Skip to main content
Log in

Xanthine dehydrogenase/xanthine oxidase and oxidative stress

  • Published:
AGE Aims and scope Submit manuscript

Abstract

Xanthine dehydrogenase (XDH) and xanthine oxidase (XOD) are single-gene products that exist in separate but interconvertible forms. XOD utilizes hypoxanthine or xanthine as a substrate and O2 as a cofactor to produce superoxide (·O 2 ) and uric acid. XDH acts on these same substrates but utilizes NAD as a cofactor to produce NADH instead of ·O 2 and uric acid. XOD has been proposed as a source of oxygen radicals in polymorphonuclear, endothelial, epithelial, and connective tissue cells. However, several questions remain about the physiological significance and functions of XOD on aging and oxidative stress. XOD is reported to play an important role in cellular oxidative status, detoxification of aldehydes, oxidative injury in ischemia-reperfusion, and neutrophil mediation. For example, XOD may serve as a messenger or mediator in the activation of neutrophil, T cell, cytokines, or transcription in defense mechanisms rather than as a free radical generator of tissue damage. Emerging evidence on the synergistic interactions of ·O 2 , a toxic product of XOD and nitric oxide, may be another illustration of XOD involvement in tissue injury and cytotoxicity in an emergent condition such as ischemia or inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu, B.P.: Aging and oxidative stress: Modulation by dietary restriction. Free Rad. Biol. Med., 21: 651–668, 1996.

    Article  CAS  PubMed  Google Scholar 

  2. Halliwell, B.: Oxidants and human disease: some new concepts. FASEB. J., 1: 358–364, 1987.

    CAS  PubMed  Google Scholar 

  3. Oberley, L.W.: Superoxide dismutase, ed. 3, Pathological states. Boca Raton, FL; CRC press, 1985, p. 438.

    Google Scholar 

  4. Rotilio, G.: Superoxide and superoxide dismutase in chemistry, biology and medicine. Edited by Amsterdam, Elsevier Science Publishers, 1986, p. 749.

    Google Scholar 

  5. Ames, B.N: Endogenous oxidative DNA damage, aging, and cancer. Free Rad. Res. Comm., 7: 121–128, 1989.

    CAS  Google Scholar 

  6. Goldstein, B.D., and Witz, G.: Free radicals and carcinogenesis. Free Rad. Res. Comm., 11: 3–10, 1990.

    CAS  Google Scholar 

  7. Richter, C.: Do mitochondrial DNA fragments promote cancer and aging? FEBS Lett., 241: 1–5, 1988.

    Article  CAS  PubMed  Google Scholar 

  8. Angermuller, S., Bruder, G., Völkl, A., Wesch, H., and Fahimi, H.D.: Localization of xanthine oxidase in crystalline cores of peroxysomes. A cytochemical and biochemical study. Eur. J. Cell Biol., 45: 137–144, 1987.

    CAS  PubMed  Google Scholar 

  9. Freeman, B.A. and Crapo, J.D.: Biology of disease. Free radicals and tissue injury. Lab Invest., 47: 412–426, 1982.

    CAS  PubMed  Google Scholar 

  10. Halliwell, B., and Gutteridge, J.M.C.: Role of free radicals and catalytic metal ions in human disease: An overview. Methods Enzymol., 186: 1–85, 1990.

    CAS  PubMed  Google Scholar 

  11. Amaya, Y., Yamazaki, K., Sato, M., Noda, K., Nishino, T., and Nishino, T.: Proteolytic conversion of xanthine dehydrogenases from the NAD-dependent type to the O2-dependent type. J. Biol. Chem., 265: 14170–14175, 1990.

    Google Scholar 

  12. Della Corte, E., and Stripe, F.: The regulation of rat liver xanthine oxidase: Involvement of thiol groups in the conversion of the enzyme activity from dehydrogenase (type D) into oxidase (type O) and purification of the enzyme. Biochem. J., 126: 739–745, 1972.

    CAS  PubMed  Google Scholar 

  13. Ames, B.N., Cathcart, R., Schwiers, E., and Hochstein, P.: Uric acid provides antioxidant defense in humans against oxidant and radical caused aging and cancer. Proc. Nat. Acad. Sci. USA, 78: 6858–6862, 1981.

    CAS  PubMed  Google Scholar 

  14. Howell, R.R., and Wyngaarden, J.B.: On the mechanism of peroxidation of uric acid by homoproteins. J. Biol. Chem., 235: 3544–3549, 1960.

    CAS  PubMed  Google Scholar 

  15. Kellogg, E.W., and Fridovich, I.: Liposome oxidation and erythrocyte lysis by enzymatically generated superoxide and hydrogen peroxide. J. Biol. Chem., 252: 6721–6727, 1977.

    CAS  PubMed  Google Scholar 

  16. Davier, K.J., Seranian, A., Muakkassah-Kelly, S.F., and Hochstein, P.: Uric acid-iron ion complexes. Biochem. J., 235: 747, 1986.

