Skip to main content
Log in

Rationality of eco-efficiency methods: Is the BASF analysis dependent on irrelevant alternatives?

  • LIFE CYCLE MANAGEMENT
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Purpose

The paper aims at testing and improving the BASF eco-efficiency analysis (EEA) with regard to the rationality axiom “independence from irrelevant alternatives” (IIA). If this axiom is violated, rankings could be biased or influenced subjectively by the choice of considered alternatives.

Methods

We introduce an artificial yet realistic “irrelevant alternative” in an EEA case study and compare the ranking results. The different stages of the EEA are analysed to uncover the potential source(s) of the detected violation.

Results and discussion

The example proves the violation of the IIA rationality axiom in the EEA. It is shown at which stages and how the weights in the aggregation process have to be adjusted to avoid this shortcoming.

Conclusions

In specific constellations, the EEA may violate the IIA rationality axiom. By adequately adjusting the weights at certain stages of the aggregation process, this shortcoming can be avoided. Also, the results account for the relevance of basic principles derived from decision theory in the life cycle assessment/sustainability context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. In the following, instead of “products and processes” we will just use “products.”

  2. Except for the categories Emissions and Emissions to air. Due to their aggregated form, they are calculated based on the weighting factors (relevance and societal) of their subcomponents.

  3. Please note that the ranges of the sub-criteria POCP, Toxicity potential - deposit/disposal and Risk potential - pollution by traffic also do not change, but due to varying ranges of other sub-criteria, the final aggregated criteria ranges for Emissions, Toxicity potential and Risk potential do change.

References

  • Ahn H, Dyckhoff H (2004) Zum Kern des Controllings: Von der Rationalitätssicherung zur Effektivitäts- und Effizienzsicherung. In: Scherm, E, Pietsch G (eds): Controlling - Theorien und Konzeptionen: München, 501-525

  • Arrow KJ (1963) Social choice and individual values, 2nd edn. Yale University Press, New Haven

    Google Scholar 

  • BASF (2010) Headline® fungicide eco-efficiency analysis final report – August 2010, available at: http://www.nsf.org/newsroom_pdf/BASF_Headline_EEA_Study_Verification_Final__August_2010.pdf (9.6.15)

  • BASF (2015a) Homepage “eco-efficiency analysis”, available at: https://www.basf.com/en/company/sustainability/management-and-instruments/quantifying-sustainability/eco-efficiency-analysis.html (9.6.15)

  • BASF (2015b) Homepage “making headlines—corn grown with or without BASF fungicide, Headline®”, available at: http://www.agro.basf.com/agr/AP-Internet/en/content/sustainability/eco-efficiency-analysis/case-study-corn-grown-with-or-without-BASF-fungicide-headline (9.6.15)

  • Dreyer LC, Hauschild MZ (2006) Scoping must be done in accordance with the goal definition also in social LCA. Int J Life Cycle Assess 11(2):87

    Article  Google Scholar 

  • DeSimone LD, Popoff F (1997) Eco-efficiency: the business link to sustainable development. Mass, MIT Press, Cambridge

    Google Scholar 

  • Dyckhoff H, Ahn H (1998) Integrierte Alternativengenerierung und -bewertung. DBW 58(1):49–63

  • Dyckhoff H, Allen K (2001) Measuring ecological efficiency with data envelopment analysis (DEA). Eur J Oper Res 132(2):69–82

    Article  Google Scholar 

  • Ehrenfeld JR (2005) Eco-efficiency: philosophy, theory, and tools. J Ind Ecol 9(4):6–8

    Article  Google Scholar 

  • Eisenführ F, Weber M, Langer T (2010) Rational decision making. Springer, Heidelberg

    Book  Google Scholar 

  • Finnveden G (2000) On the limitations of life cycle assessment and environmental systems analysis tools in general. Int J Life Cycle Assess 5(4):229–238

    Article  Google Scholar 

  • Finnveden G, Hofstetter P, Bare JC, Basson L, Ciroth A, Mettier T, Seppälä J, Johansson J, Norris G, Volkwein S (2002) Normalization, grouping and weighting in life-cycle impact assessment. In: de Haes HA U, Jolliet O, Finnveden G (eds) Towards best practice in life cycle impact assessment. Society of Environmental Toxicology and Chemistry (SETAC), Pensacola, pp 177–208

    Google Scholar 

  • Hertwich EG, Hammitt JK (2001a) A decision-analytic framework for impact assessment. Part I: LCA and decision analysis. Int J Life Cycle Assess 6(1):5–12

    Article  CAS  Google Scholar 

  • Hertwich EG, Hammitt JK (2001b) A decision-analytic framework for impact assessment. Part II: midpoints, endpoints and criteria for method development. Int J Life Cycle Assess 6(5):265–272

    Article  CAS  Google Scholar 

  • Huppes G, Ishikawa M (2005a) A framework for quantified eco-efficiency analysis. J Ind Ecol 9(4):25–41

    Article  Google Scholar 

  • Huppes G, Ishikawa M (2005b) Eco-efficiency and its terminology. J Ind Ecol 9(4):43–46

    Article  Google Scholar 

  • Ilinitch AY, Schaltegger SC (1995) Developing a green business portfolio. Long Range Plann 28(2):29–38

    Article  Google Scholar 

  • ISO 14040 (2006) Environmental management live cycle assessment principles and framework. ISO 14040: 2006(E), International Standards Organization

