Skip to main content

Advertisement

Log in

A flexible parametric model for a balanced account of forest carbon fluxes in LCA

  • LAND USE IN LCA
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Purpose

Despite a mature debate on the importance of a time-dependent account of carbon fluxes in life cycle assessments (LCA) of forestry products, static accounts of fluxes are still common. Time-explicit inventory of carbon fluxes is not available to LCA practitioners, since the most commonly used life cycle inventory (LCI) databases use a static approach. Existing forest models are typically applied to specific study fields for which the detailed input parameters required are available. This paper presents a simplified parametric model to obtain a time-explicit balanced account of the carbon fluxes in a forest for use in LCA. The model was applied to the case of spruce as an example.

Methods

The model calculated endogenous and exogenous carbon fluxes in tons of carbon per hectare. It was designed to allow users to choose (a) the carbon pools to be included in the analysis (aboveground and belowground carbon pools, only aboveground carbon or only carbon in stem); (b) a linear or sigmoidal dynamic function describing biomass growth; (c) a sigmoidal, negative exponential or linear dynamic function describing independently the decomposition of aboveground and belowground biomass; and (d) the forest management features such as stand type, rotation time, thinning frequency and intensity.

Results and discussion

The parametric model provides a time-dependent LCI of forest carbon fluxes per unit of product, taking into account the typically limited data available to LCA practitioners, while providing consistent and robust outcomes. The results obtained for the case study were validated with the more complex CO2FIX. The model ensures carbon balance within spatial and time delimitation defined by the user by accounting for the annual biomass degradation and production in each carbon pool. The inventory can be used in LCA studies and coupled with classic indicators (e.g. global warming potential) to accurately determine the climate impacts over time. The model is applicable globally and to any forest management practice.

Conclusions

This paper proposes a simplified and flexible forest model, which facilitates the implementation in LCA of time-dependent assessments of bio-based products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abrahamsen P, Hansen S (2000) Daisy: an open soil-crop-atmosphere system model. Environ Model Softw 15(3):313–330

    Article  Google Scholar 

  • Anderson-Teixeira KJ, Davis SC, Masters MD, Delucia EH (2009) Changes in soil organic carbon under biofuel crops. Glob Change Biol 1(1):75–96

    Article  CAS  Google Scholar 

  • Babaizadeh H, Haghighi N, Asadi S, Broun R, Riley D (2015) Life cycle assessment of exterior window shadings in residential buildings in different climate zones. Build Environ 90:168–177

    Article  Google Scholar 

  • Brandão M, Levasseur A, Kirschbaum MUF, Weidema BP, Cowie AL, Jørgensen SV, Hauschild MZ, Pennington DW, Chomkhamsri K (2013) Key issues and options in accounting for carbon sequestration and temporary storage in life cycle assessment and carbon footprinting. Int J Life Cycle Assess 18(1):230–240

    Article  Google Scholar 

  • Broadmeadow M, Matthews R (2003) Forests, carbon and climate change: the UK contribution. Edinburgh: Forestry Commission. In: Information note. UK Forestry Commission, Edinburgh

    Google Scholar 

  • Chambers JQ, Higuchi N, Schimel JP, Ferreira LV, Melack JM (2000) Decomposition and carbon cycling of dead trees in tropical forests of the central Amazon. Oecologia 122(3):380–388

    Article  CAS  Google Scholar 

  • Cherubini F, Peters GP, Berntsen T, Stromman AH, Hertwich E (2011) CO2 emissions from biomass combustion for bioenergy: atmospheric decay and contribution to global warming. Glob Change Biol 3(5):413–426

    Article  CAS  Google Scholar 

  • Ciais P, Sabine CL, Bala G, Bopp L, Brovkin V, Canadell JG, Chhabra A, DeFries R, Galloway J, Heimann M, Jones C, Le Quéré C, Myneni RB, Piao S, Thornton P (2013) Carbon and other biogeochemical cycles. In: Climate change 2013: the physical science basis., Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press

    Google Scholar 

  • Coleman K, Jenkinson DS (1996) RothC-26.3: a model for the turnover of carbon in soil. In: Evaluation of soil organic matter models, using existing long-term datasets. Springer, Berlin, p 237