    Google Scholar 

  17. Bray, R.C.: Molybdenum iron-sulfur flavin hydroxylases and related enzymes, in: Part B, The Enzymes, Vol. XII, edited by Boyer, P.D., 3rd ed., New York, Academic Press, 1975, pp. 299–419.

    Google Scholar 

  18. Hille, R., and Massey, V.: Molybdenum-containing hydroxylase: Xanthine oxidase, aldehyde oxidase, and sulfite oxidase in Molybdenum Enzymes Vol. 7, edited by Spiro, T.G., New York, Wiley-Interscience, 1985, pp. 443–518.

    Google Scholar 

  19. Waud, W.R., and Rajagopalan, K.V.: The mechanism of conversion of rat river xanthine dehydrogenase from an NAD-dependent form (type D) to an O2-dependent type (type O). Arch. Biochem. Biophys., 172: 354–364, 1976.

    Article  CAS  PubMed  Google Scholar 

  20. Amaya, Y., Yamazaki, K., Sato, M., Noda, K., Nishino, T., and Nishino, T.: Proteolytic conversion of xanthine dehydrogenase from the NAD-dependent type to the O2-dependent type. J. Biol. Chem., 265: 14170–14175, 1990.

    Google Scholar 

  21. Nagler, L.G., and Vartanyan, L.S.: Subunit structure of bovine milk xanthine oxidase. Biochim. Biophys. Acta., 427: 78–90, 1976.

    CAS  PubMed  Google Scholar 

  22. Ichida, K., Amaya, Y., Noda, K., Minoshima, S., Hosoya, T., Sakai, O., Shimizu, N., and Nishino, T.: Cloning of the cDNA encoding human xanthine dehydrogenase (oxidase): Structural analysis of the protein and chromosomal location of the gene. Gene, 133: 279–284, 1993.

    Article  CAS  PubMed  Google Scholar 

  23. Terao, M., Cazzaniga, G., Ghezzi, P., Bianchi, M., Falciani, F., Perani, P., and Garattini, E.: Molecular cloning of a cDNA coding for mouse liver xanthine dehydrogenase. Biochem. J., 283: 863–870, 1992.

    CAS  PubMed  Google Scholar 

  24. Nishino, T., Nishino, T., Sato, A., Page, T., and Amaya, Y.: Xanthine dehydrogenase: Structure and properties in Flavins and Flavoproteins, edited by Yagi, K., Berlin, Walter de Gruyter, 1984, p. 699.

    Google Scholar 

  25. Keith, R.P., Riley, M.J., Kreitman, M., Lewontin, R.C., Curtis, D., and Chambers, G.: Sequence of the structural gene for xanthine dehydrogenase (rosy locus) in Drosophila melanogaster. Genetics, 116: 67–73, 1987.

    CAS  PubMed  Google Scholar 

  26. Nishino, T., and Nishino, T.: The nicotinamide adenine dinucleotide-binding site of chicken liver xanthine dehydrogenase. J. Biol. Chem., 264: 5468–5473, 1989.

    CAS  PubMed  Google Scholar 

  27. Wooton, J.C., Nicolson, R.E., Cock, J.M., Walters, D.E., Burke, J.F., Doyle, W.A., and Bray, R.C.: Enzymes depending on the pterin molybdenum cofactor: Sequence families spectroscopic properties of molybdenum and possible cofactor-binding domains. Biochim. Biophys. Acta., 1057: 157–185, 1991.

    Google Scholar 

  28. Nakamura, M., and Yamazaki, I.: Preparation of bovine milk xanthine oxidase as a dehydrogenase form. J. Biochem., 92: 1279–1286, 1982.

    CAS  PubMed  Google Scholar 

  29. Hunt, J., and Massey, V.: Purification and properties of milk xanthine dehydrogenase. J. Biol. Chem., 267: 21479–21485, 1992.

    Google Scholar 

  30. Saito, T.: The properties of sulfhydryl groups involved in the interconversion between the NAD+-dependent and O2-dependent types of rat liver xanthine dehydrogenase. Yokohama Med. Bull., 38: 151–168, 1987.

    CAS  Google Scholar 

  31. Saito, T., and Nishino, T.: Differences in redox and kinetic properties between NAD-dependent and O2-dependent types of rat liver xanthine dehydrogenase. J. Biol. Chem., 264: 10015–10022, 1989.

    Google Scholar 

  32. Nishino, T., and Nishino, T.: The mechanism of xanthine dehydrogenase to oxidase and the role of the enzyme in reperfusion injury, in: Part A, Purine and pyrimidine metabolism in man, Vol.VII, Edited by Harkness, R.A. et al., New York, Plenum Press, 1991, p. 327.

    Google Scholar 

  33. Amaya, Y., Yamazaki, K., Sato, M., Noda, K., Nishino, T., and Nishino, T.: Proteolytic conversion of xanthine dehydrogenase from the NAD-dependent type to the O2-dependent type. J. Biol. Chem., 265: 14170–14175, 1990.

