Skip to main content

Advertisement

Log in

Life cycle assessment of Jatropha curcas biodiesel production: a case study in Mexico

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

The potential of liquid biofuels (like bioethanol and biodiesel) to reduce greenhouse gas (GHG) emissions from the transportation sector has generated a great deal of interest in the last few years, with particular attention being given to Jatropha methyl ester (JME). Jatropha curcas (Jc)—a species native to Mexico—shows some promise as a source of oil for biodiesel. A few studies on biodiesel production from Jc have been conducted in Mexico, but just one study involved a life cycle assessment (LCA) of JME. At the international level, most studies dealing with Jc focus on the biodiesel industrial process, while in this paper we also look in detail at the agricultural production phase. This case study provides preliminary results on GHG emissions and energy balances of JME production in Mexico, applying the LCA methodology recommended by the European Renewable Energy Directive (RED). Four production systems (JME 1–4) were studied, resulting in GHG mitigation of between 41 and 53% with regards to diesel if no direct land-use change (dLUC) change occurs. However, when accounting for GHG emissions arising from direct land-use change (dLUC), total emissions increase from 40 to 508 kg CO2e/GJ. The differences between dLUC on tropical dry forest and dLUC on grassland are of lesser importance than those between systems with and without dLUC. Using JME from plantations on lands, previously not cultivated, leads to GHG emissions three or six times higher than using fossil diesel. These results are an approximation to the environmental and energetic impacts of JME production in Mexico. Further studies should be performed before implementing more plantations to produce biofuel from J. curcas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Achten W (2010) Sustainability evaluation of biodiesel from Jatropha curcas L. A life cycle oriented study. Dissertation presented in partial fulfillment of the requirements for the degree of doctor in bio-science engineering. Katholieke Universiteit Leuven

  • Achten W, Verchot L, Franken Y (2008) Jatropha bio-diesel production and use. Biomass Bioenerg 32:1063–1084

    Article  CAS  Google Scholar 

  • Achten WMJ, Almeida J, Fobelets V, Bolle E, Mathijs E, Singh VP et al (2010) Life cycle assessment of Jatropha biodiesel as transportation fuel in rural India. Appl Energy 87:3652–3660. https://doi.org/10.1016/j.apenergy.2010.07.003

    Article  CAS  Google Scholar 

  • ANL (Argonne National Laboratory) (2008) The greenhouse gases, regulated emissions, and energy use in transportation (GREET) model. Transp Technol R&D Cent 2008

  • Bailis RE, Baka JE (2010) Greenhouse gas emissions and land use change from Jatropha curcas-based jet fuel in Brazil. Environ Sci Technol 44:8684–8691. https://doi.org/10.1021/es1019178

    Article  CAS  Google Scholar 

  • Bauen A, Watson P, Howes J (2008) Carbon reporting within the renewable transport fuel obligation—methodology. E4tech, London

    Google Scholar 

  • Biofuels UNEP (2009) Towards sustainable production and use of resources: assessing biofuels. UNEP, Nairobi

    Google Scholar 

  • Blanco-Marigorta AM, Suárez-Medina J, Vera-Castellano A (2013) Exergetic analysis of a biodiesel production process from Jatropha curcas. Appl Energy 101:218–225. https://doi.org/10.1016/j.apenergy.2012.05.037

    Article  CAS  Google Scholar 

  • Börjesson P (2009) Good or bad bioethanol from a greenhouse gas perspective—What determines this? Appl Energy 86:589–594

    Article  CAS  Google Scholar 

  • Cherubini F, Strømman AH (2011) Life cycle assessment of bioenergy systems: state of the art and future challenges. Bioresour Technol 102:437–451. https://doi.org/10.1016/j.biortech.2010.08.010

    Article  CAS  Google Scholar 

  • CU Berkeley (2008) ERG biofuel analysis meta-model (EBAMM). Calif Univ Berkeley. http://rael.berkeley.edu/ebamm/. Accessed 2 Feb 2017

