Skip to main content

Advertisement

Log in

Mercury volatilization from a floodplain soil during a simulated flooding event

  • SOILS, SEC 3 • REMEDIATION AND MANAGEMENT OF CONTAMINATED OR DEGRADED LANDS • RESEARCH ARTICLE
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Middle-European floodplain soils are often contaminated with mercury (Hg) and periodically flooded. In this study, the influence of a flooding event and subsequent dewatering on the volatilization of elemental Hg and methylated species was investigated in a laboratory experiment.

Material and methods

Undisturbed soil cores were taken from a topsoil (12.1 ± 0.75 mg kg−1 Hg) at the Elbe River in Lower Saxony, Germany. Soil columns were incubated at 20 °C with varying soil moisture (water-saturated for 2 weeks, 95 and 90 % water content for 1 week each), and the redox potential (EH) was recorded. The gaseous Hg that accumulated in the headspace of the flux chamber of the columns was pumped over cooled traps filled with adsorber material and analyzed by gas chromatography/inductively coupled plasma mass spectrometry for the various Hg species.

Results and discussion

The watering of the soil resulted in a rapid decrease in the EH and the achievement of strongly reducing conditions (EH < −100 mV). Mercury concentrations of the pore waters decreased continuously from 68.3 μg L−1 Hg at the beginning to 5.78 μg L−1 Hg at the end of the experiment. Species analyses revealed that exclusively elemental Hg volatilized. The volatilization rate was between 1.73 and 824 ng m−2 h−1 Hg, which is consistent with other studies at the Elbe River.

Conclusions

Even when flooded for a longer period of time, floodplain soils should show neither emission of methylated Hg nor exceptionally high volatilization of elemental Hg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alberts JJ, Schindler JE, Miller RW, Nutter DE (1974) Elemental mercury evolution mediated by humic acid. Science 184:895–897

    Article  CAS  Google Scholar 

  • Allard B, Arsenie I (1991) Abiotic reduction of mercury by humic substances in aquatic system—an important process for the mercury cycle. Water Air Soil Pollut 56:457–464

    Article  CAS  Google Scholar 

  • Bahlmann E, Ebinghaus R, Ruck W (2006) Development and application of a laboratory flux measurement system (LFMS) for the investigation of the kinetics of mercury emissions from soils. J Environ Manag 81:114–125

    Article  CAS  Google Scholar 

  • Barkay T, Miller SM, Summers AO (2003) Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol Rev 23:355–384

    Article  Google Scholar 

  • Bartlett RJ, James BR (1993) Redox chemistry of soils. Adv Agron 50:151–208

    Article  CAS  Google Scholar 

  • Bloom NS, Preus E, Katon J, Hiltner M (2003) Selective extractions to assess the biogeochemically relevant fractionation of inorganic mercury in sediments and soils. Anal Chim Acta 479:233–248

    Article  CAS  Google Scholar 

  • Böhme F, Rinklebe J, Stark HJ, Mothes S, Neue HU (2005) A simple field method to determine mercury volatilization from soils. Environ Sci Pollut Res 12:133–135

    Article  Google Scholar 

  • Canario J, Branco V, Vale C (2007) Seasonal variation of monomethylmercury concentrations in surface sediments of the Tagus Estuary (Portugal). Environ Pollut 148:380–383

    Article  CAS  Google Scholar 

  • Choi H-D, Holsen TM (2009) Gaseous mercury emissions from unsterilized and sterilized soils: the effect of temperature and UV radiation. Environ Pollut 157:1673–1678

    Article  CAS  Google Scholar 

  • Cobos DR, Baker JM, Nater EA (2002) Conditional sampling for measuring mercury vapor fluxes. Atmos Environ 36:4309–4321

    Article  CAS  Google Scholar 

  • Costa M, Liss PS (1999) Photoreduction of mercury in sea water and its possible implications for Hg0 air-sea fluxes. Mar Chem 68:87–95

    Article  CAS  Google Scholar 

  • Costa M, Liss PS (2000) Photoreduction and evolution of mercury from seawater. Sci Total Environ 261:125–135

    Article  CAS  Google Scholar 

  • Counter SA, Buchanan LH (2004) Mercury exposure in children: a review. Toxicol Appl Pharmacol 198:209–230

    Article  CAS  Google Scholar 

  • Devai I, Patrick WH Jr, Neue H-U, DeLaune RD, Kongchum M, Rinklebe J (2005) Methyl mercury and heavy metal content in soils of rivers Saale and Elbe (Germany). Anal Lett 38:1037–1048

    Article  CAS  Google Scholar 

  • Du Laing G, Rinklebe J, Vandecasteele B, Meers E, Tack FMG (2009) Trace metal behaviour in estuarine and riverine floodplain soils and sediments: a review. Sci Total Environ 407:3972–3985

    Article  Google Scholar 

  • During A, Rinklebe J, Bohme F, Wennrich R, Stark HJ, Mothes S, Du Laing G, Schulz E, Neue H-U (2009) Mercury volatilization from three floodplain soils at the central Elbe River, Germany. Soil Sediment Contam 18:429–444