    Google Scholar 

  34. Olson, J.S., Ballou, D.P., Palmer, G., and Massey, V.: The mechanism of action of xanthine oxidase. J. Biol. Chem., 249: 4363–4382, 1974.

    CAS  PubMed  Google Scholar 

  35. Nishino, T., Nishino, T., Schopfer, L.M., and Massey, V.: The reactivity of chicken liver xanthine dehydrogenase with molecular oxygen. J. Biol. Chem., 264: 2518–2527, 1989.

    CAS  PubMed  Google Scholar 

  36. Kooij, A., Bosch, K.S., Frederiks, W.M., and Vannoorden, C.J.F.: High levels of xanthine oxidoreductase in rat endothelial, epithelial and connective-tissue cells — A relation between localization and function. Virchows Archiv B-Cell Patholology including Molecular Pathology, 62: 143–150, 1992.

    CAS  Google Scholar 

  37. Reniers, J.J., Rupp, T., and Conti, C.J.: Modulation of xanthine dehydrogenase and oxidase activities during the hormonal induction of vaginal epithelial differentiation in ovariectomized mice. Differentiation, 47: 69–75, 1991.

    Google Scholar 

  38. Reniers, J.J., and Rupp, T.: Conversion of xanthine dehydrogenase to xanthine oxidase during keratinocyte differentiation: modulation by 12-O-tetradecanoylphorbol-13-acetate. J. Invest. Dermatol., 93: 132–135, 1989.

    Article  Google Scholar 

  39. Allen, R.G., and Balin, A.K.: Oxidative influence on development and differentiation: An overview of a free radical theory of development. Free Rad. Biol. Med., 6: 631–661, 1989.

    Article  CAS  PubMed  Google Scholar 

  40. Yu, B.P.: Cellular defenses against damage from reactive oxygen species. Physiol. Rev., 74: 139–155, 1994.

    CAS  PubMed  Google Scholar 

  41. Davies, K.J.A., Sevanian, A., Muakkassah-Kelly, S.F., and Hochstein, P.: Uric acid-iron ion complexes. A new aspect of the antioxidant functions of uric acid. Biochem J., 235: 747–754, 1986.

    CAS  PubMed  Google Scholar 

  42. Groolveld, M., and Halliwell, B.: Measurement of allontoin and uric acid in human body fluids. A potential index of free radical reaction in vivo? Biochem. J., 243: 803–808, 1987.

    Google Scholar 

  43. Farber, J.L., Kyle, M.E., and Coleman, J.B.: Biology of disease. Mechanism of cell injury by activated oxygen species. Lab. Invest., 62: 670–679, 1990.

    CAS  PubMed  Google Scholar 

  44. Dobashi, K., Asayama, K., Kato, K., Kobayash, M., and Kawaoi, A.: Immunohistochemical localization of copper-zinc and manganese superoxide dismutase in rat tissues. Acta. Histochem. Cytochem., 22: 351–365, 1989.

    Google Scholar 

  45. Oberley, T.D., Oberley, L.W., Slattery, A.F., Lauchner, L.J., and Elwell, J.H.: Immuno-histochemical localization of antioxidant enzymes in adult syrian hamster tissues and during kidney development. Am. J. Pathol., 137: 199–214, 1990.

    CAS  PubMed  Google Scholar 

  46. Aruoma, O.I., and Halliwell, B.: Inactivation of α1-antiproteinase by hydroxyl radicals. The effect of uric acid. FEBS. Lett., 244: 76–80, 1989.

    Article  CAS  PubMed  Google Scholar 

  47. Terao, J., and Nagao, A.: Antioxidative effect of human saliva on lipid peroxidation. Agric. Biol. Chem., 55: 869–872, 1990.

    Google Scholar 

  48. Elsayed, N.M., and Tierney, D.F.: Hyperoxia and xanthine dehydrogenasel/oxidase activities in rat lung and heart. Arch. Biochem. Biophys., 273: 281–286, 1989.

    Article  CAS  PubMed  Google Scholar 

  49. Becker, B.F., Reinholz, N., Özçelik T., Leipert, B., and Gerlach, E.: Uric acid as radical scavenger and antioxidant in the heart. Pflügers. Arch., 415: 127–135, 1989.

    Article  CAS  PubMed  Google Scholar 

  50. Topham, R.W., Walker, M.C., and Calisch, M.P.: Liver xanthine dehydrogenase and iron mobilization. Biochem. Biophys. Res. Commun., 109: 1240–1246, 1982.

    CAS  PubMed  Google Scholar 

  51. Topham, R.W., Walker, M.C., Calisch, M.P., and Williams, R.W.: Evidence for the participation of intestinal xanthine oxidase in the mucosal processing of iron. Biochemistry, 21: 4529–4535, 1982.

    Article  CAS  PubMed  Google Scholar 

  52. Esterbauer, H., Schaur, R.J., and Zollner, H.: Chemistry and biochemistry of 4-hydroxynonenal, malondialdehyde and related aldehydes. Free Rad. Biol. Med., 11: 81–128, 1991.

