Skip to main content
Log in

Mineralogy and nutrient desorption of suspended sediments during a storm event

  • SEDIMENTS, SEC 3 • HILLSLOPE AND RIVER BASIN SEDIMENT DYNAMICS • RESEARCH ARTICLE
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

This study investigated desorption of potassium (K) and phosphorus (P) from soil and river suspended sediments sampled during a storm event in a Brazilian watershed traditionally used for tobacco plantations.

Material and methods

Suspended sediment samples were collected automatically at the outlet of the watershed and were grouped into three phases: beginning (phase a), middle (phase b) and final stages (phase c) of the storm event. Granulometric and mineralogical characterisation of soils (0 to 0.20 m depth) and suspended sediments was determined, and K and P extractions were performed using a cation and anion exchange resin (CAER) membrane. A kinetic modelling approach was used to estimate the amount of K and P desorbed.

Results and discussion

Clay-sized (<2 μm) content of the soils were all <21 %. Kaolinite, smectite (partially with hydroxy-Al interlayer) and a small amount of illite were found in the clay fraction of the different soils. The clay-sized fractions in sediments of phases a, b and c of the storm event were 49, 52 and 72 %, respectively. Smectite (>90 %) and kaolinite (<10 %) were the dominant clay minerals in the suspended sediments. The values of labile P and potentially available P of suspended sediments were higher than those for soils. In sediments, the highest values of labile P (325 mg kg−1) and labile K (4,458 mg kg−1) were found in phase c and in phase a, respectively.

Conclusions

Particle size distribution and clay mineralogy of soils differed from those of suspended sediments collected during the storm event. By comparison with the watershed soils, suspended sediments collected during the storm event were enriched in fine particles composed mainly of smectite, and this may explain their P and K desorption behaviour. This suggests particle size and clay species selectivity processes during the transfer of sediment particles from soils to aquatic systems. The amounts of P and K desorbed from the suspended sediments in the three phases of the storm event were much larger than those desorbed from soils. This indicates that rainfall promoted the transfer of these nutrients to the watercourses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Barriuso E, Calvet R, Schiavon M, Soulas G (1996) Les pesticides et les polluants organiques des sols: transformations et dissipation. Étude et Gestion Sols 3:279–296

    Google Scholar 

  • Barrow NJ (1983) A mechanistic model for describing the sorption and desorption of phosphate by soil. J Soil Sci 34:733–750

    Article  CAS  Google Scholar 

  • Bortoluzzi EC, Moterle DF, Rheinheimer DS, Cassali CA, Melo GW, Brunetto G (2012) Mineralogical changes caused by grape production in a regosol from subtropical Brazilian climate. J Soils Sediments 12:854–862

    Article  CAS  Google Scholar 

  • Bortoluzzi EC, Rheinheimer DS, Gonçalves CS, Pellegrini JBR, Maroneze AM, Kurz MHS, Bacar NM, Zanella R (2007) Investigation of the occurrence of pesticide residues in rural wells and surface water following application to tobacco. Quím Nova 30:1872–1876

    Article  CAS  Google Scholar 

  • Bortoluzzi EC, Rheinheimer DS, Gonçalves CS, Pellegrini JBR, Zanella R, Copetti ACC (2006) Contaminação de águas superficiais por agrotóxicos em função do uso do solo numa microbacia hidrográfica de Agudo, RS. Rev Bras Eng Agríc Ambient 10:881–887

    Article  Google Scholar 

  • Bortoluzzi EC, Santos MAS, Villetti MA (2010) Sediment characterization. In: Poleto C, Charlesworth S (eds) Sedimentology of aqueous systems. Wiley-Blackwell, Hoboken, pp 80–107

    Chapter  Google Scholar 

  • Bortoluzzi EC, Velde B, Pernes M, Dur JC, Tessier D (2008) Vermiculite with hydroxy-aluminium interlayer and kaolinite formation in a subtropical sandy soil from south Brazil. Clay Min 43:155–163

    Article  Google Scholar 

  • Brassington J, Richards K (2000) Turbidity and suspended sediment dynamics in small catchments in the Nepal Middle Hills. Hydrol Process 14:2559–2574

    Article  Google Scholar 

  • Brindley GW, Brown G (1980) Crystal structures of clays minerals and their x-ray identification. Mineralogical Society, monograph no. 5, London, 495 pp

  • Carter DL, Heiman R, Gonzales CL (1965) Ethylene glycol monoethyl ether for determining surface area of silicate minerals. Soil Sci 100:356–360

    Article  CAS  Google Scholar 

  • Correll DL (1998) The role of phosphorus in the eutrophication of receiving waters: a review. J Environ Qual 27:261–266