    Chapter  Google Scholar 

  • Coleman L, Jenkinson DS (2008) ROTHC-26.3: a model for the turnover of carbon in soil. Model description and Windows user guide. Rothamsted Research, Harpenden

    Google Scholar 

  • Don A, Osborne B, Hastings A, Skiba U, Carter MS, Drewer J, Flessa H, Freibauer A, Hyvönen N, Jones MB, Lanigan GJ, Mander U, Monti A, Djomo SN, Valentine J, Walter K, Zegada-Lizarazu W, Zenone T (2012) Land-use change to bioenergy production in Europe: implications for the greenhouse gas balance and soil carbon. Glob Change Biol 4(4):372–391

    Article  CAS  Google Scholar 

  • Ecoinvent (2016) Ecoinvent. Zurich

  • Eriksson E, Karlsson PE, Hallberg L, Jelse K (2010) Carbon footprint of cartons in Europe—carbon footprint methodology and biogenic carbon sequestration. IVL Swedish Environmental Research Institute Ltd, Göteborg

    Google Scholar 

  • FAO/JRC (2012) Global forest land-use change 1990–2005. In: FAO forestry paper. Food and Agriculture Organization of the United Nations and European Commission Joint Research Centre, Rome

    Google Scholar 

  • Freschet GT, Weedon JT, Aerts R, van Hal JR, Cornelissen JHC (2012) Interspecific differences in wood decay rates: insights from a new short-term method to study long-term wood decomposition. J Ecol 100(1):161–170

    Article  Google Scholar 

  • GaBi (2016) GaBi. Thinkstep, Leinfelden-Echterdingen

    Google Scholar 

  • Harmon ME, Krankina ON, Sexton J (2000) Decomposition vectors: a new approach to estimating woody detritus decomposition dynamics. Can J Forest Res 30(1):76–84

    Article  Google Scholar 

  • Helin T, Sokka L, Soimakallio S, Pingoud K, Pajula T (2013) Approaches for inclusion of forest carbon cycle in life cycle assessment—a review. Glob Change Biol 5(5):475–486

    Article  CAS  Google Scholar 

  • Holtsmark B (2012) Harvesting in boreal forests and the biofuel carbon debt. Climatic Change 112(2):415–428

    Article  CAS  Google Scholar 

  • IPCC (2006) IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme. In: Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K (eds) Published: IGES, Japan. http://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/4_Volume4/V4_04_Ch4_Forest_Land.pdf

  • Iritani DR, Silva DAL, Saavedra YMB, Grael PFF, Ometto AR (2015) Sustainable strategies analysis through life cycle assessment: a case study in a furniture industry. J Clean Prod 96:308–318

    Article  Google Scholar 

  • Jonker JGG, Junginger M, Faaij A (2014) Carbon payback period and carbon offset parity point of wood pellet production in the South-eastern United States. Glob Change Biol 6(4):371–389

    Article  Google Scholar 

  • Kim S, Dale BE (2008) Life cycle assessment of fuel ethanol derived from corn grain via dry milling. Bioresource Technol 99(12):5250–5260

    Article  CAS  Google Scholar 

  • Kindermann GE, McCallum I, Fritz S, Obersteiner M (2008) A global forest growing stock, biomass and carbon map based on FAO statistics. Silva Fenn 42(3):387–396

    Article  Google Scholar 

  • Kirschbaum MUF (1999) CenW, a forest growth model with linked carbon, energy, nutrient and water cycles. Ecol Model 118(1):17–59

    Article  CAS  Google Scholar 

  • Kirschbaum MUF (2000) CenW: a generic forest growth model. New Zeal J For Sci 45(1):15–19

    Google Scholar 

  • KjøNaas OJ, Aalde H, Dalen LS, de Wit HA, Eldhuset T, Øyen BH (2000) Carbon stocks in Norwegian forested systems. Preliminary data. Biotechnol Agron Soc Envir 4(4):311–314

    Google Scholar 

  • Klein D, Wolf C, Schulz C, Weber-Blaschke G (2015) 20 years of life cycle assessment (LCA) in the forestry sector: state of the art and a methodical proposal for the LCA of forest production. Int J Life Cycle Assess 20(4):556–574

    Article  CAS  Google Scholar 

  • Laiho R, Prescott CE (2004) Decay and nutrient dynamics of coarse woody debris in northern coniferous forests: a synthesis. Can J Forest Res 34(4):763–777