    Article  CAS  PubMed  Google Scholar 

  53. Chen, J.J., Bertrand, H., and Yu, B.P.: Inhibition of adenine nucleotide translocase by lipid peroxidation by products. Free Rad. Biol. Med., 19: 583–590, 1995.

    Article  CAS  PubMed  Google Scholar 

  54. Kristal, B.S., Park, B.K., and Yu, B.P.: 4-Hydroxyhexenal is a potent inducer of the mitochondrial transition. J. Biol. Chem. 271: 6033–6038, 1996.

    Article  CAS  PubMed  Google Scholar 

  55. Eckl, P., and Esterbauer, H.: Genotoxic effects of 4-hydroxyalkenals. Adv. Biosci., 76: 141–157, 1989.

    Google Scholar 

  56. Kato, S., Kawase, T., Alderman, J., Inatomi, N., and Lieber, C.S.: Role of xanthine oxidase in ethanol-induced lipid peroxidation in rats. Gastroenterol., 98: 203–210, 1990.

    CAS  Google Scholar 

  57. Bailey, S.M., and Reinke, L.A.: Potential antioxidant function of xanthine oxidase in low flow ischemia-reperfusion. FASEB J., 10: 4280–4280, 1996.

    Google Scholar 

  58. Tan, S., Radi, R., Gaudier, F., Evans, R.A., Rivera, A., Kirk, K.A., and Parks, D.A.: Physiological levels of uric acid inhibit xanthine oxidase in human plasma. Pediatric Res., 34: 303–307, 1993.

    CAS  Google Scholar 

  59. Radi, R., Tan, S., Prodanov, E., Evans, R., and Parks, D.A.: Inhibition of xanthine oxidase by uric acid and its influence on superoxide radical production. Biochem. Biophys, Acta., 1122: 178–182, 1992.

    CAS  Google Scholar 

  60. Becker, B.F.: Towards the physiological function of uric acid. Free Rad. Biol. Med., 14: 615–631, 1993.

    Article  CAS  PubMed  Google Scholar 

  61. Askison, D., Hollwagth, M.E., Benoit, J.N., Parks, D.A., McCord, J.M., and Granger, D.N.: Role of free radicals in ischemia-reperfusion injury to the liver. Acta. Physiol. Scand., 548: 101–107, 1986.

    Google Scholar 

  62. Granger, D.N., Hollwarth, M.E., and Parks, D.A.: Ischemia-reperfusion injury: role of oxygen-derived free radicals. Acta. Physiol. Scand. Suppl., 548: 47–63, 1986.

    CAS  PubMed  Google Scholar 

  63. Abe, K., Yuki, S., and Kogure, K.: Strong attenuation of ischemic and postischemic brain edema in rats by a novel free radical scavenger. Stroke, 19: 480–485, 1988.

    CAS  PubMed  Google Scholar 

  64. Asano, T., Johshita, H., Koide, T., and Takakkura, K.: Amelioration of ischaemic cerebral edema by a free radical scavenger, AVS; 1,2-bis(nicoti-amido)-propane. An experimental study using a regional ischaemia model in cats. Neurol. Res., 6: 163–168, 1984.

    CAS  PubMed  Google Scholar 

  65. Hall, E.D., Pazara, K.E., and Braughler, J.M.: 21-Aminosteroid lipid peroxidation inhibitor U74006F protects against cerebral ischemia in gerbils. Stroke, 19: 997–1002, 1988.

    CAS  PubMed  Google Scholar 

  66. Johshita, H., Asano, T., Hanamura, T., and Takakura, K.: Effect of indomethacin and a free radical scavenger on cerebral blood flow and edema after cerebral artery occlusion in cats. Stroke, 20: 788–794, 1989.

    CAS  PubMed  Google Scholar 

  67. Liu, T.H., Beckman, S., Freeman, B.A., Hogan, E.L., and Hsu, C.Y.: Poluethylene glycol-conjugated superoxide dismutase and catalase reduce ischemic brain injury. Am. J. Physiol., 256: H589–H593, 1989.

    CAS  PubMed  Google Scholar 

  68. Martz, D., Beer, M., and Betz, A.L.: Dimethylthiourea reduces ischemic brain edema without affecting cerebral blood flow. J.Cereb. Blood Flow Metab., 10: 352–357, 1990.

    CAS  PubMed  Google Scholar 

  69. Martz, D., Rayos, G., Schielke, G.P., and Betz, A.L.: Allopurinol and dimethylthiou reduce brain infarction following middle cerebral artery occlusion in rats. Stroke, 20: 488–494, 1989.

    CAS  PubMed  Google Scholar 

  70. Patt, A., Harken, H.A., Burton, L.K., Rodell, T.C., Piermattei, D., Schorr, W.J., Parker, N.B., Berger, E.M., Horesh, I.R., Terada, L.S., Linas, S.L., Cheronis, J.C., and Repine, J.E.: Xanthine oxidase-derived hydrogen peroxide contributes to ischemia reperfusion-induced edema in gerbil brains. J. Clin. Invest., 81: 1556–1562, 1988.