    Article  CAS  Google Scholar 

  • Dalmolin RSD, Pedron FA, Azevedo AC, Zago A (2004) Levantamento semidetalhado de solos da microbacia do arroio Lino-Município de Agudo (RS). Santa Maria – RS, 2004, 84 pp

  • Golterman HL (2010) The chemistry of phosphate and nitrogen compounds in sediments. Kluwer, Dordrecht, p 251

    Google Scholar 

  • Hsieh YP (1984) Using clay mineralogy to infer sources of suspended clay and silt in a watershed: quantitative approach. Soil Sci Soc Am J 48:1446–1450

    Article  CAS  Google Scholar 

  • Hughes RE, Moore DM, Glass HD (1994) Qualitative and quantitative analysis of clay minerals in soils. In: Baterls JM (ed) Quantitative methods in soil mineralogy. Soil Science Society of America, Madison, pp 330–359

    Google Scholar 

  • Kaiser K, Guggenberger G (2003) Mineral surfaces and soil organic matter. Eur J Soil Science 53:219–236

    Article  Google Scholar 

  • Lanson B (1997) Decomposition of experimental x-ray diffraction patterns (profile fitting): a convenient way to study clay minerals. Clays Clay Miner 45:132–146

    Article  CAS  Google Scholar 

  • Mcdowell RW, Sharpley AN, Folmar G (2001a) Phosphorus export from an agricultural watershed: linking source and transport mechanisms. J Environ Qual 30:1587–1595

    Article  CAS  Google Scholar 

  • Mcdowell RW, Sharpley AN, Condron LM, Haygarth PM, Brookes PC (2001b) Processes controlling soil phosphorus release to runoff and implications for agricultural management. Nutr Cycl Agroecosyst 59:269–284

    Article  Google Scholar 

  • McKean SJ, Warren GP (1996) Determination of phosphate desorption characteristics in soils using successive resin extractions. Commun Soil Sci Plant Anal 27:2397–2417

    Article  CAS  Google Scholar 

  • McLaughlin JR, Ryden JC, Syers JK (1981) Sorption of inorganic phosphate by iron-, aluminium-containing components. J Soil Sci 32:365–377

    Article  CAS  Google Scholar 

  • Mehl HU, Eltz FLF, Reichert JM, Didoné IA (2001) Caracterização de padrões de chuvas ocorrentes em Santa Maria (RS). Rev Bras Ci Solo 25:475–483

    Google Scholar 

  • Mercier P, Denaix L, Robert M (2000) Caractérisation des matières colloïdales évacuées au cours du drainage agricole: incidence sur l'évolution pédogénétique des sols. CR Acad Sci Paris 331:195–202

    CAS  Google Scholar 

  • Minella JPG, Merten GH, Reichert JM, Rheinheimer DS (2007) Identificação e implicações para a conservação do solo das fontes de sedimentos em bacias hidrográficas. Rev Bras Ci Solo 31:1637–1646

    Article  CAS  Google Scholar 

  • Minella JPG, Merten GH, Walling DE, Reichert JM (2009) Changing sediment yield as an indicator of improved soil management practices in Southern Brazil. Catena 79:228–236

    Article  Google Scholar 

  • Montagne D, Cornu S, Le Forestier L, Hardy M, Josière O, Caner L, Cousin I (2008) Impact of drainage on soil-forming mechanisms in a French Albeluvisol: input of mineralogical data in mass-balance modelling. Geoderma 145:426–438

    Article  CAS  Google Scholar 

  • Moore DM, Reynolds RC (1997) X-ray diffraction and the identification and analysis of clay minerals. Oxford University Press, New York

    Google Scholar 

  • Oliveira PTS, Wendland E, Nearing MA (2012) Rainfall erosivity in Brazil: a review. Catena 100:139–147

    Article  Google Scholar 

  • Owens PN, Batalla RJ, Collins AJ, Gomez B, Hicks DM, Horowitz AJ, Kondolf GM, Marden M, Page MJ, Peacock DH, Petticrew EL, Salomons W, Trustrum NA (2005) Fine-grained sediment in river systems: environmental significance and management issues. River Res Appl 21:693–717

    Article  Google Scholar 

  • Owens PN, Petticrew EL, Van der Perk M (2010) Sediment response to catchment disturbances. J Soils Sediments 10:591–596

    Article  Google Scholar 

  • Parfitt RL (1978) Anion adsorption by soils and soil materials. Adv Agron 30:1–50

