Bailis R, Baka J (2010) Greenhouse gas emissions and land use change from jatropha curcas-based jet fuel in Brazil. Environ Sci Technol 44(22):8684–8691. https://doi.org/10.1021/es1019178
CAS
Article
Google Scholar
Bateni H, Karimi K (2016) Biodiesel production from castor plant integrating ethanol production via a biorefinery approach. Chem Eng Res Des 107:4–12. https://doi.org/10.1016/j.cherd.2015.08.014
CAS
Article
Google Scholar
Blanco-Marigorta AM, Suárez-Medina J, Vera-Castellano A (2013) Exergetic analysis of a biodiesel production process from Jatropha curcas. Appl Eng 101:218–225. https://doi.org/10.1016/j.apenergy.2012.05.037
CAS
Article
Google Scholar
Davis SC, House JI, Diaz-Chavez RA, Molnar A, Valin H, Delucia EH (2011) How can land-use modelling tools inform bioenergy policies? Interface Focus 1:212–223. https://doi.org/10.1098/rsfs.2010.0023
Article
Google Scholar
de Jong S, Antonissen K, Hoefnagels R, Lonza L, Wang M, Faaij A, Junginger M (2017) Life-cycle analysis of greenhouse gas emissions from renewable jet fuel production. Biotechnol Biofuels 10:64. https://doi.org/10.1186/s13068-017-0739-7
CAS
Article
Google Scholar
Dettmer T, Ibbotson S, Ohlschlager G et al (2015) Technical applications of Jatropha oil—environmental effectiveness of renewable resources. Int J Life Cycle Ass 20:1376–1386. https://doi.org/10.1007/s11367-015-0953-0
CAS
Article
Google Scholar
Efthymiou M, Papatheodorou A (2019) EU emissions trading scheme in aviation: policy analysis and suggestions. J Clean Prod 237:117734. https://doi.org/10.1016/j.jclepro.2019.117734
Article
Google Scholar
Fuentes A, García C, Hennecke A, Masera O (2018) Life cycle assessment of Jatropha curcas biodiesel production: a case study in Mexico. Clean Technol Envir 20:1721–1733. https://doi.org/10.1007/s10098-018-1558-7
CAS
Article
Google Scholar
Han J, Elgowainy A, Cai H, Wang MQ (2013) Life-cycle analysis of bio-based aviation fuels. Bioresour Technol 150:447–456. https://doi.org/10.1016/j.biortech.2013.07.153
CAS
Article
Google Scholar
Hill J, Tajibaeva L, Polasky S (2016) Climate consequences of low-carbon fuels: the United States Renewable Fuel Standard. Energy Policy 97:351–353. https://doi.org/10.1016/j.enpol.2016.07.035
Article
Google Scholar
Hosseinzadeh-Bandbafha H, Tabatabaei M, Aghbashlo M, Khanali M, Demirbas A (2018) A comprehensive review on the environmental impacts of diesel/biodiesel additives. Energ Convers Manage 174:579–614. https://doi.org/10.1016/j.enconman.2018.08.050
CAS
Article
Google Scholar
Hou J, Zhang P, Yuan X, Zheng Y (2011) Life cycle assessment of biodiesel from soybean, jatropha and microalgae in China conditions. Renew Sust Energ Rev 15:5081–5091. https://doi.org/10.1016/j.rser.2011.07.048
CAS
Article
Google Scholar
Iribarren D, Susmozas A, Petrakopoulou F, Dufour J (2014) Environmental and exergetic evaluation of hydrogen production via lignocellulosic biomass gasification. J Clean Prod 69:165–175. https://doi.org/10.1016/j.jclepro.2014.01.068
CAS
Article
Google Scholar
Kalaivani K, Ravikumar G, Balasubramanian N (2014) Environmental impact studies of biodiesel production from Jatropha curcasin India by life cycle assessment. Environ Prog Sustain. https://doi.org/10.1002/ep.11913
Article
Google Scholar
Kaufman AS, Meier PJ, Sinistore JC, Reinemann DJ (2010) Applying life-cycle assessment to low carbon fuel standards—how allocation choices influence carbon intensity for renewable transportation fuels. Energ Policy 38:5229–5241. https://doi.org/10.1016/j.enpol.2010.05.008
CAS
Article
Google Scholar