  • Dale VH, Efroymson RA, Kline KL, Langholtz MH, Leiby PN, Oladosu GA et al (2013) Indicators for assessing socioeconomic sustainability of bioenergy systems: a short list of practical measures. Ecol Indic 26:87–102. https://doi.org/10.1016/j.ecolind.2012.10.014

    Article  Google Scholar 

  • DeLuchi MA (1991) Emissions of greenhouse gases from the use of transportation fuels and electricity. Volume 1: main text. Cent Transp Res Energy Syst Div Argonne Natl Lab

  • Dhar BR, Kirtania K (2009) Excess methanol recovery in biodiesel production process using a distillation column: a simulation study. Chem Eng Res Bull 13:55–60

    CAS  Google Scholar 

  • Edrisi SA, Dubey RK, Tripathi V, Bakshi M, Srivastava P, Jamil S et al (2015) Jatropha curcas L.: a crucified plant waiting for resurgence. Renew Sustain Energy Rev 41:855–862. https://doi.org/10.1016/j.rser.2014.08.082

    Article  Google Scholar 

  • Encinar J, González J, Rodríguez-Reinares A (2005) Biodiesel from frying oil. Variables affecting the yields and characteristics of the biodiesel. Ind Eng Chem Res 44:5491–5499

    Article  CAS  Google Scholar 

  • EUC (Commission of the European Communities) (2009) Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC, pp 16–62

  • FACT (2009) The jatropha handbook. Fuels from Agriculture in Communal Technology Foundation, Eindhoven

    Google Scholar 

  • FAO (2001) Global estimates of gaseous emissions of NH3, NO and N2O from agricultural land. International Fertilizer Industry Association, Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Fehrenbach H, Giegrich J, Reinhardt G, Schmitz J, Sayer U, Gretz M et al (2008) Criteria for a sustainable use of bioenergy on a global scale. Environmental Research of the Federal Ministry of the Environment, Nature Conservation and Nuclear Safety, Paris

    Google Scholar 

  • Francis G, Edinger R, Becker K (2005) A concept for simultaneous wasteland reclamation, fuel production, and socio-economic development in degraded areas in India: need, potential and perspectives of Jatropha plantations. Nat Resour Forum 29:12–24. https://doi.org/10.1111/j.1477-8947.2005.00109.x

    Article  Google Scholar 

  • García CA, Fuentes A, Hennecke A, Riegelhaupt E, Manzini F, Masera O (2011) Life-cycle greenhouse gas emissions and energy balances of sugarcane ethanol production in Mexico. Appl Energy 88:2088–2097

    Article  CAS  Google Scholar 

  • Gasca J (2010) Reference emission value for fossil fuel. Pers Commun Data Fiel Access

  • Gnansounou E, Dauriat A, Villegas J, Panichelli L (2009) Life cycle assessment of biofuels: energy and greenhouse gas balances. Bioresour Technol 100:4919–4930. https://doi.org/10.1016/j.biortech.2009.05.067

    Article  CAS  Google Scholar 

  • Gübitz GM, Mittelbach M, Trabi M (1997) Biofuels and Industrial Products from Jatropha curcas. In: Symposium “Jatropha 97”

  • Hamelinck C, Koop K, Croezen H, Koper M, Kampman B, Bergsma G (2008) Technical specification: greenhouse gas calculator for biofuels. Version 21b Ecofys, commissioned by SenterNovem

  • INE (2006) Inventario Nacional de Gases de Efecto Invernadero 2002. Instituto Nacional de Ecología. Secretaría del Medio Ambiente y Recursos Naturales, Tbilisi, p 344

    Google Scholar 

  • IPCC (2001) Third assessment report—climate change 2001—complete online versions. http://www.grida.no/publications/other/ipcc_tar/?src=/climate/ipcc_tar/wg1/248.htm>.n.d. Accessed 14 June 2017

  • IPCC (2006a) Guidelines for national greenhouse gas inventories. Agriculture, forestry and other land use. In: Egglest HS, Buendia L, Miwa K, Ngara T, Tanabe K (eds) 2006 IPCC guidelines for national greenhouse gas inventories, vol 6. National Greenhouse Gas Inventories Programme, Geneva

    Google Scholar 

  • IPCC (2006b) 2006 Guidelines for national greenhouse gas inventories. Energy, vol 2. IPCC, Geneva