    CAS  Google Scholar 

  • Fitzgerald WF, Lamborg CH, Hammerschmidt CR (2007) Marine biogeochemical cycling of mercury. Chem Rev 107:641–662

    Article  CAS  Google Scholar 

  • Fleming EJ, Mack EE, Green PG, Nelson DC (2006) Mercury methylation from unexpected sources: molybdate-inhibited freshwater sediments and an iron-reducing bacterium. Appl Environ Microbiol 72:457–464

    Article  CAS  Google Scholar 

  • Gilmour CC, Henry EA, Mitchell R (1992) Sulfate stimulation of mercury methylation in freshwater sediments. Environ Sci Technol 26:2281–2287

    Article  CAS  Google Scholar 

  • Gustin MS, Stamenkovic J (2005) Effect of watering and soil moisture on mercury emissions from soils. Biogeochemistry 76:215–232

    Article  CAS  Google Scholar 

  • GustinMS, EngleM, Ericksen J, Lyman S, Stamenkovic J, Xin M (2006) Mercury exchange between the atmosphere and low mercury con- taining substrates. Appl Geochem 21:1913–1923

  • Harmon SM, King JK, Gladden JB, Chandler GT, Newman LA (2004) Methylmercury formation in a wetland mesocosm amended with sulfate. Environ Sci Technol 38:650–656

    Article  CAS  Google Scholar 

  • Hintelmann H (2010) Organomercurials. Their formation and pathways in the environment. In: Sigel A, Sigel H, Sigel RKO (eds) Metal ions in life sciences, 7th edn. RSC Publishing, London

    Google Scholar 

  • Hintelmann H, Wilken RD (1995) Levels of total mercury and methylmercury compounds in sediments of the polluted Elbe River - influence of seasonally and spatially varying environmental factors. Sci Total Environ 166:1–10

  • Hippler J, Kresimon J, Hirner AV (2004) Volatile mercury species in environmental gases and biological samples. In: Hirner AV, Emons H (eds) Organic metal and metalloid species in the environment: analysis, distribution, processes and toxicological evaluation. Springer, Berlin, pp 113–136

    Chapter  Google Scholar 

  • Hirner AV, Hippler J (2011) Trace metal(loid)s (As, Cd, Cu, Hg, Pb, PGE, Sb, and Zn) and their species. In: Wilderer P (ed) Treatise on water science (3). Elsevier, Oxford, pp 31–57

    Chapter  Google Scholar 

  • Jonsson S, Skyllberg U, Björn E (2010) Substantial emission of gaseous monomethylmercury from contaminated water-sediment microcosms. Environ Sci Technol 44:278–283

    Article  CAS  Google Scholar 

  • Kerin EJ, Gilmour CC, Roden E, Suzuki MT, Coates JD, Mason RP (2006) Mercury methylation by dissimilatory iron reducing bacteria. Appl Environ Microbiol 72:7919–7921

    Article  CAS  Google Scholar 

  • King JK, Kostka JE, Frischer ME, Saunders FM (2000) Sulfate-reducing bacteria methylate mercury at variable rates in pure culture and in marine sediments. Appl Environ Microbiol 66:2430–2437

    Article  CAS  Google Scholar 

  • Kocman D, Horvat M, Kotnik J (2004) Mercury formation in cantaminated soils from the Idrija mercury mine region. J Environ Monit 6:696–703

    Article  CAS  Google Scholar 

  • LABO (2003) Hintergrundwerte für anorganische und organische Stoffe in Böden. https://www.labo-deutschland.de/documents/LABO-HGW-Text_4e3.pdf. Accessed 22 July 2013

  • Li ZG, Feng X, Li P, Liang L, Tang SL, Wang SF, Fu XW, Qiu GL, Shang LH (2010) Emissions of air-borne mercury from five municipal solid waste landfills in Guiyang and Wuhan, China. Atmos Chem Phys 10:3353–3364

    CAS  Google Scholar 

  • Lindberg SE, Zhang H, Gustin M, Vette A, Marsik F, Owens J, Casimir A, Ebinghaus R, Edwards G, Fitzgerald C, Kemp J, Kock HH, London J, Majewski M, Poissant L, Pilote M, Rasmussen P, Schaedlich F, Schneeberger D, Sommar J, Turner R, Wallschläger D, Xiao Z (1999) Increases in mercury emissions from desert soils in response to rainfall and irrigation. J Geophys Res 104:21879–21888

    Article  CAS  Google Scholar 

  • Liu G, Cabrera J, Allen M, Cai Y (2006) Mercury characterization in a soil sample collected nearby the DOE Oak Ridge Reservation utilizing sequential extraction and thermal desorption method. Sci Total Environ 369:384–392

    Article  CAS  Google Scholar 

  • Mansfeldt T (2003) In situ long-term redox potential measurements in a dyked marsh soil. J Plant Nutr Soil Sci 166:210–219

    CAS  Google Scholar 

  • Mehra OP, Jackson ML (1960) Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clay Clay Miner 7:317–327