  • ISO 14044 (2006) Environmental management life cycle assessment requirements and guidelines. ISO 14044: 2006(E), International Standards Organization

  • Keeney RL, Raiffa H (1993) Decisions with multiple objectives. Cambridge University Press, New York

    Book  Google Scholar 

  • Kicherer A, Schaltegger S, Tschochohei H, Ferreira Pozo B (2007) Eco-efficiency: combining life cycle assessment and life cycle costs via normalization. Int J Life Cycle Assess 12(7):537–543

    CAS  Google Scholar 

  • Kleine A, Saling P, von Hauff M (2004) Ökoeffizienz-Analyse zu Entsorgungsoptionen Mineralölkohlenwasserstoff-kontaminierter Böden - Bodenbehandlung oder Deponierung? Mainz

  • Kuosmanen T, Kortelainen M (2005) Measuring eco-efficiency of production with data envelopment analysis. J Ind Ecol 9(4):59–72

    Article  CAS  Google Scholar 

  • Landsiedel R, Saling P (2002) Assessment of toxicological risks for lifecycle assessment and eco-efficiency analysis. Int J LCA 7(5):261–268

    Article  CAS  Google Scholar 

  • Milnor JW (1954) Games against nature. In: Coombs CH, Davis RL (eds) Thrall RM. Decision Processes, New York, pp 49–59

    Google Scholar 

  • Nash JF (1950) The bargaining problem. Econometrica 18:155–162

    Article  Google Scholar 

  • Paczkowski N, Russ M (2013) Review report—refurbishment of an existing detached House in Germany using an external thermal insulation composite system based on Neopor® or Styropor®—gap assessment & critical review of BASF eco-efficiency analysis, available at: https://www.basf.com/documents/corp/en/sustainability/management-and-instruments/quantifying-sustainability/eco-efficiency-analysis/examples/eco-efficiency-analysis/EEA_Report_Insulation_Case_Study_2013.pdf (9.6.2015)

  • Reap J, Roman F, Duncan S, Bras B (2008a) A survey of unresolved problems in life cycle assessment: part 1: goal and scope and inventory analysis. Int J Life Cycle Assess 13:290–300

    Article  Google Scholar 

  • Reap J, Roman F, Duncan S, Bras B (2008b) A survey of unresolved problems in life cycle assessment: part 2: impact assessment and interpretation. Int J Life Cycle Assess 13:374–388

    Article  Google Scholar 

  • Saling P, Kicherer A, Dittrich-Krämer B, Wittlinger R, Zombik W, Schmidt I, Schrott W, Schmidt S (2002) Eco-efficiency analysis by BASF: the method. Int J Life Cycle Assess 7(4):203–218

    Article  Google Scholar 

  • Schaltegger S, Sturm A (1990) Ökologische Rationalität. Die Unternehmung 4:273–290

  • Schaltegger S, Sturm A (1998) Eco-efficiency by eco-controlling. On the implementation of EMAS and ISO 14001. vdf Hochschulverlag, Zurich

    Google Scholar 

  • Schmidt I (2007) Nachhaltige Produktbewertung mit der Sozio-Ökoeffizienz-Analyse. Karlsruhe

  • Seppälä J, Basson L, Norris G (2001) Decision analysis frameworks for life cycle impact assessment. J Ind Ecol 5(4):45–68

    Article  Google Scholar 

  • Society of Environmental Toxicology and Chemistry (SETAC) (1993) Guidelines for life-cycle assessment: a code of practice

  • Shonnard DR, Kicherer A, Saling P (2003) Industrial applications using BASF Eco-efficiency analysis: perspectives on green engineering principles. Environ Sci Technol 37(23):5340–5348

    Article  CAS  Google Scholar 

  • Uhlman BW, Saling P (2010) Measuring and communicating sustainability through eco-efficiency analysis. CEP December 2010, special expanded web-only version, American institute of chemical engineers, CEP magazine article, December 2010: 17-26d

  • von Nitzsch R, Weber M (1993) The effect of attribute ranges on weights in multiattribute utility measurements. Man Sci 39(8):937–943

    Article  Google Scholar 

  • von Weizsäcker E, Hargroves K, Smith MH, Desha C, Stasinopoulos P (2009) Factor five: transforming the global economy through 80% improvements in resource productivity. Earthscan, London

    Google Scholar 

  • Vriend NJ (1996) Rational behavior and economic theory. J Econ Behav Organ 29:263–285

    Article  Google Scholar 

  • Weber J, Schäffer U (2008) Introduction to controlling. Schaffer-Poeschel Verlag, Stuttgart

    Google Scholar 

  • Wenzel H (1998) Application dependency of LCA methodology: key variable and their mode of influencing the method. Int J Life Cycle Assess 3(5):281–288

    Article  Google Scholar 

  • World Business Council for Sustainable Development (WBCSD) (2000) Measuring eco-efficiency: a guide to reporting company performance. WBCSD, Geneva

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Dyckhoff.

Additional information

Responsible editor: Ivan Muñoz

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dyckhoff, H., Quandel, A. & Waletzke, K. Rationality of eco-efficiency methods: Is the BASF analysis dependent on irrelevant alternatives?. Int J Life Cycle Assess 20, 1557–1567 (2015). https://doi.org/10.1007/s11367-015-0957-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11367-015-0957-9

Keywords

Navigation