    Article  CAS  Google Scholar 

  • Levasseur A, Lesage P, Margni M, Deschenes L, Samson R (2010) Considering time in LCA: dynamic LCA and its application to global warming impact assessments. Environ Sci Technol 44(8):3169–3174

    Article  CAS  Google Scholar 

  • Liski J, Lehtonen A, Palosuo T, Peltoniemi M, Eggers T, Muukkonen P, Makipaa R (2006) Carbon accumulation in Finland’s forests 1922–2004—an estimate obtained by combination of forest inventory data with modelling of biomass, litter and soil. Ann For Sci 63(7):687–697

    Article  CAS  Google Scholar 

  • Mäkinen H, Isomäki A (2004) Thinning intensity and growth of Scots pine stands in Finland. Forest Ecol Manag 201(2–3):311–325

    Article  Google Scholar 

  • Masera OR, Garza-Caligaris JF, Kanninen M, Karjalainen T, Liski J, Nabuurs GJ, Pussinen A, de Jong BHJ, Mohren GMJ (2003) Modeling carbon sequestration in afforestation, agroforestry and forest management projects: the CO2FIX V. 2 approach. Ecol Model 164(2–3):177–199

    Article  CAS  Google Scholar 

  • Mckechnie J, Colombo S, Chen JX, Mabee W, Maclean HL (2011) Forest bioenergy or forest carbon? Assessing trade-offs in greenhouse gas mitigation with wood-based fuels. Environ Sci Technol 45(2):789–795

    Article  CAS  Google Scholar 

  • Means JE, Macmillan PC, Cromack K Jr (1992) Biomass and nutrient content of Douglas-fir logs and other detrital pools in an old-growth forest, Oregon, USA. Can J Forest Res 22(10):1536–1546

    Article  CAS  Google Scholar 

  • Milne E, Adamat RA, Batjes NH, Bernoux M, Bhattacharyya T, Cerri CC, Cerri CEP, Coleman K, Easter M, Falloon P, Feller C, Gicheru P, Kamoni P, Killian K, Pal DK, Paustian K, Powlson DS, Rawajfih Z, Sessay M, Williams S, Wokabi S (2007) National and sub-national assessments of soil organic carbon stocks and changes: the GEFSOC modelling system. Agr Ecosyst Environ 122(1):3–12

    Article  CAS  Google Scholar 

  • Mirabella N, Castellani V, Sala S (2014) LCA for assessing environmental benefit of eco-design strategies and forest wood short supply chain: a furniture case study. Int J Life Cycle Assess 19(8):1536–1550

    Article  CAS  Google Scholar 

  • Muller-Wenk R, Brandao M (2010) Climatic impact of land use in LCA-carbon transfers between vegetation/soil and air. Int J Life Cycle Assess 15(2):172–182

    Article  Google Scholar 

  • Nilsen P, Abrahamsen G (2003) Scots pine and Norway spruce stands responses to annual N, P and Mg fertilization. Forest Ecol Manag 174(1–3):221–232

    Article  Google Scholar 

  • ÖKOBAUDAT (2016) ÖKOBAUDAT. Nature Conservation Federal Ministry for the Environment, Building and Nuclear Safety, Germany

    Google Scholar 

  • Olson JS (1963) Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44(2):322–331

    Article  Google Scholar 

  • Parton WJ, Schimel DS, Cole CV, Ojima DS (1987) Analysis of factors controlling soil organic matter levels in great plains grasslands. Soil Sci Soc Am J 51(5):1173–1179

    Article  CAS  Google Scholar 

  • Parton WJ, Stewart JWB, Cole CV (1988) Dynamics of C, N, P and S in grassland soils: a model. Biogeochemistry 5(1):109–131

    Article  CAS  Google Scholar 

  • Perez-Garcia J, Lippke B, Comnick J, Manriquez C (2005) An assessment of carbon pools, storage, and wood products market substitution using life-cycle analysis results. Wood Fiber Sci 37:140–148

    CAS  Google Scholar 

  • Petersen BM, Trydeman Knudsen M, Hermansen JE, Halberg N (2013) An approach to include soil carbon changes in life cycle assessments. J Clean Prod 52:217–224