    Article  Google Scholar 

  • Morel FMM, Kraepiel AML, Amyot M (1998) The chemical cycle and bioaccumulation of mercury. Annu Rev Ecol Syst 29:543–566

    Article  Google Scholar 

  • Overesch M, Rinklebe J, Broll G, Neue H-U (2007) Metals and arsenic in soils and corresponding vegetation at Central Elbe river floodplains (Germany). Environ Pollut 145:800–812

    Article  CAS  Google Scholar 

  • Rinklebe J, During A, Overesch M, Wennrich R, Stark HJ, Mothes S, Neue H-U (2008) Optimization of a simple field method to determine mercury volatilization from soils—examples of 13 sites in floodplain ecosystems at the Elbe River (Germany). Ecol Eng 35:319–328

    Article  Google Scholar 

  • Rinklebe J, During A, Overesch M, Du Laing G, Wennrich R, Stärk H-J, Mothes S (2010) Dynamics of mercury fluxes and their controlling factors in large Hg-polluted floodplain areas. Environ Pollut 158:308–318

    Article  CAS  Google Scholar 

  • Rogers RD (1979) Volatility of Hg from soils amended with various Hg compounds. Soil Sci Soc Am J 43:289–291

    Article  CAS  Google Scholar 

  • Rogers RD, McFarlane JC (1979) Factors influencing the volatilization of mercury from soil. J Environ Qual 8:255–260

    Article  CAS  Google Scholar 

  • Schlüter K (2000) Review: evaporation of mercury from soils. An integration and synthesis of current knowledge. Environ Geol 39:249–271

    Article  Google Scholar 

  • Schwertmann U (1964) Differenzierung der Eisenoxide des Bodens durch photochemische Extraction mit saurer Ammoniumoxalatlösung. Z Pflanzenernaehr Düng Bodenkd 105:194–202

    Article  CAS  Google Scholar 

  • Shi J, Liang L, Jiang G, Jin X (2005) The speciation and bioavailability of mercury in sediments of Haihe River, China. Environ Int 31:357–365

    Article  CAS  Google Scholar 

  • Song X, Van Heyst B (2005) Volatilization of mercury from soils in response to simulated precipitation. Atmos Environ 39:7494–7505

    Article  CAS  Google Scholar 

  • Wallschläger D, Hintelmann H, Evans RD, Wilken RD (1995) Volatilization of dimethylmercury and elemental mercury from river Elbe floodplain soils. Water Air Soil Pollut 80:1325–1329

    Article  Google Scholar 

  • Wallschläger D, Desai MVM, Wilken R-D (1996) The role of humic substances in the aqueous mobilization of mercury from contaminated floodplain soils. Water Air Soil Pollut 90:507–520

    Article  Google Scholar 

  • Wallschläger D, Kock HH, Schroeder WH, Lindberg SE, Ebinghaus R, Wilken RD (2000) Mechanism and significance of mercury volatilization from contaminated floodplains of the German River Elbe. Atmos Environ 34:3745–3755

    Article  Google Scholar 

  • Wallschläger D, Kock HH, Schroeder WH, Lindberg SE, Ebinghaus R, Wilken RD (2002) Estimating gaseous mercury emissions from contaminated floodplain soils to the atmosphere with simple field measurement techniques. Water Air Soil Pollut 135:39–54

    Article  Google Scholar 

  • Warner KA, Roden EE, Bonzongo J-C (2003) Microbial mercury transformation in anoxic freshwater sediments under iron-reducing and other electron-accepting conditions. Environ Sci Technol 37:2159–2165

    Article  CAS  Google Scholar 

  • Wasserman JC, Amouroux D, Wasserman MAV, Donard OFX (2002) Mercury speciation in sediments of a tropical coastal environment. Environ Technol 23:899–910

    Article  CAS  Google Scholar 

  • WRB, IUSS Working Group (2006) World reference base for soil resources. a framework for international classification, correlation and communication. World soil resources reports 103. FAO, Rome

    Google Scholar 

  • Yu X, Li H, Pan K, Yan Y, Wang WX (2012) Mercury distributionm speciation and bioavalability in sediments from the Pearl River Estuary, Southern China. Mar Pollut Bull 64:1699–1704

    Article  CAS  Google Scholar 

  • Zhang H, Lindberg SE (1999) Processes influencing the emission of mercury from soils: a conceptual model. J Geophys Res 104:21889–21896

    Article  CAS  Google Scholar 

  • Zhi-Guang L (1985) Oxidation-reduction potential. In: Tian-ren Y (ed) Physical chemistry of paddy soils, 1st edn. Springer, Berlin, pp 1–26

    Google Scholar 

Download references

Acknowledgments

This research was supported by the German Research Foundation (DFG) under the contract no. Ma 2143/9-1 and the RheinEnergieStiftung under the contract no. W-09-2-018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Mansfeldt.

Additional information

Responsible editor: Jianming Xu

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hindersmann, I., Hippler, J., Hirner, A.V. et al. Mercury volatilization from a floodplain soil during a simulated flooding event. J Soils Sediments 14, 1549–1558 (2014). https://doi.org/10.1007/s11368-014-0908-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-014-0908-2

Keywords

Navigation