Skip to main content

Advertisement

Log in

Development of the regionalised municipal solid waste incineration (RMWI) model and its application to France

  • LCA OF WASTE MANAGEMENT SYSTEMS
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Purpose

Incineration is mainly studied when municipal solid waste (MSW) treatment options are assessed in life cycle assessment case studies. A variety of incineration models have been used to create life cycle inventories (LCIs), but they often do not represent the technology and input waste composition of a given incineration situation. This article describes development of the regionalised municipal solid waste incineration (RMWI) model designed at the city-to-country level and its application to French MSW incineration.

Methods

RMWI is based on previously published incineration models from the ecoinvent database and Koehler et al. (Environ Sci Technol 45:3487–3495, 2011). Its system boundaries include furnace, gas-treatment steps, transport and management of by-products (e.g. clinkers, residues from cleaning flue gas, scrap). Its first strong point is the ability to adapt input waste composition. Its second strong point is that MSW collection and energy, scrap and clinker recovery options are modelled as stocks. Thus, users may adapt RMWI for the types of waste input and regional outlets for energy and matter recovery. French data were used in the model for MSW input composition, emission limits of some exhaust gases and transport distances of by-products. The method used to the collect these data is described so it can be reproduced for another region.

Results and discussion

The RMWI model is designed in GaBi 6. Environmental impacts predicted by RMWI for France are assessed to identify hot spots and input parameters with high influence. Chemical production for gas treatments was identified as a major contributor to abiotic depletion, whilst NH3 and NOx emissions were mainly responsible for acidification and eutrophication. In a second approach, the consideration of the recovery of by-products as heat, electricity, clinker, iron and aluminium scraps aims at understanding their contributions to environmental impacts. Sensitivity analyses were performed to determine to what extent RMWI predictions are sensitive to French incineration conditions. Comparison to generic LCI approaches highlighted merits of a regionalised model, especially concerning the type of gas treatment. The RMWI model effectively links input waste composition and environmental impacts.

Conclusions

RMW-predicted impacts, representation of stocks, sensitivity analyses and comparison to generic approaches were assessed to examine the model’s relevance, robustness and limits. The model is now available for French incineration but also can be used to assess environmental impacts of an incineration plant or another regional (city-to-country) incineration situation by adapting and calibrating it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • ADEME (2003) Incinération des déchets ménagers en France—Situation en 2000—Evolution et perspectives au 31.12.2002

  • ADEME (2010a) La composition des ordures ménagères et assimilées en France—Campagne nationale de caractérisation 2007

  • ADEME (2010b) Les installations de traitement des ordures ménagères en France—Résultats 2010

  • ADEME (2015) Les installations de traitement des ordures ménagères en France—Données 2012

  • ADEME, BRGM (2008) Mâchefers d’incinérations des ordures ménagères—États de l’art et perspectives. Technique et Ingénierie

  • Aissani L, Barbier R, Beurois C, Méry J, Schlierf K (2012) Résultats des inventaires et études de cas de l’utilisation des outils d’évaluation environnementale dans les processus décisionnels en matière de gestion des déchets. Livrable 1 du projet PRODDEVAL. Irstea, Engees, Médiation & Environnement

  • Aissani L, Barbier R, Beurois C, Déchaux C, Méry J, Ward-Perkins P (2014) Contributions à l’étude de l’insertion de l’évaluation environnementale dans les processus de décision de gestion des déchets—Livrable 2 du projet PRODDEVAL. Irstea, Engees, Médiation & Environnement

  • Allegrini E, Vadenbo C, Boldrin A, Astrup TF (2015) Life cycle assessment of resource recovery from municipal solid waste incineration bottom ash. J Environ Manag 151:132–143

    Article  CAS  Google Scholar 

  • Alston SM, Arnold JC (2011) Environmental impact of pyrolysis of mixed WEEE plastics part 2: life cycle assessment. Environ Sci Technol 45:9386–9392

    Article  CAS  Google Scholar 

  • Anex RP, Focht W (2002) Public participation in life cycle assessment and risk assessment: a shared need. Risk Anal 22:861–877

    Article  Google Scholar 

  • Antonini G (2005) Traitements thermiques des déchets—Procédés et technologies associées

  • Arena U, Mastellone ML, Perugini (2003a) The environmental performance of alternative solid waste management options: a life cycle assessment study. Chem Eng J 96:207–222

    Article  CAS  Google Scholar 

  • Arena U, Mastellone ML, Perugini (2003b) Life cycle assessment of a plastic packaging recycling system. Int J Life Cycle Assess 8:92