    CAS  PubMed  Google Scholar 

  71. Watson, B.D., Busto, R., Goldberg, W.J., Santiso, M., Yoshida, S., and Ginsberg, M.D.: Lipid peroxidation in vivo induced by reversible global ischemia in rat brain. J. Neurochem., 42: 268–274, 1984.

    CAS  PubMed  Google Scholar 

  72. Young, W., Wojak, J.C., and Decrescito, V.: 21-Aminosteroid reduces ion shifts and edema in the rat middle cerebral artery occlusion model of regional ischemia. Stroke, 19: 1013–1019, 1988.

    CAS  PubMed  Google Scholar 

  73. McCord, J.M.: Oxygen-derived free radicals in postischemic tissue injury. N. Engl. J. Med., 312: 159–163, 1985.

    Article  CAS  PubMed  Google Scholar 

  74. Grum, C.M., Ragsdale, R.A., Ketai, L.H., and Shlafer, M.: Absence of xanthine oxidase or xanthine dehydrogenase in the rabbit myocardium. Biochem. Biophys. Res. Commun., 141: 1104–1108, 1986.

    Article  CAS  PubMed  Google Scholar 

  75. Parks, D.A., Williams, T.K., and Beckman, J.S.: Conversion of xanthine dehydrogenase to oxidase in ischemic rat intestine: a reevaluation. Am. J. Physiol., 254 (Gastrointest. Liver Physiol. 17): G768–G774, 1988.

    CAS  PubMed  Google Scholar 

  76. Betz, A.L.: Identification of hypoxanthine transport and xanthine oxidase activity in brain capillaries. J. Neurochem., 44: 574–579, 1985.

    CAS  PubMed  Google Scholar 

  77. Kanemitsu, H., Tamura, A., Kirino, T., Karasawa, S., Sano, K., Iwamoto, T., Yoshiura, M., and Iriyama, K.: Xanthine oxidase and uric acid levels in rat brain following focal ischmia. J. Neurochem., 51: 1982–1985, 1988.

    Google Scholar 

  78. Kanemitsu, H., Tamura, A., Kirino, T., Oka, H., Sano, K., Iwamoto, T., Yoshiura, M., and Iriyama, K: Allopuronol inhibits uric acid stimulation in the rat brain following focal cerebral ischemia. Brain Res., 49: 367–370, 1989.

    Article  Google Scholar 

  79. Nihei, H., Kanemitsu, H., Tamura, A., Oka, H., and Sano, K.: Cerebral uric acid, xanthine, and hypoxanthine after ischemia: the effect of allopurinol. Neurosurgery, 25: 613–617, 1989.

    Article  CAS  PubMed  Google Scholar 

  80. Werns, S.W., Shea, M.J., Mitsos, S.E., Dysko, R.C., Fantone, J.C., Schork, M.A., Abrams, G.D., Pitt, B., and Lucchesi, J.C.: Reduction of the size of infarction by allopurinol in the ischemic-reperfused canine heart. Circulation, 73: 518–524, 1988.

    Google Scholar 

  81. Krenitsky, T.A., Tuttle, J.V., Cattau, E.L., Jr., and Wang, P.: A comparison of the distribution and electron acceptor specificities of xanthine oxidase and aldehyde oxidase. Comparative Biochem. Physiol. B, 49: 687–703, 1974.

    Article  CAS  Google Scholar 

  82. Wajner, M., and Harkness, R.A.: Distribution of xanthine dehydrogenase and oxidase activities in human and tissues. Biochim. Biophys. Acta., 991: 79–84, 1989.

    CAS  PubMed  Google Scholar 

  83. Godin, D.V., and Bhimji, S: Effects of allopurinol on myocardial ischemic injury produced by coronary artery ligation and reperfusion. Biochem. Pharmacol., 36: 2101–2107, 1987.

    Article  CAS  PubMed  Google Scholar 

  84. Myers, C.L., Weiss, S.J., Kirsh, M.M., Shepard, B.M., and Shlafer, M.: Effects of supplementing hypothermic crystalloid carioplegic solution with catalase, superoxide dismitase, allopurinol, or deferoxamine on functional recovery of globally ischemic and reperfused isolated hearts. J. Thorac. Cardiovasc. Surg., 91: 281–289, 1986.

    CAS  PubMed  Google Scholar 

  85. Terada, L.S., Leff, J.A., and Repine, J.E.: Measurement of xanthine oxidase in biological tissues. Methods Enzymol., 186: 651–656, 1990.

    Article  CAS  PubMed  Google Scholar 

  86. Granger, D.N.: Role of xanthine oxidase and granulocytes in ischemia-reperfusion injury. Am. J. Physiol., 255: H1269–H1275, 1988.

