Skip to main content
Log in

Single episode of moderate to severe traumatic brain injury leads to chronic neurological deficits and Alzheimer’s-like pathological dementia

  • ORIGINAL ARTICLE
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Traumatic brain injury (TBI) is one of the foremost causes of disability and mortality globally. While the scientific and medical emphasis is to save lives and avoid disability during acute period of injury, a severe health problem can manifest years after injury. For instance, TBI increases the risk of cognitive impairment in the elderly. Remote TBI history was reported to be a cause of the accelerated clinical trajectory of Alzheimer’s disease-related dementia (ADRD) resulting in earlier onset of cognitive impairment and increased AD-associated pathological markers like greater amyloid deposition and cortical thinning. It is not well understood whether a single TBI event may increase the risk of dementia. Moreover, the cellular signaling pathways remain elusive for the chronic effects of TBI on cognition. We have hypothesized that a single TBI induces sustained neuroinflammation and disrupts cellular communication in a way that results later in ADRD pathology. To test this, we induced TBI in young adult CD1 mice and assessed the behavioral outcomes after 11 months followed by pathological, histological, transcriptomic, and MRI assessment. On MRI scans, these mice showed significant loss of tissue, reduced CBF, and higher white matter injury compared to sham mice. We found these brains showed progressive atrophy, markers of ADRD, sustained astrogliosis, loss of neuronal plasticity, and growth factors even after 1-year post-TBI. Because of progressive neurodegeneration, these mice had motor deficits, showed cognitive impairments, and wandered randomly in open field. We, therefore, conclude that progressive pathology after adulthood TBI leads to neurodegenerative conditions such as ADRD and impairs neuronal functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Dewan MC, et al. Estimating the global incidence of traumatic brain injury. J Neurosurg. 2018;130(4):1080–97.

  2. Maas AIR, et al. Traumatic brain injury: integrated approaches to improve prevention, clinical care, and research. Lancet Neurol. 2017;16(12):987–1048.

    Article  PubMed  Google Scholar 

  3. McMillan TM, et al. Death after head injury: the 13 year outcome of a case control study. J Neurol Neurosurg Psychiatry. 2011;82(8):931–5.

    Article  CAS  PubMed  Google Scholar 

  4. Neil SNG, David JS. Understanding neurodegeneration after traumatic brain injury: from mechanisms to clinical trials in dementia. J Neurol Neurosurg Psychiatry. 2019;90(11):1221.

    Article  Google Scholar 

  5. Mao X, et al. Progressive histopathological damage occurring up to one year after experimental traumatic brain injury is associated with cognitive decline and depression-like behavior. J Neurotrauma. 2019;37(11):1331–41.

    Article  Google Scholar 

  6. Pischiutta F, et al. Single severe traumatic brain injury produces progressive pathology with ongoing contralateral white matter damage one year after injury. Exp Neurol. 2018;300:167–78.

    Article  PubMed  Google Scholar 

  7. Jarrahi A, et al. Revisiting traumatic brain injury: from molecular mechanisms to therapeutic interventions. Biomedicines. 2020;8(10):389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sperl MA, et al. Long-term risk of stroke after traumatic brain injury: a population-based medical record review study. Neuroepidemiology. 2022;56(4):283–90.

    Article  PubMed  Google Scholar 

  9. de Freitas Cardoso MG, et al. Cognitive impairment following acute mild traumatic brain injury. Front Neurol. 2019;10:198.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mohamed AZ, et al. Traumatic brain injury fast-forwards Alzheimer’s pathology: evidence from amyloid positron emission tomorgraphy imaging. J Neurol. 2022;269(2):873–84.

    Article  CAS  PubMed  Google Scholar 

  11. Young JS, Hobbs JG, Bailes JE. The impact of traumatic brain injury on the aging brain. Curr Psychiatry Rep. 2016;18(9):81.