    Article  Google Scholar 

  • Assamoi B, Lawryshyn Y (2012) The environmental comparison of landfilling vs. incineration of MSW accounting for waste diversion. Waste Manag 32:1019–1030

    Article  Google Scholar 

  • Assefa G, Björklund A, Eriksson O, Frostell B (2005) ORWARE: an aid to environmental technology chain assessment. J Clean Prod 13:265–274

    Article  Google Scholar 

  • Baitz M et al. (2013) GaBi database & modelling principles 2013. PE International

  • Banar M, Cokaygil Z, Ozkan A (2009) Life cycle assessment of solid waste management options for Eskisehir, Turkey. Waste Manag 29:54–62

    Article  Google Scholar 

  • Beccali G, Cellura M, Mistretta M (2001) Managing municipal solid waste—energetic and environmental comparison among different management options. Int J Life Cycle Assess 6:243–249

    Article  CAS  Google Scholar 

  • Bergsdal H, Stromman AH, Hertwich EG (2005) Environmental assessment of two waste incineration strategies for central Norway. Int J Life Cycle Assess 10:263–272

    Article  CAS  Google Scholar 

  • Bhander GS, Christensen TH, Hauschild MZ (2010) EASEWASTE—life cycle modeling capabilities for waste management technologies. Int J Life Cycle Assess 15:403–416

    Article  CAS  Google Scholar 

  • Björklund A, Finnveden G (2007) Life cycle assessment of a national policy proposal—the case of a Swedish waste incineration tax. Waste Manag 27:1046–1058

    Article  Google Scholar 

  • Björklund A, Dalemo M, Sonesson U (1999) Evaluating a municipal waste management plan using ORWARE. J Clean Prod 4:271–280

    Article  Google Scholar 

  • Boesch ME, Vadenbo C, Saner D, Huter C, Hellweg S (2014) An LCA model for waste incineration enhanced with new technologies for metal recovery and application to the case of Switzerland. Waste Manag 34:378–389

    Article  CAS  Google Scholar 

  • Bozorgirad MA, Zhang H, Haapala KR, Murthy GS (2013) Environmental impact and cost assessment of incineration and ethanol production as municipal solid waste management strategies. Int J Life Cycle Assess 18:1502–1512

    Article  CAS  Google Scholar 

  • Brattebø H, Reenaas M (2012) Comparing CO2 and NOx emissions from a district heating system with mass-burn waste incineration versus likely alternative solutions—City of Trondheim, 1986–2009. Resour Conser and Recy 60:147–158

    Article  Google Scholar 

  • Burnley SJ (2007) A review of municipal solid waste composition in the United Kingdom. Waste Manag 27:1274–1285

    Article  Google Scholar 

  • Burnley SJ, Ellis JC, Flowerdew R, Poll AJ, Prosser H (2007) Assessing the composition of municipal solid waste in Wales. Resour Conserv Recycl 49:264–283

    Article  Google Scholar 

  • Buttol P, Masoni P, Bonoli A, Goldoni S, Belladonna V, Cavazzuti (2007) LCA of integrated MSW management system: case study of the Bologna District. Waste Manag 27:1059–1070

    Article  CAS  Google Scholar 

  • Chaya W, Gheewala SH (2007) Life cycle assessment of MSW-to-energy schemes in Thailand. J Clean Prod 15:1463–1468

    Article  Google Scholar 

  • Chen D, Christensen TH (2010) Life cycle assessment (EASEWASTE) of two municipal solid waste incineration technologies in China. Waste Manag Res 28:508–519

    Article  CAS  Google Scholar 

  • Cherubini F, Bargigli S, Ulgiati S (2009) Life cycle assessment (LCA) of waste strategies: landfilling, sorting plant and incineration. Energy 34:2116–2123

    Article  CAS  Google Scholar 

  • Cherubini F, Peters GP, Berntsen T, Stromman AH, Hertwich E (2011) CO2 emissions from biomass combustion for bioenergy: atmospheric decay and contribution to global warming. Glob Change Biol Bioenerg 3:413–426

    Article  CAS  Google Scholar 

  • Cherubini F, Stromman AH, Hertwich E (2013) Biogenic CO2 fluxes from bioenergy and climate—a response. Ecol Model 253:79–81

    Article  Google Scholar 

  • Christensen TH, Bhander G, Lindvall H, Larsen AW, Fruergaard T, Damgaard A, Manfredi S, Boldrin A, Riber C, Hauschild M (2007) Experience with the use of LCA-modelling (EASEWASTE) in waste management. Waste Manag Res 25:257–262