    Google Scholar 

  87. Suzuki, M., Inauen, W., Kvietys, P.R., Grisham, M.B., Meininger, C., Scheling, M.E., Granger, H.J., and Granger, D.N.: Superoxide mediates reperfusion-induced leukocyte-endothelial cell interaction. Am. J. Physiol., 257: H1740–H1745, 1989.

    Google Scholar 

  88. Maliski, T., Tah, Z., Grinfeel, D.S., Patton, S., Kaptruczak, M., and Tomboulian, P.: Diffusion of nitric oxide in the wall monitored in situ by porphyrinic microsensors. Biochem Biophys. Res. Commun., 193: 1076–1082, 1993.

    Article  Google Scholar 

  89. Blough, N.V., and Zafiriou, O.C.: Reaction of superoxide with nitric oxide to form peroxynitrite in alkaline aqueous solution. Inorg. Chem., 24: 3502–3504, 1985.

    Article  CAS  Google Scholar 

  90. Moreno, J.J., and Pryor, W.A.: Inactivation of α-1-proteinase inhibitor by peroxynitrite. Chem. Res. Toxicol., 5: 425–431, 1992.

    Article  CAS  PubMed  Google Scholar 

  91. Ischiropoulos, H., Zhu, L., and Beckman, J.S.: Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase. Arch. Biochem. Biophys., 298: 446–451, 1992.

    Article  CAS  PubMed  Google Scholar 

  92. Beckman, J.S., Beckman, T.W., Chen, J., Marshall, P.A., and Freeman, B.A.: Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci. USA, 87: 1620–1624, 1990.

    CAS  PubMed  Google Scholar 

  93. Radi, R., Beckman, J.S., Bush, K.M., and Freeman, B.A.: Peroxynitrite-induced membrane lipid peroxidation: The cytotoxic potential of superoxide and nitric oxide. Archiv. Biochem. Biophys., 288: 481–487, 1991.

    Article  CAS  Google Scholar 

  94. Stamler, J.S., Simon, D.I., Osborne, J.A., Mullins, M.E., Jaraki, O., Michel, T., Single, D.J., and Loscalzo, J.S.: Nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc. Natl. Acad. Sci. USA, 89: 444–448, 1992.

    CAS  PubMed  Google Scholar 

  95. Radi, R., Beckman, J.S., Bush, K.M., and Freeman, B.A.: Peroxynitrite oxidation of sulfhydryls. J. Biol. Chem., 266: 4244–4250, 1991.

    CAS  PubMed  Google Scholar 

  96. Moncada, S., Palmer, R.M.J., and Higgs, E.A.: Nitric oxide: Physiology, pathophysiology, and pharmacology. Pharmacol. Rev., 43: 109–142, 1991.

    CAS  PubMed  Google Scholar 

  97. Marletta, M.A.: Nitric oxide; Biosynthesis and biological significance. Trends Biochem. Sci., 14: 488–492, 1989.

    Article  CAS  PubMed  Google Scholar 

  98. Dawson, V.L., Dawson, T.M., London, E.D., Nredt, D.S., and Snyder, S.H.: Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc. Natl. Acad. Sci. USA, 88: 6368–6371, 1991.

    CAS  PubMed  Google Scholar 

  99. Matheis, G., Sherman, M.P., Buckberg, G.D., Haybron, D.M., Young, H.H., and Ignarro, L.J.: Role of L-arginine-nitric oxide pathway in myocardial reoxygenation injury. Am. J. Physiol., 262: H616–H620, 1992.

    CAS  PubMed  Google Scholar 

  100. Koppenol, W.H., Pryor, W.A., Moreno, J.J., Ischiropoulos, H., and Beckman, J.S.: Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide. Chem. Res. Toxicol., 5: 834–842, 1992.

    Article  CAS  PubMed  Google Scholar 

  101. Moncada, C., Lekieffre, D., Arvin, B., and Meldrum, B.: Effect of NO synthase inhibition on NMDA-induced and ischemia-induced hippocampal-lesions. Neuroreports, 3: 530–532, 1992.

    CAS  Google Scholar 

  102. Nagafuji, T., Matsui, T., Koide, T., and Asano, T.: Blockade of nitric-oxide formation by N-ω-Nitro-L-arginine Mitigates ischemic brain edema and subsequent cerebral infarction in rats. Neurosci. Lett., 147: 159–162, 1992.

    Article  CAS  PubMed  Google Scholar 

  103. Galea, E., Feinstein, D.L., and Reis, D.J.: Induction of calcium-independent nitric-oxide synthase activity in primary rat glial cultures. Proc. Natl. Acad. Sci. USA, 89: 10945–10949, 1992.

    Google Scholar 

  104. Buisson, A., Plotkine, M., and Boulu, R.G.: The neuroprotective effect of a nitric-oxide inhibitor in a rat model of focal cerebral-ischemia. Br. J. Pharmacol., 106: 766–767, 1992.