Khoshnevisan B, Angelidaki I (2018) Biorefineries: focusing on a closed cycle approach with biogas as the final step. Fundamentals, Process, and Operation. Springer, Biogas, pp 277–303
Google Scholar
Khoshnevisan B et al (2018) Life cycle assessment of castor-based biorefinery: a well to wheel LCA. Int J Life Cycle Ass 23:1788–1805. https://doi.org/10.1007/s11367-017-1383-y
CAS
Article
Google Scholar
Kumar S, Singh J, Nanoti SM, Garg MO (2012) A comprehensive life cycle assessment (LCA) of Jatropha biodiesel production in India. Bioresource Technol 110:723–729. https://doi.org/10.1016/j.biortech.2012.01.142
CAS
Article
Google Scholar
Larsson J, Elofsson A, Sterner T, Åkerman J (2019) International and national climate policies for aviation: a review. Clim Policy 19:787–799. https://doi.org/10.1080/14693062.2018.1562871
Article
Google Scholar
Liang S, Xu M, Zhang T (2013) Life cycle assessment of biodiesel production in China. Bioresource Technol 129:72–77. https://doi.org/10.1016/j.biortech.2012.11.037
CAS
Article
Google Scholar
Liu G, Yan B, Chen G (2013a) Technical review on jet fuel production. Renew Sust Energ Rev 25:59–70. https://doi.org/10.1016/j.rser.2013.03.025
CAS
Article
Google Scholar
Liu H, Huang Y, Yuan H, Yin X, Wu C (2018) Life cycle assessment of biofuels in China: status and challenges. Renew Sust Energ Rev 97:301–322. https://doi.org/10.1016/j.rser.2018.08.052
Article
Google Scholar
Liu L, Zhuang D, Jiang D, Fu J (2013b) Assessment of the biomass energy potentials and environmental benefits of Jatropha curcas L. in Southwest China. Biomass Bioenerg 56:342–350. https://doi.org/10.1016/j.biombioe.2013.05.030
Article
Google Scholar
Mohammadmatin Hanifzadeh M-HS, Nabati Z, Tavakoli O, Feyzizarnagh H (2018) Technical, economic and energy assessment of an alternative strategy for mass production of biomass and lipid from microalgae. J Environ Chem Eng 6:866–873. https://doi.org/10.1016/j.jece.2018.01.008
CAS
Article
Google Scholar
NDRC (2016) Notice of the NDRC on issuing the "Thirteenth Five-Year Plan" for renewable energy development. National Development and Reform Commission. Accessed 10 Dec 2016
Ou X, Zhang X, Chang S, Guo Q (2009) Energy consumption and GHG emissions of six biofuel pathways by LCA in (the) People’s Republic of China. Appl Energ 86:S197–S208. https://doi.org/10.1016/j.apenergy.2009.04.045
CAS
Article
Google Scholar
Plevin R, O’Hare M, Jones A, Torn M, Gibbs H (2010) Greenhouse gas emissions from biofuels’ indirect land use change are uncertain but may be much greater than previously estimated. Environ Sci Technol 44:8015–8021. https://doi.org/10.1021/es101946t
CAS
Article
Google Scholar
Rajagopal D (2013) The fuel market effects of biofuel policies and implications for regulations based on lifecycle emissions. Environ Res Lett 8(2):024013. https://doi.org/10.1088/1748-9326/8/2/024013
Article
Google Scholar
Rajagopal D, Plevin RJ (2013) Implications of market-mediated emissions and uncertainty for biofuel policies. Energy Policy 56:75–82. https://doi.org/10.1016/j.enpol.2012.09.076
Article
Google Scholar
Sattanathan R (2013) Production of biodiesel from castor oil with its performance and emission test. Int J Sci Res 4:273–279
Google Scholar
Scheelhaase J, Maertens S, Grimme W, Jung M (2018) EU ETS versus CORSIA — a critical assessment of two approaches to limit air transport’s CO 2 emissions by market-based measures. J Air Transp Manag 67:55–62. https://doi.org/10.1016/j.jairtraman.2017.11.007
Article
Google Scholar