    Google Scholar 

  • ISO. ISO Norm 14040:2006 (2006) Life cycle assessment—principles and framework. Environmental management. ISO, Geneva

    Google Scholar 

  • ISO. ISO Norm 14044:2006 (2006) Life cycle assessment—requirements and guidelines. Environmental management. ISO, Geneva

    Google Scholar 

  • Jongschaap RA, Corré W, Bindraban P, Branderburg A (2007) Claims and facts on Jatropha curcas L. Global Jatropha curcas evaluation, breeding and propagation programme. Plant Research International B. V., Wageningen. Report 158

  • Jungbluth N, Frischknecht R, Faist Emmenegger M, Tuchschmid M (2007) Life cycle assessment of BTL-fuel production: goal and scope definition (revised 2007). RENEW—renewable fuels for advanced powertrains

  • Kammen DM, Farrell AE, Plevin RJ, Jones AD, Nemet GF, Delucchi MA (2008) Energy and greenhouse gas impacts of biofuels: a framework for analysis. Institute for Transport Studies, University California, Davis

    Google Scholar 

  • Kant P, Wu S (2011) The extraordinary collapse of jatropha as a global biofuel. Environ Sci Technol 45:7114–7115. https://doi.org/10.1021/es201943v

    Article  CAS  Google Scholar 

  • Kiss AA, Ignat RM (2012) Enhanced methanol recovery and glycerol separation in biodiesel production—DWC makes it happen. Appl Energy 99:146–153

    Article  CAS  Google Scholar 

  • Kumar A, Sharma S (2008) An Evaluation of multipurpose oils seed crop for industrial uses (Jatropha curcas L.): a review. Ind Crops Prod 28(1):1–10

    Article  CAS  Google Scholar 

  • Lam MK, Lee KT, Mohamed AR, Pinang P (2009) Life cycle assessment for the production of biodiesel: a case study in Malaysia for palm oil versus jatropha oil. Biofuels Bioprod Biorefining. https://doi.org/10.1002/bbb

    Article  Google Scholar 

  • Lechón Y, Cabal H, de la Rúa C, Lago C, Sáez RM, San Miguel M (2006) Análisis de Ciclo de Vida de Combustibles Alternativos para el Transporte. Análisis de Ciclo de Vida de Comparativo de Biodiésel y Diésel. Energía y cambio climático. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (Ciemat), Madrid

    Google Scholar 

  • LPDB (Ley de promoción y desarrollo de los bioenergéticos) (2008) Diario OFicial de la Federación, pp 1–12

  • Makkar HPS, Aderibigbe AO, Becker K (1998) Comparative evaluation of non-toxic and toxic varieties of Jatropha curcas for chemical composition, digestibility, protein degradability and toxic factors. Food Chem 62:207–215. https://doi.org/10.1016/s0308-8146(97)00183-0

    Article  CAS  Google Scholar 

  • Mata TM, Martins AA, Sikdar SK, Costa CAV (2011) Sustainability considerations of biodiesel based on supply chain analysis. Clean Technol Environ Policy 13:655–671. https://doi.org/10.1007/s10098-010-0346-9

    Article  Google Scholar 

  • Mulder K, Hagens NJ (2008) Energy return on investment: toward a consistent framework, vol 37(2). Royal Swedish Academy of Sciences, Stockholm

    Google Scholar 

  • Murphy DJ, Hall CAS (2010) Year in review—EROI or energy return on (energy) invested. Acad Sci 1185:102–118

    Article  Google Scholar 

  • Ndong R, Montrejaud-Vignoles M, Saint Girons O, Gabrielle B, Pirot R, Domergue M et al (2009) Life cycle assessment of biofuels from Jatropha curcas in West Africa: a field study. GCB Bioenergy 1:197–210. https://doi.org/10.1111/j.1757-1707.2009.01014.x

    Article  CAS  Google Scholar 

  • Neumann K, Werth K, Martín A, Górak A (2015) Biodiesel production from waste cooking oils through esterification: catalyst screening, chemical equilibrium and reaction kinetics. Chem Eng Res Des 107:52–62

