Google Scholar 

  • Verdú JM, Batalla RJ, Martínez-Casasnovas JA (2006b) Estudio hidrológico de la cuenca del río Isábena (Cuenca del Ebro) II: Respuesta hidrológica. Ing Agua 13:331–344

    Google Scholar 

  • Williams JR (1995) Chapter 25: The EPIC model. In: Singh VP (ed) Computer models of watershed hydrology. Water Resources Publications, Highland Ranch, Colorado, USA, pp 909–1000

  • Yu M, Chen X, Li L, Bao A, de la Paix MJ (2011) Streamflow simulation by SWAT using different precipitation sources in large arid basins with scarce raingauges. Water Resour Manag 25:2669–2681

    Google Scholar 

  • Zhang X, Srinivasan R, Debele B, Hao F (2008) Runoff simulation of the headwaters of the Yellow River using the SWAT model with three snowmelt algorithms. J Am Water Resour Assoc 44:48–61

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the project EROMED (CGL2011-25486).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leticia Palazón.

Additional information

Responsible editor: Marcel van der Perk

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 18.2 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palazón, L., Navas, A. Modeling sediment sources and yields in a Pyrenean catchment draining to a large reservoir (Ésera River, Ebro Basin). J Soils Sediments 14, 1612–1625 (2014). https://doi.org/10.1007/s11368-014-0911-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-014-0911-7

Keywords

Navigation