Skip to main content
Log in

A parametric study on the impact of open-source inventory variability and uncertainty for the life cycle assessment of road bituminous pavements

  • ROADWAYS AND INFRASTRUCTURE
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Purpose

Current asphalt pavement life cycle assessment implementation limitations are in part linked to data availability. On top of this, there is currently a trend towards the creation of open-source accessible data for pavement LCA. Therefore, the objective of this study is to undertake a comprehensive assessment of open-source data for the “cradle-to-laid” LCA of asphalt pavements to better understand its potential risks.

Methods

This study assesses the variability and uncertainty associated with open-access life cycle inventory data, collated from multiple open-source case study scenario results, project reports and inventories in order to assess its reliability. Six impact categories were considered. The collected data was applied to three different case study scenarios for a pavement surface course, which include a conventional hot-mix, a half-warm mixture and a half-warm mixture with 50% reclaimed asphalt pavement.

Results and discussion

The results of this study indicated the variabilities and uncertainties found at both the process level and those propagated to the final LCA results. The results found that fine aggregate production, truck transportation and construction machinery were the most troublesome processes for LCA uncertainty, given their large variability and low impact on the final LCA results. Meanwhile, the binders and cement production and plant operations, being the largest contributors to the environmental impacts (33, 23, 32% average, respectively), also provided large result uncertainties (12, 31, 21% average, respectively) across all impact categories for the cradle-to-laid assessment. Overall, total acidification potential and particulate matter formation potential were the two impact categories most likely to increase due to source variabilities (483.0 and 335.3%, respectively), whilst eutrophication potential was the most likely to decrease (61.7%) for the case studies assessed.

Conclusions

The results of this work show that open source data could be used for the LCA of asphalt mixtures and pavements. Nonetheless, justified data sources should be used and users must be aware of the potential uncertainty areas within the system, where this paper has aimed to contribute to the identification and understanding of these uncertainties in order for users minimise them in their work and help identify targets for LCI development.

Future work should address the variabilities between open-source and commercial tools, the exploration of the use, maintenance and end-of-life stages and the better quantification of binder, RAP and low-temperature manufacturing processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Androjicánd I, Zlata A, Alduk D (2016) Analysis of energy consumption in the production of hot mix asphalt (batch mix plant). Can J Civ Eng 43:1044–1051. https://doi.org/10.1139/cjce-2016-0277

    Article  CAS  Google Scholar 

  • Argonne National Laboratory (2019) GREET Software v1. Illinois, USA, Chicago

    Google Scholar 

  • Arteaga EL (2018) Life Cycle Assessment (LCA) of Pavements. University of Cantabria, Spain. https://www.pdic.unican.es/assets/docs/eideic2018/ELA.pdf 

  • Athena Sustainable Materials Institute (2020) Athena Pavement LCA. pavementlca.com. Accessed 23 Apr 2020

  • Azarijafari H, Yahia A, Amor B (2016) Life cycle assessment of pavements: reviewing research challenges and opportunities. J Clean Prod 112:2187–2197. https://doi.org/10.1016/j.jclepro.2015.09.080

    Article  Google Scholar 

  • AzariJafari H, Yahia A, Amor B (2018) Assessing the individual and combined effects of uncertainty and variability sources in comparative LCA of pavements. Int J Life Cycle Assess 23:1888–1902. https://doi.org/10.1007/s11367-017-1400-1

    Article  CAS  Google Scholar 

  • Bloom EF, Del Ponte K, Natarajan BM et al (2016) State DOT life cycle benefits of recycled material in road construction. Geo-Chicago 2016. Am Soc Civil Eng, Reston, VA, pp 693–703

    Chapter  Google Scholar 

  • Bueche N (2009) Warm asphalt bituminous mixtures with regards to energy, emissions and performance. In: Young Researchers’ Seminar. Torino, Italy

  • Butt AA, Harvey JT, Saboori A et al (2019) Life-Cycle Assessment of Airfield Pavements and Other Airside Features: Framework, Guidelines, and Case Studies (No. DOT/FAA/TC-19/2)

  • Casero AG (2014) Análisis del ciclo de vida de mezclas bitunimosas semicalientes con árido reciclado

  • Caterpillar (2019) Caterpillar Performance Handbook 49

  • CEN (2014) BS EN 15804:2012 - Sustainability of construction works — Environmental product declarations — Core rules for the product category of construction products