    CAS  PubMed  Google Scholar 

  105. Beckman, J.S.: The double-edged role of nitric oxide in brain function and superoxide-mediated injury. J. Dev. Physiol., 15: 53–59, 1991.

    CAS  PubMed  Google Scholar 

  106. Morikawa, E., Huang, Z., and Moskowitz, M.A.: L-arginine decreases infarct size caused by middle cerebral arterial-occlusion in SHR. Am. J. Physiol., 263: H1632–H1635, 1992.

    Google Scholar 

  107. Padmaja, S., and Huie, R.E.: The reaction of NO with superoxide. Free Rad. Res. Comms., 18: 195–199, 1993.

    Article  Google Scholar 

  108. Siegfried, M.R., Erhardt, J., Rider, T., Ma, X.L., and Lefer, A.M.: Cardioprotection and attenuation of endothelial dysfunction by organic nitric-oxide donors in cyocardial ischemia-reperfusion. J. Pharmacol. Exp. Ther., 260: 668–675, 1992.

    CAS  PubMed  Google Scholar 

  109. Gambassi, F., Pistelli, A., Dibello, V.G., Lupini, M., Mannaioni, P.F., and Masini, E.: Ischemia-reperfusion injury and histamine-release in isolated perfused guinea-pig heart. — Effects of nitric-oxide generators. Pharmacol. Res., 25: 11–12, 1992.

    Article  CAS  PubMed  Google Scholar 

  110. Linz, W., Wiemer, G., and Scholkens, B.A.: ACE-inhibition induces NO-formation in cultured bovine endothelial-cells and protects isolated ischemic rat hearts. J. Mol. Cell Cardiol., 24: 909–919, 1992.

    Article  CAS  PubMed  Google Scholar 

  111. McDonald, L.J., and Murad, F.: Nitric oxide and cyclic GMP signaling. Proc. Soc. Exp. Biol. Med., 211: 1–6, 1996.

    CAS  PubMed  Google Scholar 

  112. Ulrich, F., and Hartmut, K.: Nitric oxide synthase: expression and expressional control of the three isoforms. Naunyn-Schmiedeberg’s Arch Pharmacol., 352: 351–364, 1995.

    Google Scholar 

  113. Pollock, J.S., Förstermann, U., Tracey, W.R., and Nakane, M.: Nitric oxide synthase isozymes antibodies. Histochemical Journal, 27: 738–744, 1995.

    CAS  PubMed  Google Scholar 

  114. Bredt, D.S., Hwang, P.M., Glatt, C.E., Lowenstein, C., Reed, R.R., and Snyder, S.H.: Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature, 351: 714–718, 1991.

    Article  CAS  PubMed  Google Scholar 

  115. Nathan, C., and Xie, Q.: Nitric oxide synthase: role, tolls, and controls. Cell, 78: 915–918, 1994.

    Article  CAS  PubMed  Google Scholar 

  116. Bredt, S., and Synder, S. H.: Nitric oxide a novel neuronal messenger. Neuron, 8: 3–11, 1992.

    Article  CAS  PubMed  Google Scholar 

  117. Nathan, C.: Nitric oxide as a secretory product of mammalian cells. FASEB J., 6: 3051–3064, 1992.

    CAS  PubMed  Google Scholar 

  118. Bredt, D.S., Hwang, P.M., and Synder, S.H.: Localization of nitric oxide synthase indicating a neuronal role for nitric oxide. Nature, 347: 768–769, 1990.

    Article  CAS  PubMed  Google Scholar 

  119. Pollock, J.S., Fostermann, U., Mitchell, J.A., Warner, T.D., Schmidt, H., Nakang, M., and Murad, F.: Purification and characterization of particulate EDRF synthase from cultured and native bovine aortic endothelial cells. Proc. Natl. Acad. Sci. USA., 88: 10480–10484, 1991.

    Google Scholar 

  120. Sessa, W.C., Harrison, J.K., Luthin, D.R., Pollock, J.S., and Lynch, K.R.: Genomic analysis and expression patterns reveal distinct genes for endothelial and brain nitric oxide synthase. Hypertension, 21: 934–938, 1993.

    CAS  PubMed  Google Scholar 

  121. Marsden, P.A., Heng, H.H.Q., Scherer, S.W., Stewart, R.J., Hall, A.V., Shi, X.M., Tsui, L.C., and Schappert, K.T.: Structure and chromosomal localization of the human constitutive endothelial nitric oxide synthase gene. J. Biol. Chem., 268: 17478–17488, 1993.

    Google Scholar 

  122. Kaoru, M., Takeshi, K., Kazuhiro, S., Yoshiki, Y., Katsumi, T., Li-Xia, Y., Ryuichi, H., Takeshi, A., Yasutake, Y., Yoshinori, D., Shohei, O., Kozo, H., Chuichi, K., Shigetake, S., and Yutaka, S.: Cloning and structure characterization of the human endothelial nitric oxide synthase gene. FEBS, EJB 94: 719–726, 1994.

