Skip to main content

Advertisement

Log in

Environmental and economic analysis of residual woody biomass transport for energetic use in Chile

  • WOOD AND OTHER RENEWABLE RESOURCES
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Purpose

This study compares transport performance of residual biomass using different pre-treatment options. Life cycle inventory data was obtained from forestry companies in southern Chile, databases, scientific and technological literature, as well as equipment operational manuals.

Methods

Three different scenarios were evaluated: residual biomass transport without pre-treatment (scenario 1), chipped residual biomass (scenario 2), and compacted residual biomass (scenario 3) transport. The truck’s loading capacity was considered as a function of the residual biomass density. Impact assessment was performed using software SimaPro 7.3.3 using the ReCiPe midpoint methodology. Moreover, an uncertainty analysis was performed using Monte Carlo simulation with a 95 % confidence. Transport costs evaluation variables considered were machine cost, machine residual value, amortization, personnel costs, fuel consumption, machine maintenance, and operational yield. All variables are based on local conditions of La Araucanía Region in Chile.

Results and discussion

Regarding greenhouse gas (GHG) emissions, optimum transport distance ranges were identified for the different scenarios. For a distance up to 23 km, scenario 1 is the most favorable; for distances between 23 and 206 km, scenario 2 is the most favorable one; and for distances longer than 206 km, compacted residual biomass (scenario 3) presents the lowest GHG emissions balance. When looking the other impact categories, it was established that the benefits are not only related to GHG emission savings but also to other impact categories. Transport impacts are only relevant for large distances, while for short distances biomass pre-treatment and loading stages provoke a higher environmental load. In fact, for scenario 2 where chipped biomass is transported, only for distances longer than 120 km, the transport stage accounts for more than 50 % of the environmental load of all impact categories. For the case of scenario 3 (compacted biomass transport), this situation occurs for a distance of at least 150 km.

Conclusions

Most probable optimal transport distances were determined for pre-treated and unpretreated biomass. In this sense, for determining the best transport option of residual biomass, transport distance, loading capacity, and pre-treatment processes efficiency, including chipping and compacting, as well as data uncertainty, should be taken into account. From these variables, biomass loading and pre-treatment stages account for a relevant percentage of the environmental impacts generated for transport distances of less than 100 km. In this sense, biomass loading and pre-treatment efficiency coupled with the effective supplies demand should be carefully studied in future research works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Beccali G, Cellura M, Mistretta M (2001) Managing municipal solid waste. Energetic and environmental comparison among different management options. Int J Life Cycle Assess 6:243–249

    Article  CAS  Google Scholar 

  • Bergsdal H, Strømman A, Hertwich EG (2005) Environmental assessment of two waste incineration strategies for central Norway. Int J Life Cycle Assess 10:263–272

    Article  CAS  Google Scholar 

  • Bojacá C, Schrevens E (2010) Parameter uncertainty in LCA: stochastic sampling under correlation. Int J Life Cycle Assess 15:238–246

    Article  Google Scholar 

  • Braam J, Tanner T, Askham C, Hendriks N, Maurice B, Mälkki H, Vold M, Wessman H, Beaufort A (2001) Energy, transport and waste models—availability and quality of energy, transport and waste models and data. Int J Life Cycle Assess 6(3):135–139

    Article  Google Scholar 

  • Bruno C, Castiglioni F, Girando C, Ferrero R, Ragazzoni C (2002) LCA of alternative scenarios for WMS in Cuneo province (in Italian: ‘LCA di scenari alternativi per la gestione integrata di RSU nel bacino 10 della Provincia di Cuneo’). Università degli Studi di Milano Bicocca, Dipartimento di Scienze dell'Ambiente e del Territorio (in Italian)

  • CNE (2008) Potencial de biomasa forestal. Comisión Nacional de Energía. Santiago, Chile. http://antiguo.cne.cl/cnewww/export/sites/default/05_Public_Estudios/descargas/Estudio_Potencial_Biomasa_Forestal.pdf

  • CNE (2011) Generación bruta SING - SIC. Comisión Nacional de Energía, Santiago, Chile

    Google Scholar 

  • Consoli F (1993) Guidelines for life cycle assessment: a code of practice. SETAC, Sesimbra, Portugal

    Google Scholar 

  • Cooper J, Woods L, Lee S (2008) Distance and backhaul in commodity transport modelling. Int J Life Cycle Assess 13:389–400

    Article  CAS  Google Scholar 

  • EMEP/EEA (2009) Emission inventory guidebook 2009. http://www.eea.europa.eu/publications/emep-eea-emission-inventory-guidebook-2009

  • Eriksson O, Carlsson Reich M, Frostell B, Björklund A, Assefa G, Sundqvist JO, Granath J, Baky A, Thyselius L (2005) Municipal solid waste management from a system perspective. J Clean Prod 13:241–252

    Article  Google Scholar 

  • Fan KQ, Zhang PF, Pei ZJ (2013) An assessment model for collecting and transporting cellulosic biomass. Renew Energ 50:786–794

    Article  Google Scholar 

  • Finnveden G (1999) Methodological aspects of life cycle assessment of integrated solid waste management systems. Resour Conserv Recycl 26:173–187

    Article  Google Scholar 

  • Finnveden G, Johansson J, Lind P, Moberg Å (2005) Life cycle assessment from solid waste—part I: general methodology and results. J Clean Prod 13:213–229

    Article  Google Scholar 

  • Finnveden G, Björklund A, Moberg A, Ekvall T, Moberg A (2007) Environmental and economic assessment methods for waste management decision-support: possibilities and limitations. Waste Manage Res 25:263–269