    Article  CAS  Google Scholar 

  • Pédro G (1979) Les conditions de formation des constituants secondaires. In: Bonneau M, Souchier B (eds) Pédologie: Constituants et propriétés du sol. Masson, Paris, pp 58–71

    Google Scholar 

  • Pellegrini JBR, Rheinheimer DS, Gonçalves CS, Copetti ACC, Bortoluzzi EC, Tessier D (2010) Impacts of anthropic pressures on soil phosphorus availability, concentration, and phosphorus forms in sediments in a Southern Brazilian watershed. J Soils Sediments 10:451–460

    Article  CAS  Google Scholar 

  • Rheinheimer DS (2003) Caracterização física, química e biológica dos solos na microbacia hidrográfica do Arroio Lino, Nova Boemia, Agudo—RS. In: Rheinheimer DS (ed) Relatório Técnico ano III, Rio Grande do Sul. FATEC, Santa Maria

    Google Scholar 

  • Rheinheimer DS, Gonçalves CS, Bortoluzzi EC, Pellegrini JBR, Silva JLS, Petry C (2010) Qualidade de águas subterrâneas captadas em fontes em função da presença de proteção física e de sua posição na paisagem. Eng Agríc Jaboticabal 30:948–957

    Article  Google Scholar 

  • Rheinheimer DS, Campos BHC, Giacomini SJ, Conceição PC, Bortoluzzi EC (2008) Comparação de métodos de determinação de carbono orgânico total no solo. Rev Bras Ci Solo 32:435–440

    Article  CAS  Google Scholar 

  • Rhue RD, Harris WG (1999) Phosphorus sorption/desorption reactions in soils and sediments. In: Reddy KR, O'Connor GA, Schelske CL (eds) Phosphorus biogeochemistry in subtropical ecosystems. CRC, Boca Raton, pp 187–206

    Google Scholar 

  • Robert M, Tessier D (1974) Méthode de préparation des argiles de sols pour les études minéralogiques. Annalles Agronomique 25:859–882

    CAS  Google Scholar 

  • Rousseau M, Di Pietro L, Angulo-Jaramillo R, Tessier D, Cabibel B (2004) Preferential transport of soil colloidal particles: physicochemical effects on particle mobilization. Vadose Zone J 3:247–261

    CAS  Google Scholar 

  • Salomons W, Förstner U (2010) Sediments and the “system”: from site-specific to regional-scale research. “A story of joy in researching dirt”. J Soils Sediments 10:1436–1439

    Article  Google Scholar 

  • Sechinatto L (2007) A insustentabilidade do uso do solo com fumicultura em terras declivosas. Thesis Universidade federal de Santa Maria. 155 pp

  • Sparks DL (2001) Dynamics of K in soils and their role in management of K nutrition. In: International Potash Institute PR II K in nutrient management for sustainable crop production in India, New Delhi, India, 03–05 Dec

  • Selim HM, Mansell RS, Zelazny LW (1976) Modelling reaction and transport of potassium in soils. Soil Sci 122:77–84

    Article  CAS  Google Scholar 

  • Sharpley AN (1987) The kinetics of soil potassium desorption. Soil Sci Soc Amer J 51(1987):912–917

    Article  CAS  Google Scholar 

  • Sharpley AN, Smith SJ, Jones OR, Berg WA, Coleman GA (1992) The transport of bioavailable phosphorus in agricultural runoff. J Environ Qual 21:30–35

    Article  CAS  Google Scholar 

  • Velde B (2001) Clay minerals in the agricultural horizon of loams and silt loams in the central United States. Clay Miner 36:277–294

    Article  CAS  Google Scholar 

  • Verstraeten G, Lang A, Houben P (2009) Human impact on sediment dynamics—quantification and timing. Catena 77:77–80

    Article  Google Scholar 

  • Zhu MX, Ding KY, Xu SH, Jiang X (2009) Adsorption of phosphate on hydroxyaluminum- and hydroxyiron-montmorillonite complexes. J Hazard Mater 165:645–651

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank A. Copetti, J.B. Pellegrini and C. Gonçalves for the technical support in the sample collection and chemical analysis, as well as CAPES (CAPES-COFECUB program, Edital 009/2011, process number 3504-11-5) for the financial support. D.S. Rheinheimer and E.C. Bortoluzzi thank CNPq for their fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edson Campanhola Bortoluzzi.

Additional information

Responsible editor: Brian Kronvang

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bortoluzzi, E.C., dos Santos, D.R., Santanna, M.A. et al. Mineralogy and nutrient desorption of suspended sediments during a storm event. J Soils Sediments 13, 1093–1105 (2013). https://doi.org/10.1007/s11368-013-0692-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-013-0692-4

Keywords

Navigation