  • D’Angelo J, Harm E, Bartoszek J et al (2008) Warm-mix asphalt: European practice. American Trade Initiatives, Alexandria, VA, USA

    Google Scholar 

  • dos Santos JMO, Thyagarajan S, Keijzer E et al (2017) Comparison of life-cycle assessment tools for road pavement infrastructure. Transp Res Board 2646:28–38. https://doi.org/10.3141/2646-04

    Article  Google Scholar 

  • EAPA (2017) Guidance Document for Preparing Product Category Rules (PCR) and Environmental Product Declarations (EPD) for Asphalt Mixtures. Belgium, Brussels

    Google Scholar 

  • EAPA (2008) Arguments to stimulate the government to promote asphalt reuse and recycling: EAPA-Position Paper

  • EC (2019) European Platform on Life Cycle Assessment (LCA). European Commission. https://ec.europa.eu/environment/ipp/lca.htm

  • EC (2010) Energy Conservation in Road Pavement Design, Maintenance and Utilisation ECRPD. European Commission. https://ec.europa.eu/energy/intelligent/projects/en/partners/colas-construction-ltd

  • Ecoinvent (2019) ecoinvent 3.6. Switzerland

  • EN (2016) EN 13108–1:2016 - Bituminous mixtures - material specifications - part 1: asphalt concrete. Belgium, Brussels

    Google Scholar 

  • EPA (2016) Nonroad Compression-Ignition Engines: Exhaust Emission Standards (EPA-420-B-16-022, March 2016)

  • Eurobitume (2012) Life cycle inventory: bitumen. Belgium, Brussels

    Google Scholar 

  • Eurobitume (2019) The Eurobitume Life-Cycle Inventory for Bitumen. Belgium, Brussels

    Google Scholar 

  • European Commission (2020) European Platform on Life Cycle Assessment. https://eplca.jrc.ec.europa.eu/. Accessed 1 Jul 2020

  • European Commission (2013) Characterisation factors of the ILCD Recommended Life Cycle Impact Assessment methods: Database and supporting information. Luxembourg

  • Eurostat (2016) Energy Balance Flow for EU28 2016. https://ec.europa.eu/eurostat/cache/sankey/sankey.html?geos=EU28&year=2016&unit=KTOE&fuels=0000&highlight=&nodeDisagg=1111111111&flowDisagg=false&translateX=-1250.6811721442891&translateY=-18.88729100065146&scale=0.9384379859185514&language=EN. Accessed 19 Feb 2019

  • Garraín D, Lechón Y (2019) Environmental footprint of a road pavement rehabilitation service in Spain. J Environ Manage 252:109646. https://doi.org/10.1016/j.jenvman.2019.109646

    Article  Google Scholar 

  • Giani MI, Dotelli G, Brandini N, Zampori L (2015) Comparative life cycle assessment of asphalt pavements using reclaimed asphalt, warm mix technology and cold in-place recycling. Resour Conserv Recycl 104:224–238. https://doi.org/10.1016/j.resconrec.2015.08.006

    Article  Google Scholar 

  • Guinée JB (2002) Handbook on life cycle assessment: operational guide to the ISO standards. Kluwer Academic Publishers, Boston

    Google Scholar 

  • Gulotta TM, Mistretta M, Praticò FG (2019) A life cycle scenario analysis of different pavement technologies for urban roads. Sci Total Environ 673:585–593. https://doi.org/10.1016/j.scitotenv.2019.04.046

    Article  CAS  Google Scholar 

  • Hamdar YS, Kassem HA, Chehab GR (2020) Using different performance measures for the sustainability assessment of asphalt mixtures: case of warm mix asphalt in a hot climate. Road Mater Pavement Des 21:1–24. https://doi.org/10.1080/14680629.2018.1474795

    Article  CAS  Google Scholar 

  • Harvey JT, Meijer J, Ozer H et al (2016) Pavement life cycle assessment framework. Washington D.C, USA

    Google Scholar 

  • Highways England (2015) Highways England Carbon Tool Guidance

  • Horvath A (2007) PaLATE - Pavement Life-Cycle Tool. University of California, Berkeley. http://faculty.ce.berkeley.edu/horvath/palate.html

  • Hoxha E, Habert G, Lasvaux S et al (2017) Influence of construction material uncertainties on residential building LCA reliability. J Clean Prod 144:33–47. https://doi.org/10.1016/j.jclepro.2016.12.068