Somorin TO, Kolios AJ (2017) Prospects of deployment of Jatropha biodiesel-fired plants in Nigeria’s power sector. Energy 135:726–739. https://doi.org/10.1016/j.energy.2017.06.152
Article
Google Scholar
Stratton RW, Wong HM, Hileman JI (2011) Quantifying variability in life cycle greenhouse gas inventories of alternative middle distillate transportation fuels. Environ Sci Technol 45:4637–4644. https://doi.org/10.1021/es102597f
CAS
Article
Google Scholar
Sun X, Liu J, Hong J et al (2016) Life cycle assessment of Chinese radial passenger vehicle tire. Int J Life Cycle Ass 21:1749–1758. https://doi.org/10.1007/s11367-016-1139-0
CAS
Article
Google Scholar
Susmozas A, Iribarren D, Dufour J (2013) Life-cycle performance of indirect biomass gasification as a green alternative to steam methane reforming for hydrogen production. Int J of Hydrogen Energ 38:9961–9972. https://doi.org/10.1016/j.ijhydene.2013.06.012
CAS
Article
Google Scholar
Tabatabaie SMH, Murthy GS (2016) Effect of geographical location and stochastic weather variation on life cycle assessment of biodiesel production from camelina in the northwestern USA. Int J Life Cycle Ass 22:867–882. https://doi.org/10.1007/s11367-016-1191-9
CAS
Article
Google Scholar
Tabatabaie SMH, Tahami H, Murthy GS (2018) A regional life cycle assessment and economic analysis of camelina biodiesel production in the Pacific Northwestern US. J Clean Prod 172:2389–2400. https://doi.org/10.1016/j.jclepro.2017.11.172
CAS
Article
Google Scholar
Tian H, Li J, Yan M, Tong YW, Wang C-H, Wang X (2019) Organic waste to biohydrogen: a critical review from technological development and environmental impact analysis perspective. Appl Energy 256:113961. https://doi.org/10.1016/j.apenergy.2019.113961
CAS
Article
Google Scholar
Uusitalo V , Sanni Väisänen, Havukainen J et al (2014) Carbon footprint of renewable diesel from palm oil, jatropha oil and rapeseed oil[J]. Renew Energy 69(3):103–113.
Valente OS, da Silva MJ, Pasa VMD, Belchior CRP, Sodré JR (2010) Fuel consumption and emissions from a diesel power generator fuelled with castor oil and soybean biodiesel. Fuel 89:3637–3642. https://doi.org/10.1016/j.fuel.2010.07.041
CAS
Article
Google Scholar
Wei H, Liu W, Chen X, Yang Q, Li J, Chen H (2019) Renewable bio-jet fuel production for aviation: a review. Fuel 254:115599. https://doi.org/10.1016/j.fuel.2019.06.007
CAS
Article
Google Scholar
Wicke B, Verweij P, van Meijl H, van Vuuren DP, Faaij APC (2014) Indirect land use change: review of existing models and strategies for mitigation. Biofuels 3:87–100. https://doi.org/10.4155/bfs.11.154
CAS
Article
Google Scholar
Wong A, Zhang H, Kumar A (2016) Life cycle assessment of renewable diesel production from lignocellulosic biomass. Int J Life Cycle Ass 21:1404–1424. https://doi.org/10.1007/s11367-016-1107-8
CAS
Article
Google Scholar
Xinhuanet (2018) The first China Soil Acidification Response Summit was held in Guizhou Province. Xinhuanet. Accessed 10 May 2018
Yang H, Zhou Y, Liu J (2009) Land and water requirements of biofuel and implications for food ly and the environment in China. Energ Policy 37:1876–1885. https://doi.org/10.1016/j.enpol.2009.01.035
Article
Google Scholar
Yang Y, Tilman D (2020) Soil and root carbon storage is key to climate benefits of bioenergy crops. Biofuel Res J 7(2):1143–1148. https://doi.org/10.18331/BRJ2020.7.2.2
Article
Google Scholar
Zemanek D, Champagne P, Mabee W (2020) Review of life-cycle greenhouse-gas emissions assessments of hydroprocessed renewable fuel (HEFA) from oilseeds. Biofuels. Bioprod Bioref 14:935–949. https://doi.org/10.1002/bbb.2125
CAS
Article
Google Scholar