    Google Scholar 

  123. Sessa, W.C., Harrision, J.K., Barber, C.M., Zeng, D., Durieux, M.E., D’Angelo, D.D., Lynch, K.R., and Peach, M.J.: Molecular cloning and expression of a cDNA encoding endothelial cell nitric oxide synthse. J. Biol. Chem., 267: 15274–15276, 1992.

    Google Scholar 

  124. Janssens, S.P., Shimouchi, A., Quertermous, T., Block, D.B., and Block, K.D.: Cloning and expression of a cDNA encoding human endothelium-derived relaxing factor/nitric oxide synthase. J. Biol. Chem., 267: 14519–14522, 1992.

    Google Scholar 

  125. David, S.B., and Solomon, H.S. Isolation of nitric oxide synthase, a calmodulin-requiring enzyme. Proc. Natl. Acad. Sci. U.S.A., 87: 682–685, 1990.

    Google Scholar 

  126. Cras, T.D., Xue, C., Rengasamy, A., and Johns, R.A.: Chronic hypoxia upregulates endothelial and inducible NO synthase gene and protein expression in rat lung. Am. J. Physiol-Lung Cell. Mol. Physiol., 270: L164–L170, 1996.

    Google Scholar 

  127. Kumura, E., Yoshimine, T., Iwatsuki, K., Yamanaka, K., Tanaka, S., Hayakawa, T., Shiga, T., and Kosaka, H.: Generation of nitric oxide and superoxide during reperfusion after focal cerebral-ischemia in rats. Am. J. Physiol-Cell Physiol., 39: C748–C752, 1996.

    Google Scholar 

  128. Cazevielle, C., Muller, A., Meynier, F., and Bonne, C.: Superoxide and nitric oxide cooperation in hypoxia/reoxygenation-induced neuron injury. Free Rad. Biol. Med. 14: 389–395, 1993.

    Article  Google Scholar 

  129. Synder, S.H., and Bredt, D.S.: Nitric oxide as a neuronal messenger. Trends Pharmacol. Sci., 12: 125–128, 1991.

    Article  Google Scholar 

  130. Garthwaite, G., and Garthwaite, J.: Cyclic GMP and cell death in rat cerebellar slices. Neurosci., 26: 321–326, 1988.

    Article  CAS  Google Scholar 

  131. Beckman, J.S., Beckman, T.W., Chen, J., Marshall, P.A., and Freeman, B.A.: Apparent hydroxyl radical production by peroxynitrite; Implication for endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci. USA, 87: 1620–1624, 1990.

    CAS  PubMed  Google Scholar 

  132. Radi, R., Beckman, J.S., Bush, K.M., and Freeman, B.A.: Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. Biol. Chem., 266: 4244–4250, 1991.

    CAS  Google Scholar 

  133. Radi, R., Beckman, J.S., Bush, K.M., and Freeman, B.A.: Peroxynitrite-induced membrane lipid peroxidation; The cytotoxic potential of superoxide and nitric oxide. Arch. Biochem. Biophys., 288: 481–487, 1991.

    Article  CAS  PubMed  Google Scholar 

  134. Hogg, N., Darley-Usmer, V.M., Wilson, M.T., and Moncada, S.: Production of hydroxyl radicals from the simultaneous generation of superoxide and nitric oxide. Biochem. J., 281: 419–424, 1992.

    CAS  PubMed  Google Scholar 

  135. Blough, N.V., and Zafiriou, O.C.: Reaction of superoxide with nitric oxide to form peroxynitrite in alkaline aqueous solution. Inorg. Chem., 24: 3502–3504, 1985.

    Article  CAS  Google Scholar 

  136. Slater, T.F.: Chemical reactions of free radicals, in Free Radical Mechanisms in Tissue Injury, edited by Slater, T.F., London, Pion Limited, 1972, p. 21–33.

    Google Scholar 

  137. Harman, D.: The aging process. Proc. Natl. Acad. Sci. USA, 78: 7124–7128, 1981.

    CAS  PubMed  Google Scholar 

  138. Haining, J.L., Leagan, J.S., and Lovell, W.J.: Synthesis and degradation of rat liver xanthine oxidase as a function of age and protein deprivation. J. Gerontol., 25: 205–209, 1970.

    CAS  PubMed  Google Scholar 

  139. Janssen, M., Dejong, J.W., Pasini, E., Ferrari, R.: Myocardial xanthine oxidoreductase activity in hypertensive and hypercholesterolemic rats. Cardioscience, 4: 25–29, 1993.

    CAS  PubMed  Google Scholar 

  140. Chung, H.Y., and Yu, B.P.: Regulation of the rat xanthine dehydrogenase/oxidase and uric acid formation by aging and dietary restriction. AGE, 18: 218, 1995 (Abstract).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Chung, H.Y., Baek, B.S., Song, S.H. et al. Xanthine dehydrogenase/xanthine oxidase and oxidative stress. AGE 20, 127–140 (1997). https://doi.org/10.1007/s11357-997-0012-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-997-0012-2

Key words

Navigation