    Article  PubMed  Google Scholar 

  12. LoBue C, et al. Traumatic brain injury history and progression from mild cognitive impairment to Alzheimer disease. Neuropsychology. 2018;32(4):401–9.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wilson L, et al. The chronic and evolving neurological consequences of traumatic brain injury. Lancet Neurol. 2017;16(10):813–25.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Masel BE, DeWitt DS. Traumatic brain injury: a disease process, not an event. J Neurotrauma. 2010;27(8):1529–40.

    Article  PubMed  Google Scholar 

  15. Perry DC, et al. Association of traumatic brain injury with subsequent neurological and psychiatric disease: a meta-analysis. J Neurosurg. 2016;124(2):511–26.

    Article  PubMed  Google Scholar 

  16. Bryant RA, et al. The psychiatric sequelae of traumatic injury. Am J Psychiatry. 2010;167(3):312–20.

    Article  PubMed  Google Scholar 

  17. MacKenzie JD, et al. Brain atrophy in mild or moderate traumatic brain injury: a longitudinal quantitative analysis. Am J Neuroradiol. 2002;23(9):1509–15.

    PubMed  PubMed Central  Google Scholar 

  18. Reider-Groswasser I, et al. Late CT findings in brain trauma: relationship to cognitive and behavioral sequelae and to vocational outcome. AJR Am J Roentgenol. 1993;160(1):147–52.

    Article  CAS  PubMed  Google Scholar 

  19. Loane DJ, et al. Progressive neurodegeneration after experimental brain trauma: association with chronic microglial activation. J Neuropathol Exp Neurol. 2014;73(1):14–29.

    Article  CAS  PubMed  Google Scholar 

  20. Faden AI, Loane DJ. Chronic neurodegeneration after traumatic brain injury: Alzheimer disease, chronic traumatic encephalopathy, or persistent neuroinflammation? Neurotherapeutics. 2015;12(1):143–50.

    Article  CAS  PubMed  Google Scholar 

  21. Ritzel RM, et al. Chronic alterations in systemic immune function after traumatic brain injury. J Neurotrauma. 2018;35(13):1419–36.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Johnson VE, et al. Inflammation and white matter degeneration persist for years after a single traumatic brain injury. Brain. 2013;136(1):28–42.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ramlackhansingh AF, et al. Inflammation after trauma: microglial activation and traumatic brain injury. Ann Neurol. 2011;70(3):374–83.

    Article  PubMed  Google Scholar 

  24. Irimia A, et al. Acute cognitive deficits after traumatic brain injury predict Alzheimer’s disease-like degradation of the human default mode network. Geroscience. 2020;42(5):1411–29.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hay J, et al. Chronic traumatic encephalopathy: the neuropathological legacy of traumatic brain injury. Annu Rev Pathol. 2016;11:21–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Acosta SA, et al. Increased amyloid precursor protein and tau expression manifests as key secondary cell death in chronic traumatic brain injury. J Cell Physiol. 2017;232(3):665–77.

    Article  CAS  PubMed  Google Scholar 

  27. Tajiri N, et al. Traumatic brain injury precipitates cognitive impairment and extracellular Aβ aggregation in Alzheimer’s disease transgenic mice. PLoS ONE. 2013;8(11): e78851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang L, et al. Association of life-course traumatic brain injury with dementia risk: a nationwide twin study. Alzheimer’s Dement. 2023;19(1):217–25.

    Article  Google Scholar 

  29. Fann JR, et al. Long-term risk of dementia among people with traumatic brain injury in Denmark: a population-based observational cohort study. Lancet Psychiatry. 2018;5(5):424–31.

    Article  PubMed  Google Scholar 

  30. Braun M, et al. Activation of myeloid TLR4 mediates T lymphocyte polarization after traumatic brain injury. J Immunol. 2017;198(9):3615–26.