    Article  Google Scholar 

  • Huang Y, Bird R, Heidrich O (2009) Development of a life cycle assessment tool for construction and maintenance of asphalt pavements. J Clean Prod 17:283–296. https://doi.org/10.1016/J.JCLEPRO.2008.06.005

    Article  CAS  Google Scholar 

  • Huijbregts MAJ (1998) Application of uncertainty and variability in LCA. Part I: a general framework for the analysis of uncertainty and variability in life cycle assessment. Int. J. Life Cycle Assess. 3:273–280

    Article  Google Scholar 

  • Huijbregts MAJ, Norris G, Bretz R et al (2001) Framework for modelling data uncertainty in life cycle inventories. Int J Life Cycle Assess 6:127–132. https://doi.org/10.1007/BF02978728

    Article  Google Scholar 

  • Huijbregts MAJ, Steinmann ZJN, Elshout PMF et al (2016) ReCiPe 2016: A harmonized life cycle impact assessment method at midpoint and endpoint level. Netherlands

  • ISO (2006) ISO 14040:2006 - Environmental management -- Life cycle assessment -- Principles and framework

  • Jullien A, Dauvergne M, Proust C (2015) Road LCA: the dedicated ECORCE tool and database. Int J Life Cycle Assess. https://doi.org/10.1007/s11367-015-0858-y

    Article  Google Scholar 

  • Larsen OR (2001) Warm Asphalt Mix with Foam e WAMFoam. In: IRF 2001 Partie B: Thèmes Techniques, S.00469. Kolo Veidekke, Norway

  • LCA Commons (2020) Federal LCA Commons. https://www.lcacommons.gov/. Accessed 1 Jul 2020

  • Lo Presti D, D’Angelo G (2017) Review and comparison of freely-available tools for pavement carbon footprinting in Europe. In: Pavement LCA 2017 Symposium . Illinois

  • Lu Y, Wu H, Liu A et al (2017) Energy Consumption and Greenhouse Gas Emissions of High RAP Central Plant Hot Recycling Technology using Life Cycle Assessment: Case Study. In: Pavement LCA 2017 Symposium . Illinois

  • Marceau ML, Nisbet MA, Vangeem MG (2006) Life Cycle Inventory of Portland Cement Manufacture

  • Marceau ML, Nisbet MA, Vangeem MG (2007) Life Cycle Inventory of Portland Cement Concrete. Illinois

  • Mattinzioli T, Moreno-Navarro F, Rubio-Gámez M del C, Martínez G (2020) LCA and Cost Comparative Analysis of Half-Warm Mix Asphalts with Varying Degrees of RAP. In: Proceedings of the International Symposium on Pavement. Roadway, and Bridge Life Cycle Assessment 2020 (LCA 2020, Sacramento, CA, 3-6 June 2020)

  • Maurice B, Frischknecht R, Coelho-Schwirtz V, Hungerbühler K (2000) Uncertainty analysis in life cycle inventory. Application to the production of electricity with French coal power plants. J Clean Prod 8:95–108. https://doi.org/10.1016/S0959-6526(99)00324-8

    Article  Google Scholar 

  • Mauro R, Guerrieri M (2016) Comparative life-cycle assessment of conventional (double lane) and non-conventional (turbo and flower) roundabout intersections. Transp Res Part D Transp Environ 48:96–111. https://doi.org/10.1016/j.trd.2016.08.011

    Article  Google Scholar 

  • MITECO (2017) Fabricación de Cemento (Combustión). Ministerio para la Transición Ecológica (Ministry for the Ecological Transition), Spain. https://www.miteco.gob.es/es/calidad-y-evaluacion-ambiental/temas/sistema-espanol-de-inventario-sei-/030311-combust-fabric-cemento_tcm30-430164.pdf

  • Mora Peris P, Silva Segovia S, Romay Díaz M et al (2017) Guía de Métodos de medición y Factores de emisión del sector cementero en España. Oficemen: agrupación de fabricantes de cemento en Espana; Consulnima: consultoría e ingeniería ambiental

  • Moral Quiza A (2016) La herramienta ambiental análisis de ciclo de vida en el estudio de secciones de firme - Evaluación ambiental de varias secciones de firme de categoría de tráfico T00 a T2 conforme a la norma 6.1-1C. Universidad Alfonso X Sabio

  • Morgan MG, Henrion M (1990) Uncertainty: A Guide to Dealing with Uncertainty in Quantitative Risk a nd Policy Analysis. Cambridge University Press

  • Muller S, Lesage P, Ciroth A et al (2016) The application of the pedigree approach to the distributions foreseen in ecoinvent v3. Int J Life Cycle Assess 21:1327–1337. https://doi.org/10.1007/s11367-014-0759-5

    Article  Google Scholar 

  • NAPA (2017) Product Category Rules (PCR) for Asphalt Mixtures. National Asphalt Pavement Association.