    Article  Google Scholar 

  • Ciroth A, Hagelüken M, Sonnemann GW, Castells F, Fleischer G (2002a) Geographical and technological differences in life cycle inventories shown by the use of process models for waste incinerators part I. Technological and geographical differences. Int J Life Cycle Assess 7:295–300

    Article  CAS  Google Scholar 

  • Ciroth A, Hagelüken M, Sonnemann GW, Castells F, Fleischer G (2002b) Geographical and technological differences in life cycle inventories shown by the use of process models for waste incinerators part I. Technological and geographical differences. Int J Life Cycle Assess 7:363–368

    CAS  Google Scholar 

  • Dalemo M, Sonesson U, Björklund A, Mingarini K, Frostell B, Jönsson H, Nybrant T, Sundqvist JO, Thyseliusa L (1997) ORWARE – A simulation model for organic waste handling systems. Part 1: Model description. Resour Conserv Recy 21:17–37

  • Damien A (2009) Guide du traitement des déchets. Paris

  • De Feo G, Malvano C (2009) The use of LCA in selecting the best MSW management system. Waste Manag 29:1901–1915

    Article  CAS  Google Scholar 

  • den Boer E, Jedrczak A, Kowalski Z, Kulczycka J, Szpadt R (2010) A review of municipal solid waste composition and quantities in Poland. Waste Manag 30:369–377

    Article  Google Scholar 

  • Di Maria F, Micale C (2015) Life cycle analysis of management options for organic waste collected in an urban area. Environ Sci Pollut R 22:248–263

    Article  CAS  Google Scholar 

  • Doka G (2003) Life cycle inventories of waste treatment services. ecoinvent report no. 13. Swiss Centre for Life Cycle Inventories, St. Gallen

  • Doka G (2008) Calculation tool for waste disposal in municipal solid waste incinerators MSWI, 2.1 edn. ecoinvent, Zurich

  • Edelmann W, Schleiss K, Joss A (2000) Ecological, energetic and economic comparison of anaerobic digestion with different competing technologies to treat biogenic wastes. Water Sci Technol 41:263–273

    CAS  Google Scholar 

  • Ekvall T, Assefa G, Bjorklund A, Eriksson O, Finnveden G (2007) What life-cycle assessment does and does not do in assessments of waste management. Waste Manag 27:989–996

    Article  Google Scholar 

  • Emery A, Davies A, Griffiths A, Williams K (2007) Environmental and economic modelling: a case study of municipal solid waste management in Wales. Resour Conserv Recy 49:244–263

    Article  Google Scholar 

  • Eriksson O, Bisaillon M (2011) Multiple system modelling of waste management. Waste Manag 31:2620–2630

    Article  Google Scholar 

  • Eriksson O, Frostell B, Björklund A, Assefa G, Sundqvist JO, Granath J, Carlsson M, Baky A, Thyselius L (2002) ORWARE: a simulation tool for waste management. Resour Conserv Recy 36:287–307. doi:10.1016/S0921-3449(02)00031-9

    Article  Google Scholar 

  • Eriksson O, Carlsson Reich M, Frostell B, Björklund A, Assefa G, Sundqviste JO, Granath J, Baky L, Thyselius L (2005) Municipal solid waste management from a systems perspective. J Clean Prod 13:241–252

    Article  Google Scholar 

  • European Commission (2006) Integrated pollution prevention and control—reference document on the best available techniques for waste incineration

  • European Commission (2010) International reference life cycle data system (ILCD) handbook—general guide for life cycle assessment—detailed guidance. Joint Research Centre—Institute for Environment and Sustainability, Luxembourg

    Google Scholar 

  • European Parliament (2008) Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain directives

  • Finnveden G, Johansson J, Lind P, Moberg (2005) Life cycle assessment of energy from solid waste—part 1: general methodology and results. J Clean Prod 13:213–219

    Article  Google Scholar 

  • Gianfilippo MD, Costa G, Pantini S, Allegrini E, Lombardi F, Astrup TF (2016) LCA of management strategies for RDF incineration and gasification bottom ash based on experimental leaching data. Waste Manag 47:285–298

    Article  Google Scholar 

  • Goedkoop MJ, Heijungs R, Huijbregts M, De Schryver A, Struijs J, Van Zelm R (2009) ReCiPe 2008, A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level; First edition Report I: Characterisation