    Article  CAS  PubMed  Google Scholar 

  31. Ahluwalia M, et al. Altered endocannabinoid metabolism compromises the brain-CSF barrier and exacerbates chronic deficits after traumatic brain injury in mice. Exp Neurol. 2023;361: 114320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vaibhav K, et al. Neutrophil extracellular traps exacerbate neurological deficits after traumatic brain injury. Sci Adv. 2020;6(22):eaax8847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cernak I, et al. A novel mouse model of penetrating brain injury. Front Neurol. 2014;5:209.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Luong TN, et al. Assessment of motor balance and coordination in mice using the balance beam. J Vis Exp. 2011;(49):e2379.

  35. Evonuk KS, et al. Myocardial ischemia/reperfusion impairs neurogenesis and hippocampal-dependent learning and memory. Brain Behav Immun. 2017;61:266–73.

    Article  PubMed  Google Scholar 

  36. Tabassum R, et al. Perillyl alcohol improves functional and histological outcomes against ischemia–reperfusion injury by attenuation of oxidative stress and repression of COX-2, NOS-2 and NF-κB in middle cerebral artery occlusion rats. Eur J Pharmacol. 2015;747:190–9.

    Article  CAS  PubMed  Google Scholar 

  37. Wakade C, et al. Delayed reduction in hippocampal postsynaptic density protein-95 expression temporally correlates with cognitive dysfunction following controlled cortical impact in mice. J Neurosurg. 2010;113(6):1195–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bouët V, et al. Sensorimotor and cognitive deficits after transient middle cerebral artery occlusion in the mouse. Exp Neurol. 2007;203(2):555–67.

    Article  PubMed  Google Scholar 

  39. Kimbler DE, et al. Activation of P2X7 promotes cerebral edema and neurological injury after traumatic brain injury in mice. PLoS ONE. 2012;7(7): e41229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Laird MD, et al. High mobility group box protein-1 promotes cerebral edema after traumatic brain injury via activation of toll-like receptor 4. Glia. 2014;62(1):26–38.

    Article  PubMed  Google Scholar 

  41. Ahluwalia P, et al. Clinical and molecular assessment of an onco-immune signature with prognostic significance in patients with colorectal cancer. Cancer Med. 2022;11(6):1573–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kolhe R, et al. Nanostring-based identification of the gene expression profile in trigger finger samples. Healthcare (Basel). 2021;9(11):1592.

    Article  PubMed  Google Scholar 

  43. Raudvere U, et al. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019;47(W1):W191-w198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Vaibhav K, et al. Piperine suppresses cerebral ischemia-reperfusion-induced inflammation through the repression of COX-2, NOS-2, and NF-kappaB in middle cerebral artery occlusion rat model. Mol Cell Biochem. 2012;367(1–2):73–84.

    Article  CAS  PubMed  Google Scholar 

  45. Khan MB, et al. Remote ischemic postconditioning: harnessing endogenous protection in a murine model of vascular cognitive impairment. Transl Stroke Res. 2015;6(1):69–77.

    Article  PubMed  Google Scholar 

  46. Totenhagen JW, et al. In vivo assessment of neurodegeneration in Niemann-Pick type C mice by quantitative T2 mapping and diffusion tensor imaging. J Magn Reson Imaging. 2012;35(3):528–36.

    Article  PubMed  Google Scholar 

  47. Ng SY, Lee AYW. Traumatic brain injuries: pathophysiology and potential therapeutic targets. Front Cell Neurosci. 2019;(13):528.

  48. McKee AC, Daneshvar DH. The neuropathology of traumatic brain injury. Handb Clin Neurol. 2015;127:45–66.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Mielke MM, et al. Traumatic brain injury and risk of Alzheimer’s disease and related dementias in the population. J Alzheimers Dis. 2022;88(3):1049–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nordström A, Nordström P. Traumatic brain injury and the risk of dementia diagnosis: a nationwide cohort study. PLoS Med. 2018;15(1): e1002496.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Sariaslan A, et al. Long-term outcomes associated with traumatic brain injury in childhood and adolescence: a nationwide Swedish cohort study of a wide range of medical and social outcomes. PLoS Med. 2016;13(8): e1002103.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Gugger JJ, et al. Change in structural brain network abnormalities after traumatic brain injury determines post-injury recovery. arXiv preprint arXiv:2205.14663, 2022.