  • Noshadravan A, Wildnauer M, Gregory J, Kirchain R (2013) Comparative pavement life cycle assessment with parameter uncertainty. Transp Res Part D Transp Environ 25:131–138. https://doi.org/10.1016/j.trd.2013.10.002

    Article  Google Scholar 

  • Ntziachristos L, Samaras Z (2018) EMEP/EEA air pollutant emission inventory guidebook. EMEP & European Environmental Agency. https://www.eea.europa.eu/publications/emep-eea-guidebook-2019/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-3-b-i/view

  • Occupational Safety and Health Administration (2017) Reclaimed Asphalt Pavement (RAP): Safety Data Sheet

  • Oers L van (2016) CML-IA Database v4.8, characterisation and normalisation factors for midpoint impact category indicators. http://www.cml.leiden.edu/software/data-cmlia.html

  • Palmer M Propagation of Uncertainty through Mathematical Operations. Experimental Techniques in Fluids, Massachusetts Institute of Technology. http://web.mit.edu/fluidsmodules/www/exper_techniques/2.Propagation_of_Uncertaint.pdf

  • Pérez-Martínez M, Moreno-Navarro F, Martín-Marín J et al (2014) Analysis of cleaner technologies based on waxes and surfactant additives in road construction. J Clean Prod 65:374–379. https://doi.org/10.1016/j.jclepro.2013.09.012

    Article  CAS  Google Scholar 

  • Proust C, Yazoghli-Marzouk O, Ropert C, Jullien A (2014) LCA of Roads Alternative Materials in Various Recycling Scenarios. In: International Symposium on Pavement LCA 2014. Sacramento, California, USA

  • Pushkar S (2019) Life-cycle assessment of the substitution of sand with coal bottom ash in concrete: two concrete design methods. Appl Sci 9:3620. https://doi.org/10.3390/app9173620

    Article  CAS  Google Scholar 

  • del Rubio M, C, Moreno F, Martínez-Echevarría MJ et al (2013) Comparative analysis of emissions from the manufacture and use of hot and half-warm mix asphalt. J Clean Prod 41:1–6. https://doi.org/10.1016/j.jclepro.2012.09.036

    Article  CAS  Google Scholar 

  • Rubio MC, Martínez G, Baena L, Moreno F (2012) Warm mix asphalt: an overview. J Clean Prod 24:76–84. https://doi.org/10.1016/J.JCLEPRO.2011.11.053

    Article  CAS  Google Scholar 

  • Sampedro Á, Del Val MA, Gallego J et al (2012) Carbon Footprint of Recycled Hot-Mix Asphalt with High Rates of RAP. Asph y Paviment. https://doi.org/ISSN0123-8574

  • Santero NJ, Masanet E, Horvath A (2011) Life-cycle assessment of pavements. Part I: critical review. Resour Conserv Recycl 55:801–809. https://doi.org/10.1016/J.RESCONREC.2011.03.010

    Article  Google Scholar 

  • Scopus (2020) Scopus search of “LCA” and “pavement”. 15 September 2020.

  • Sleep S, Guo J, Laurenzi IJ et al (2020) Quantifying variability in well-to-wheel greenhouse gas emission intensities of transportation fuels derived from Canadian oil sands mining operations. J Clean Prod 258:120639. https://doi.org/10.1016/j.jclepro.2020.120639

    Article  CAS  Google Scholar 

  • SMAQMD, Ramboll (2018) Road Construction Emissions Model, Version 9

  • Stripple H (2001) Life cycle assessment of road: a pilot study for inventory analysis. Gothenburg, Sweden

    Google Scholar 

  • The International EPD System (2018a) Product Category Rules: Asphalt Mixtures v1.03 (UN CPC 1533 & 3794)

  • The International EPD System (2018b) Product Category Rules: Highways, Streets and Roads v2.11 (UN CPC 53211)