  • Güereca LP, Gasso S, Baldasano JM, Jiménez-Guerrero (2006) Life cycle assessment of two biowaste management systems for Barcelona, Spain. Resour Conserv Recy 49:32–48

    Article  Google Scholar 

  • Guest G, Cherubini F, Stromman AH (2013) Global warming potential of carbon dioxide emissions from biomass stored in the anthroposphere and used for bioenergy at end of life. J Ind Ecol 17:20–30

    Article  CAS  Google Scholar 

  • Guinée JB et al (2002) Handbook on life cycle assessment. Operational guide to the ISO standards. I: LCA in perspective. IIa: guide. IIb: operational annex. III: scientific background. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Haight M (2004) Technical report: integrated solid waste management model. University of Waterloo, Canada

  • Hellweg S, Hofstetter TB, Hungerbuhler K (2001) Modeling waste incineration for life-cycle inventory analysis in Switzerland. Environ Model Assess 6:219–235

    Article  Google Scholar 

  • Hla SS, Roberts D (2015) Characterisation of chemical composition and energy content of green waste and municipal solid waste from greater Brisbane, Australia. Waste Manag 41:12–19

    Article  CAS  Google Scholar 

  • Hong RJ, Wang GF, Guoc RZ, Cheng X, Liu Q, Zhang PJ, Qian GR (2006) Life cycle assessment of BMT-based integrated municipal solid waste management: case study in Pudong, China. Resour Conserv Recy 49:129–146

    Article  Google Scholar 

  • Hong J, Xiangzhi L, Zhaojie (2010) Life cycle assessment of four municipal solid waste management scenarios in China. Waste Manag 30:2362–2369

    Article  CAS  Google Scholar 

  • Horttanainen M, Teirasvuo N, Kapustina V, Hupponen M, Luoranen M (2013) The composition, heating value and renewable share of the energy content of mixed municipal solid waste in Finland. Waste Manag 33:2680–2686

    Article  CAS  Google Scholar 

  • Huijbregts MAJ, Norris G, Bretz CA, Maurice B, von Bahr B, Weidema B, de Beaufort ASH (2001) Framework for modelling data uncertainty in life cycle inventories. Int J Life Cycle Assess 6:127–132

    Article  Google Scholar 

  • Jeswani HK, Smith RW, Azapagic A (2013) Energy from waste: carbon footprint of incineration and landfill biogas in the UK. Int J Life Cycle Assess 18:218–229

    Article  CAS  Google Scholar 

  • Jolliet O, Margni M, Charles R, Humbert S, Payet J, Rebitzer G, Rosenbaum R (2003) IMPACT 2002+: a new life cycle impact assessment methodology. Int J Life Cycle Assess 8:324–330

    Article  Google Scholar 

  • JORF (2002) Arrêté du 20 septembre 2002 relatif aux installations d’incinération et de co-incinération de déchets non dangereux et aux installations incinérant des déchets d’activités de soins à risques infectieux

  • Kaplan PO, Ranjithan SR, Barlaz MA (2009) Use of life cycle analysis to support solid waste management planning for Delaware. Environ Sci Technol 43:1264–1270

    Article  CAS  Google Scholar 

  • Kirkeby JT, Birgisdottir H, Hansen TL, Christensen TH, Bhander GS, Hauschild M (2006a) Environmental assessment of solid waste systems and technologies: EASEWASTE. Waste Manag Res 24:3–15

    Article  Google Scholar 

  • Kirkeby JT, Birgisdottir H, Hansen TL, Christensen TH, Bhander GS, Hauschild M (2006b) Evaluation of environmental impacts from municipal solid waste management in the municipality of Aarhus, Denmark (EASEWASTE). Waste Manag Res 24:16–26

    Article  Google Scholar 

  • Koci V, Trecakova T (2011) Mixed municipal waste management in the Czech Republic from the point of view of the LCA method. Int J Life Cycle Assess 16:113–114

    Article  CAS  Google Scholar 

  • Koehler A, Peyer F, Salzmann C, Saner D (2011) Probabilistic and technology-specific modeling of emissions from municipal solid-waste incineration. Environ Sci Technol 45:3487–3495

    Article  CAS  Google Scholar 

  • Liamsanguan C, Gheewala SH (2008a) The holistic impact of integrated solid waste management on greenhouse gas emission in Phuket. J Clean Prod 17:1865–1871

    Article  Google Scholar 

  • Liamsanguan C, Gheewhala SH (2008b) LCA: a decision support tool for environmental assessment of MSW management systems. J Environ Manag 87:132–138