    Article  CAS  Google Scholar 

  • Ou X, Zhang X, Chang S, Guo Q (2009) Energy consumption and GHG emissions of six biofuel pathways by LCA in (the) People’s Republic of China. Appl Energy 86:S197–S208. https://doi.org/10.1016/j.apenergy.2009.04.045

    Article  CAS  Google Scholar 

  • Panichelli L, Dauriat A, Gnansounou E (2008) Life cycle assessment of soybean-based biodiesel in Argentina for export. Int J Life Cycle Assess 14:144–159. https://doi.org/10.1007/s11367-008-0050-8

    Article  CAS  Google Scholar 

  • Pérez-Cisneros E, Mena-Espino X, Rodríguez-López V, Sales-Cruz M, Viveros-García T, Lobo-Oehmichen R (2016) An integrated reactive distillation process for biodiesel production. Comput Chem Eng 91:233–246

    Article  CAS  Google Scholar 

  • Pleanjai S, Gheewala SH (2009) Full chain energy analysis of biodiesel production from palm oil in Thailand. Appl Energy 86:S209–S214

    Article  CAS  Google Scholar 

  • Poddar T, Jagannath A, Almansoori A (2015) Biodiesel production using reactive distillation: a comparative simulation study. Energy Procedia 75:17–22

    Article  CAS  Google Scholar 

  • Prueksakorn K, Gheewala SH (2006) Energy and greenhouse gas implications of biodiesel production from Jatropha curcas L. In: Proceedings of the 2nd joint international conference on “Sustainable energy environment (SEE 2006)”, vol 053. Joint Graduate School of Energy and Environment. King Mongkut’s University of Technology Thonburi, Bangkok, Thailand, pp 3–8

  • Prueksakorn K, Gheewala SH (2008) Full chain energy analysis of biodiesel from Jatropha curcas L. in Thailand. Environ Sci Technol 42:3388–3393

    Article  CAS  Google Scholar 

  • Reinhardt G, Gärtner S, Rettenmaier N, Münch J, von Falkenstein E (2007) Screening life cycle assessment of jatropha biodiesel. IFEU-Institute for Energy and Environmental Research, Heidelberg

    Google Scholar 

  • Reinhardt G, Becker K, Chaudhary DR, Chikara J, von Falkenstein E, Francis G (2008) Basic data for Jatropha production and use—updated version. IFEU Institute for Energy and Environmental Research, Heidelberg, p 15

    Google Scholar 

  • Robledo-Abad C, Althaus H, Berndes G, Bolwig S, Corbera E, Creutzig F, Garcia-Ulloa J, Geddes A, Gregg JS, Haberl H, Hanger S, Harper RJ, Hunsberger C, Larsen RK, Lauk C, Leitner S, Lilliestam J, Lotze-Campen H, Muys B, Nordborg M, Ölund M, Orlowsky B, Popp A, Portugal-Pereira J, Reinhard J, Scheiffle L, Smith P (2017) Bioenergy production and sustainable development: science base for policymaking remains limited. GCB Bioenergy 9:541–556. https://doi.org/10.1111/gcbb.12338

    Article  Google Scholar 

  • Ruiz-Mercado GJ, Gonzalez MA, Smith RL (2013) Sustainability indicators for chemical processes: III. Biodiesel case study. Ind Eng Chem Res 52:6747–6760. https://doi.org/10.1021/ie302804x

    Article  CAS  Google Scholar 

  • Sacramento-Rivero JC, Eastmond-Spencer A, García JB, Navarro-Pineda FS (2016) A three-dimensional sustainability evaluation of jatropha plantations in Yucatan, Mexico. Sustain 8:1–18. https://doi.org/10.3390/su8121316

    Article  Google Scholar 

  • Sampattagul S, Suttibut C, Yucho S, Kiatsiriroat T (2007) Life cycle management of jatropha bio-diesel production in Thailand. In: 3rd International Conference on Life Cycle Management, University of Zurich Irchel, Zurich, 27–29 Aug, pp 1–6