    Article  CAS  Google Scholar 

  • Pinsonnault A, Lesage P, Levasseur A, Samson R (2014) Temporal differentiation of background systems in LCA: relevance of adding temporal information in LCI databases. Int J Life Cycle Assess 19(11):1843–1853

    Article  Google Scholar 

  • Sayer EJ, Heard MS, Grant HK, Marthews TR, Tanner EVJ (2011) Soil carbon release enhanced by increased tropical forest litterfall. Nature Clim Change 1(6):304–307

    Article  CAS  Google Scholar 

  • Schlamadinger B, Marland G (1996) The role of forest and bioenergy strategies in the global carbon cycle. Biomass Bioenerg 10(5–6):275–300

    Article  CAS  Google Scholar 

  • Shevliakova E, Pacala SW, Malyshev S, Hurtt GC, Milly PCD, Caspersen JP, Sentman LT, Fisk JP, Wirth C, Crevoisier C (2009) Carbon cycling under 300 years of land use change: importance of the secondary vegetation sink. Global Biogeochem Cy 23(2). doi:10.1029/2007GB003176

  • Statistic Sweden (2013) Forest statistics from the Swedish national forest inventory

    Google Scholar 

  • Stephenson NL, Das AJ, Condit R, Russo SE, Baker PJ, Beckman NG, Coomes DA, Lines ER, Morris WK, Ruger N, Alvarez E, Blundo C, Bunyavejchewin S, Chuyong G, Davies SJ, Duque A, Ewango CN, Flores O, Franklin JF, Grau HR, Hao Z, Harmon ME, Hubbell SP, Kenfack D, Lin A, Makana JR, Malizia A, Malizia LR, Pabst RJ, Pongpattananurak N, Su SH, Sun IF, Tan S, Thomas D, van Mantgem PJ, Wang X, Wiser SK, Zavala MA (2014) Rate of tree carbon accumulation increases continuously with tree size. Nature 507(7490):90–93

    Article  CAS  Google Scholar 

  • Storaunet K, Rolstad J (2002) Time since death and fall of Norway spruce logs in old-growth and selectively cut boreal forest. Can J Forest Res 32(10):1801–1812

    Article  Google Scholar 

  • Tuomi M, Laiho R, Repo A, Liski J (2011) Wood decomposition model for boreal forests. Ecol Model 222(3):709–718

    Article  CAS  Google Scholar 

  • Valsta L (1992) Acta for Fenn 232. The Society of Forestry in Finland—The Finnish Forest Research Institute, Tampere

    Google Scholar 

  • Van Der Voet E, Lifset RJ, Luo L (2010) Life-cycle assessment of biofuels, convergence and divergence. Biofuels 1(3):435–449

    Article  Google Scholar 

  • Vieilledent G, Vaudry R, Andriamanohisoa SFD, Rakotonarivo OS, Randrianasolo HZ, Razafindrabe HN, Bidaud Rakotoarivony C, Ebeling J, Rasamoelina M (2012) A universal approach to estimate biomass and carbon stock in tropical forests using generic allometric models. Ecol Appl 22(2):572–583

    Article  CAS  Google Scholar 

  • Woodward FI, Smith TM, Emanuel WR (1995) A global land primary productivity and phytogeography model. Global Biogeochem Cy 9(4):471–490

    Article  CAS  Google Scholar 

  • Yoshimoto A, Marušák R (2007) Evaluation of carbon sequestration and thinning regimes within the optimization framework for forest stand management. Eur J For Res 126(2):315–329

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by Aarhus University through the project ‘Environmental and socioeconomic potential of new concepts and business models for increased production and utilization of biomass from agricultural land in Denmark (ECO-ECO)’. Massimo Pizzol’s contribution to this work was funded by the research grant no. 1305-00030B of the Danish Strategic Research Council. The authors would like to thank the anonymous reviewers for their contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele De Rosa.

Additional information

Responsible editor: Mark Huijbregts-check

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Rosa, M., Schmidt, J., Brandão, M. et al. A flexible parametric model for a balanced account of forest carbon fluxes in LCA. Int J Life Cycle Assess 22, 172–184 (2017). https://doi.org/10.1007/s11367-016-1148-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11367-016-1148-z

Keywords

Navigation