    Article  CAS  Google Scholar 

  • Margallo M, Aldaco R, Irabien A, Cariilo V, Fischer M, Bala A, Fullana P (2014) Life cycle assessment modelling of waste-to-energy incineration in Spain and Portugal. Waste Manag Res 32:492–499

    Article  CAS  Google Scholar 

  • McDougall F, White P, Franke M, Hindle P (2001) Integrated solid waste management: a life cycle inventory (2nd edition) Blackwell Publishing ISBN 0-632-05889-7 p 513

  • Merrild H, Damgaard A, Christensen TH (2008) Life cycle assessment of waste paper management: the importance of technology data and system boundaries in assessing recycling and incineration. Resour Conserv Recy 12:1391–1398

    Article  Google Scholar 

  • Merrild H, Larsen AW, Christensen TH (2012) Assessing recycling versus incineration of key materials in municipal waste: the importance of efficient energy recovery and transport distances. Waste Manag 32:1009–1018

    Article  Google Scholar 

  • Miliute J, Staniskis KJ (2010) Application of life cycle assessment in optimisation of municipal waste management systems: the case of Lithuania. Waste Manag Res 28:298–308

    Article  Google Scholar 

  • Moberg A, Finnveden G, Johansson J, Lind P (2005) Life cycle assessment of energy from solid waste—part 2: landfilling compared to other treatment methods. J Clean Prod 13:231–240

    Article  Google Scholar 

  • Moletta R (2009) Le traitement des déchets. Paris

  • Morris J (2005) Comparative LCAs for curbside recycling versus either landfilling or incineration with energy recovery. Int J Life Cycle Assess 10:273–284

    Article  Google Scholar 

  • Morselli L, Bartoli M, Bertacchini M, Brighetti A, Luzi J, Passarini F, Masoni P (2005) Tools for evaluation of impact associated with MSW incineration: LCA and integrated environmental monitoring system. Waste Manag 25:191–196

    Article  CAS  Google Scholar 

  • Ngahane EL (2015) Gestion technique de l’environnement d’une ville (Benbereke au Bénin): caractérisation et quantification des déchets solides émis; connaissance des ressources en eau et approche technique. Université de Liège

  • OJEU (2008) Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives vol 2008/98/EC, 19 November 2008 edn. Official Journal of the European Union, Strasbourg

  • Ozeler D, Yetis U, Demirer GN (2006) Life cycle assessment of municipal solid waste management methods: Ankara case study. Environ Int 32:405–411

    Article  CAS  Google Scholar 

  • Resse A, Mallard P, Morvan B (2007) Etablissement d’une correspondance entre les méthodes de caractérisation des ordures ménagères sur sec et sur humide. ADEME/Cemagref

  • Riber C, Bhander GS, Christensen TH (2008) Environmental assessment of waste incineration in a life cycle perspective (EASEWASTE). Waste Manag Res 26:96–103

    Article  CAS  Google Scholar 

  • Salhofer S, Wassermann G, Binner E (2007) Strategic environmental assessment as an approach to assess waste management systems. Experiences from Austrian case study. Environ Model Softw 22:610–618

    Article  Google Scholar 

  • Scipioni A, Mazzi A, Niero M, Boatto T (2009) LCA to choose among alternative design solutions: the case study of a new Italian incineration line. Waste Manag 29:2462–2474

    Article  CAS  Google Scholar 

  • Solano E, Dumas RD, Harrison KW, Ranjithan SR, Barlaz MA, Brill ED (2002a) Life-cycle-based solid waste management. II: illustrative applications. J Environ Eng 28(10). doi:10.1061:/ASCE)0733–9372(2002)128:10(993)

  • Solano E, Ranjithan S, Barlaz M, Brill E (2002b) Life-cycle-based solid waste management. I: model development. J Environ Eng 128:981–992

    Article  CAS  Google Scholar 

  • Sonnemann GW, Schuhmacher M, Castells F (2003) Uncertainty assessment by Monte Carlo simulation in a life cycle inventory of electricity produced by a waste incinerator. J Clean Prod 11:279–292

    Article  Google Scholar 

  • Staley BF, Barlaz MA (2009) Composition of municipal solid waste in the United States and implications for carbon sequestration and methane yield. J Environ Eng 135:901–909

    Article  CAS  Google Scholar 

  • Stirling A (2006) Analysis, participation and power: justification and closure in participatory multi-criteria analysis. Land Use Policy 23:95–107