  • Torres-Machi C, Osorio-Lird A, Chamorro A et al (2018) Impact of environmental assessment and budgetary restrictions in pavement maintenance decisions: application to an urban network. Transp Res Part D Transp Environ 59:192–204. https://doi.org/10.1016/J.TRD.2017.12.017

    Article  Google Scholar 

  • UK Government (2018) UK Government GHG Conversion Factors for Company Reporting

  • UN (2016) The Sustainable Infrastructure Imperative: Financing for Better Growth and Development

  • UNPG (2011) Module d’informations environnementales de la production de granulats recyclés. Données sous format FDES conformes à la norme NF P 01-010. Union Nationale des Producteurs de Granulats

  • US EPA (1995a) AP-42, CH 11.19.1: Sand And Gravel Processing. US Environmental Protection Agency. https://www3.epa.gov/ttn/chief/ap42/ch11/final/c11s19-1.pdf

  • US EPA (1995b) AP-42 Portland Cement Manufacturing. US Environmental Protection Agency. https://www3.epa.gov/ttnchie1/ap42/ch11/final/c11s06.pdf

  • Vaitkus A,  Čygas D,  Laurinavičius A,  Perveneckas Z (2009) Analysis and evaluation of possibilities for the use of warm mix asphalt in lithuania Balt J Road Bridg Eng 4 https://doi.org/10.3846/1822-427X.2009.4.80-86

  • Van Dam T, Harvey J, Muench S et al (2015) Towards Sustainable Pavement Systems: A Reference Document. Washington D.C.

  • van Grootel A, Chang J, Wardle BL, Olivetti E (2020) Manufacturing variability drives significant environmental and economic impact: the case of carbon fiber reinforced polymer composites in the aerospace industry. J Clean Prod 261:121087. https://doi.org/10.1016/j.jclepro.2020.121087

    Article  CAS  Google Scholar 

  • Ventura A, Monéron P, Jullien A et al (2009) Environmental comparison at industrial scale of hot and half-warm mix asphalt manufacturing processes. In: Transportation Research Board. Washington D.C., USA

  • Vidal R, Moliner E, Martínez G, Rubio MC (2013) Life cycle assessment of hot mix asphalt and zeolite-based warm mix asphalt with reclaimed asphalt pavement. Resour Conserv Recycl 74:101–114. https://doi.org/10.1016/J.RESCONREC.2013.02.018

    Article  Google Scholar 

  • Weidema BP, Wesnæs MS (1996) Data quality management for life cycle inventories-an example of using data quality indicators. J Clean Prod 4:167–174. https://doi.org/10.1016/S0959-6526(96)00043-1

    Article  Google Scholar 

  • Wu S, Qian S (2014) Comparison of Warm Mix Asphalt and Hot Mix Asphalt Pavement Based on Life Cycle Assessment. In: International Symposium on Pavement LCA 2014. Sacramento, California, USA

  • Xu X, Akbarian M, Gregory J, Kirchain R (2019) Role of the use phase and pavement-vehicle interaction in comparative pavement life cycle assessment as a function of context. J Clean Prod 230:1156–1164. https://doi.org/10.1016/J.JCLEPRO.2019.05.009

    Article  Google Scholar 

  • Yang R, Ozer H, Kang S, Al-Qadi IL (2014) Environmental Impacts of Producing Asphalt Mixtures with Varying Degrees of Recycled Asphalt Materials. In: International Symposium on Pavement LCA 2014. Sacramento, California, USA

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Mattinzioli.

Additional information

Communicated by Omer Tatari.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this section, the results of the pedigree matrix are provided, along with the life cycle inventory used for the life cycle assessment of the case study region.

1.1 Pedigree matrix results for locally representative data

Table 5 displays the representative sources selected following the methodology in Section 2.2.2.

Table 5 Pedigree matrix results for locally representative data

1.2 Life cycle inventory for representative data

Table 6 displays the life cycle inventory used for the case study life cycle assessment, according to the data selected in section Table 6.

Table 6 Life cycle inventory used for case study region

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mattinzioli, T., Sol-Sánchez, M., Martínez, G. et al. A parametric study on the impact of open-source inventory variability and uncertainty for the life cycle assessment of road bituminous pavements. Int J Life Cycle Assess 26, 916–935 (2021). https://doi.org/10.1007/s11367-021-01878-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11367-021-01878-1

Keywords

Navigation