    Article  Google Scholar 

  • Frischknecht R, Jungbluth N (2004) Overview and methodology. Ecoinvent Database v1.1. Swiss Centre for Life Cycle Inventories. Dübendorf, Switzerland, 75pp

  • Frischknecht R, Jungbluth N, Althaus HJ, Doka G, Heck T, Hellweg S, Hischier R, Nemecek T, Rebitzer G, Spielmann M, Wernet G (2007) Overview and methodology. Ecoinvent report N°1. Swiss Centre for Life Cycle Inventories. Dübendorf, Switzerland

  • Gallego A, Hospido A, Moreira MT, Feijoo G (2009) Quantification of eutrophic aerial compounds in Galicia (NW Spain): part 1—NH3 inventory. Atmósfera 22(2):141–160

    Google Scholar 

  • García D, Solé C (2005) Estudio sobre la producción de agua potable mediante biomasa forestal. Ideas Sostenibles 3(12):1–8

    Google Scholar 

  • Huijbregts MAJ, Norris G, Bretz R, Ciroth A, Maurice B, von Bahr B, Weidema B, de Beaufort ASH (2001) Framework for modelling data uncertainty in life cycle inventories. Int J Life Cycle Assess 6(3):127–132

    Article  Google Scholar 

  • Huijbregts MAJ, Gilijamse W, Ragas MJ, Reijnders L (2003) Evaluating uncertainty in environmental life-cycle assessment. A case study comparing two insulation options for a Dutch onefamily dwelling. Environ Sci Technol 37(11):2600–2608

    Article  CAS  Google Scholar 

  • INE (2009) Compendio estadístico – 2.2 Estadísticas agropecuarias. Instituto Nacional de Estadística. Santiago, Chile. http://www.ine.cl/canales/menu/publicaciones/compendio_estadistico/compendio_estadistico2009.php

  • ISO 14040 (2006) Environmental management—life cycle assessment—principles and framework. International Organization for Standardization. Geneva, Switzerland

  • Karlhager J (2008) The Swedish market for wood briquettes—production and market development. ISSN 1654-1367

  • Miño E (2006) Catastro de residuos biomásicos de la IX Región como recursos para uso energético. Trabajo de Título de Ingeniería Ambiental, Universidad de La Frontera. Temuco, Chile

  • Morey RV, Kaliyan N, Tiffany DG, Schmidt DR (2010) A corn stover supply logistics system. Appl Eng Agric 26(3):455–461

    Article  Google Scholar 

  • Muñoz E, Navia R (2011) Life cycle assessment of solid waste management strategies in a chlor-alkali production facility. Waste Manage Res 29(6):634–643

    Article  Google Scholar 

  • Muñoz I, Rieradevall J, Doménech X, Milà L (2004) LCA application to integrated waste management planning in Gipuzkoa (Spain). Int J Life Cycle Assess 9:272–280

    Article  Google Scholar 

  • Petrolia DR (2008) The economics of harvesting and transporting corn stover for conversion to fuel ethanol: a case study for Minnesota. Biomass Bioenerg 32(7):603–612

    Article  Google Scholar 

  • Pisoni E, Raccanelli R, Dotelli G, Botta D, Melià P (2009) Accounting for transportation impacts in the environmental assessment of waste management plans. Int J Life Cycle Assess 14:248–256

    Article  Google Scholar 

  • Roberts K, Gloy B, Joseph S, Scott N, Lehmann J (2010) Life cycle assessment of biochar systems: estimating the energetic, economic, and climate change potential. Environ Sci Technol 44(2):827–833

    Article  CAS  Google Scholar 

  • Royo J, Sebastián F, García-Galindo D, Gómez M, Díaz M (2012) Large-scale analysis of GHG (greenhouse gas) reduction by means of biomass co-firing at country-scale: application to the spanish case. Energy 48:255–267

    Article  CAS  Google Scholar 

  • Saidur R, Abdelaziz EA, Demirbas A, Hossain MS, Mekhilef MS (2011) A review on biomass as a fuel for boilers. Renew Sust Energ Rev 15:2262–2289

    Article  CAS  Google Scholar 

  • Sing J, Panesar BS, Sharma SK (2010) A mathematical model for transporting the biomass to biomass based power plant. Biomass Bioenerg 34:483–488

    Article  Google Scholar 

  • Sokhansanj S, Kumar A, Turhollow AF (2006) Development and implementation of integrated biomass supply analysis and logistics model (IBSAL). Biomass Bioenergy 30(10):838–847

    Article  Google Scholar 

  • Spielmann M, Bauer C, Dones R, Tuchschmid M (2007) Transport services. Ecoinvent Report N°14. Swiss Centre for Life Cycle Inventaries, Dübendorf

  • Suh K, Suh S (2010) Economic and environmental implications of corn stover densification options for biofuel in Minnesota. Trans ASABE 2010(53):1183–1192

    Article  Google Scholar 

  • Sultana S, Kumar A (2011) Development of energy and emission parameters for densified form of lignocellulosic biomass. Energy 36:2716–2732

    Article  CAS  Google Scholar 

  • Tchobanogluous G, Theisen H, Vigil S (1994) Gestión integral de residuos sólidos. McGraw-Hill, España

    Google Scholar 

Download references

Acknowledgements

The authors thank the financial support of the Chilean FONDEF Project D07I1096.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Navia.

Additional information

Responsible editor: Nydia Suppen-Reynaga

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muñoz, E., Vargas, S. & Navia, R. Environmental and economic analysis of residual woody biomass transport for energetic use in Chile. Int J Life Cycle Assess 20, 1033–1043 (2015). https://doi.org/10.1007/s11367-015-0891-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11367-015-0891-x

Keywords

Navigation