  • SENER (2008) Balance Nacional de Energía 2007. Secretaría de Energía. Subsecretaría de Planeación Energética y Desarrollo Tecnológico. Dirección General de Información y Estudios Energéticos, Spain

    Google Scholar 

  • SENER (2017) Balance Nacional de Energía 2016. Secretaría de Energía. Subsecretaría de Planeación y Transición. Dirección General de Planeación e Información Energéticas. Mexico

  • SENER. SENER (Secretaría de Energía) (2008) Estrategia Intersecretarial de Los Bioenergéticos. SENER, Mexico

    Google Scholar 

  • Shie JL, Chang CY, Chen CS, Shaw DG, Chen YH, Kuan WH, Ma HK (2011) Energy life cycle assessment of rice straw bio-energy derived from potential gasification technologies. Biores Technol 102:6735–6741

    Article  CAS  Google Scholar 

  • Shinde GB, Sapkal VS, Raut NB (2011) Transesterification by reactive distillation for synthesis and characterization of biodiesel. In: Stoycheva M, Montero G (eds) Biodiesel-feedstocks and processing technologies. Crottia InTech Open, Rijeka

    Google Scholar 

  • Singh K, Singh B, Verma SK, Patra DD (2014) Jatropha curcas: a ten year story from hope to despair. Renew Sustain Energy Rev 35:356–360. https://doi.org/10.1016/j.rser.2014.04.033

    Article  Google Scholar 

  • Skutsch M, de los Ríos E, Solis S, Riegelhaupt E, Hinojosa D, Gerfert S, Gao Y, Masera O (2011) Jatropha in Mexico: environmental and Social impacts of an incipient biofuel program. Ecol Soc 16(4):11. https://doi.org/10.5751/ES-04448-160411

    Article  Google Scholar 

  • Solomon BD (2010) Biofuels and sustainability. Ann N Y Acad Sci 1185:119–134

    Article  Google Scholar 

  • Tobin J (2005) Life cycle assessment of the production of biodiesel from Jatropha. Dissertation submitted in partial fulfilment of the requirements for the degree of Master in Science. Renewable energy and the environment. School of Construction Management and Engineering, University of Reading

  • Trabucco A, Achten W, Bowe C, Aerts R, Van Orshoven J, Norgrove L, Muys B (2010) Global mapping of Jatropha curcas yield based on response of fitness to present and future climate. Bioenergy 2(3):139–151

    Google Scholar 

  • Van Eijck J, Romijn H, Balkema A, Faaij A (2014) Global experience with jatropha cultivation for bioenergy: an assessment of socio-economic and environmental aspects. Renew Sustain Energy Rev 32:869–889. https://doi.org/10.1016/j.rser.2014.01.028

    Article  CAS  Google Scholar 

  • Vikman P-A, Gustavsson L, Klang A (2004) Evaluating greenhouse gas balances and mitigation costs of bioenergy systems—a review of methodologies. Biomass-Based Clim Chang Mitig through Renew Energy Work 1 Mid Sweden Univ

  • Vyas DK, Singh RN (2007) Feasibility study of Jatropha seed husk as an open core gasifier feedstock. Renew Energy 32:512–517. https://doi.org/10.1016/j.renene.2006.06.006

    Article  CAS  Google Scholar 

  • Woods J, Brown G, Estrin A (2005) Bioethanol greenhouse gas calculator. Biomass Energy Group. Cent Environ Policy. Imperial College London. Commissioned by HGCA (Home Grown Cereal Authority), Warwickshire

    Google Scholar 

Download references

Acknowledgements

Alfredo Fuentes wishes to thank CONACYT for financial support through the Doctoral Fellowship Program. This study was supported by PAPIIT-UNAM No. IT 101512 and 101315. The authors also want to thank René Martínez Bravo and Enrique Riegelhaupt for their support in the field work and development of the life cycle assessment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Fuentes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fuentes, A., García, C., Hennecke, A. et al. Life cycle assessment of Jatropha curcas biodiesel production: a case study in Mexico. Clean Techn Environ Policy 20, 1721–1733 (2018). https://doi.org/10.1007/s10098-018-1558-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-018-1558-7

Keywords

Navigation