    Article  Google Scholar 

  • SVDU (2016) Technical characteristics and quantitative production data for the year 2011 of incineration plants in France. http://www.incineration.org/?-Usines-. Accessed 25 May 2016

  • Tang Y, Liu C, Shih K (2013) Beneficial metal stabilization mechanisms using simulated sludge incineration ash for ceramic products. J Chem Technol Biotechnol 89:536–543

    Article  Google Scholar 

  • Technical University of Denmark (2012) Easewaste - User manual p 135 http://documents.er.dtu.dk/Projects/Easewaste/Shared%20Files/pdf/120412%20-%20Documanual%20-%20Full.pdf

  • Toniolo S, Mazzi A, Niero M, Zuliani F, Scipioni A (2013) Comparative LCA to evaluate how much recycling is environmentally favourable for food packaging. Resour Conserv Recy 77:61–68

    Article  Google Scholar 

  • Tunesi S (2011) LCA of local strategies for energy recovery from waste in England, applied to a large municipal flow. Waste Manag 31:561–571

    Article  Google Scholar 

  • Turconi R, Butera S, Boldrin A, Grosso M, Rigamonti L, Astrup T (2011) Life cycle assessment of waste incineration in Denmark and Italy using two LCA models. Waste Manag Res 29:78–90

    Article  Google Scholar 

  • Vagt H, Rubik F, Jacob K, Huppes G, Ekvall T (2009) LCA options for sustainable governance assessed. CALCAS Co-ordination Action for innovation in Life-Cycle Analysis for Sustainability. Berlin

  • Vergara SE, Damgaard A, Horvath A (2011) Boundaries matter: GHG emission reductions from alternatives waste treatment strategies for California’s municipal solid waste. Resour Conserv Recy 57:87–97

    Article  Google Scholar 

  • Villeneuve J, Michel P, Fournet D, Lafon C, Ménard Y, Wavrer P, Guyonnet D (2009) Process-based analysis of waste management systems: a case study. Waste Manag 29:2–11

    Article  CAS  Google Scholar 

  • Weidema BP, Wesmaes M, Christiansen K, Koneczny K (2006) Life cycle based cost-benefit assessment of waste management options presentation for ISWA annual congress 2006. Copenhagen 2006(10):1–5

    Google Scholar 

  • Weitz K, Barlaz M, Ranjithan R, Brill D, Thorneloe S, Ham R (1999) Life cycle management of municipal solid waste. Int J Life Cycle Assess 4:195–201

    Article  Google Scholar 

  • Wittmaier M, Langer S, Sawilla B (2009) Possibilities and limitations of life cycle assessment (LCA) in the development of waste utilization systems—applied examples for a region in northern Germany. Waste Manag 29:1732–1738

    Article  CAS  Google Scholar 

  • Zhao W, van der Voet E, Zhang Y, Huppes G (2009a) Life cycle assessment of municipal solid waste management with regard to greenhouse gas emission: case study of Tianjin, China. Sci Total Environ 407:1517–1526

    Article  CAS  Google Scholar 

  • Zhao Y, Wang HT, Lu WJ, Damgaard A, Christensen TH (2009b) Life cycle assessment of the municipal solid waste management system in Hangzhou, China (EASEWASTE). Waste Manag Res 27:399–406

    Article  Google Scholar 

  • Zhao Y, Christensen TH, Lu W, Wu H, Wang (2011a) Environmental impact assessment of solid waste management in Beijing City, China. Waste Manag 31:793–799

    Article  Google Scholar 

  • Zhao W, Huppes G, van der Voet E (2011b) Eco-efficiency for GHG emission mitigation of municipal solid waste management: a case study of Tianjin, China. Waste Manag 31:1407–1415

    Article  Google Scholar 

  • Zhao Y, Xing W, Zhang X, Christensen TH (2012) Environmental impact assessment of the incineration of municipal solid waste with auxiliary coal in China. Waste Manag 32:1989–1998

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Irstea for financially supporting the internship of LN and members of AgorACV, a network of LCA practitioners in western France, for the discussions and collaborations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynda Aissani.

Additional information

Responsible editor: Shabbir Gheewala

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Déchaux, C., Nitschelm, L., Giard, L. et al. Development of the regionalised municipal solid waste incineration (RMWI) model and its application to France. Int J Life Cycle Assess 22, 1514–1542 (2017). https://doi.org/10.1007/s11367-017-1268-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11367-017-1268-0

Keywords

Navigation