  53. Aliev G, et al. Mitochondria and vascular lesions as a central target for the development of Alzheimer’s disease and Alzheimer disease-like pathology in transgenic mice. Neurol Res. 2003;25(6):665–74.

    Article  PubMed  Google Scholar 

  54. Jantaratnotai N, et al. Comparison of vascular perturbations in an Aβ-injected animal model and in AD brain. Int J Alzheimer’s Dis. 2011;2011:1–8.

    Article  Google Scholar 

  55. Borroni B, et al. Microvascular damage and platelet abnormalities in early Alzheimer’s disease. J Neurol Sci. 2002;203:189–93.

    Article  PubMed  Google Scholar 

  56. Walker DG, Dalsing-Hernandez JE, Lue L-F. Human postmortem brain-derived cerebrovascular smooth muscle cells express all genes of the classical complement pathway: a potential mechanism for vascular damage in cerebral amyloid angiopathy and Alzheimer’s disease. Microvasc Res. 2008;75(3):411–9.

    Article  CAS  PubMed  Google Scholar 

  57. Yesil Y, et al. Increased mean platelet volume (MPV) indicating the vascular risk in Alzheimer’s disease (AD). Arch Gerontol Geriatr. 2012;55(2):257–60.

    Article  PubMed  Google Scholar 

  58. Jolly AE, et al. Detecting axonal injury in individual patients after traumatic brain injury. Brain. 2021;144(1):92–113.

    Article  PubMed  Google Scholar 

  59. Graham NS, et al. Diffuse axonal injury predicts neurodegeneration after moderate–severe traumatic brain injury. Brain. 2020;143(12):3685–98.

    Article  PubMed  Google Scholar 

  60. Jerstad T, et al. Predicting functional outcome one year after traumatic brain injury with CT and MRI findings. 2012;2(4):134–44.

  61. Graham NS, Sharp DJ. Understanding neurodegeneration after traumatic brain injury: from mechanisms to clinical trials in dementia. J Neurol Neurosurg Psychiatry. 2019;90(11):1221–33.

    Article  PubMed  Google Scholar 

  62. Smith DH, Johnson VE, Stewart W. Chronic neuropathologies of single and repetitive TBI: substrates of dementia? Nat Rev Neurol. 2013;9(4):211–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Graham NS, et al. Axonal marker neurofilament light predicts long-term outcomes and progressive neurodegeneration after traumatic brain injury. Sci Transl Med. 2021;13(613):eabg9922.

    Article  CAS  PubMed  Google Scholar 

  64. Shahim P, et al. Time course and diagnostic utility of NfL, tau, GFAP, and UCH-L1 in subacute and chronic TBI. Neurology. 2020;95(6):e623–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Newcombe VFJ, et al. Post-acute blood biomarkers and disease progression in traumatic brain injury. Brain. 2022;145(6):2064–76.

  66. Eikelenboom P, et al. Neuroinflammation–an early event in both the history and pathogenesis of Alzheimer’s disease. Neurodegener Dis. 2010;7(1–3):38–41.

    Article  CAS  PubMed  Google Scholar 

  67. Perry VH, Nicoll JA, Holmes C. Microglia in neurodegenerative disease. Nat Rev Neurol. 2010;6(4):193–201.

    Article  PubMed  Google Scholar 

  68. Gentleman S, et al. Long-term intracerebral inflammatory response after traumatic brain injury. Forensic Sci Int. 2004;146(2–3):97–104.

    Article  CAS  PubMed  Google Scholar 

  69. Villapol S, Loane DJ, Burns MP. Sexual dimorphism in the inflammatory response to traumatic brain injury. Glia. 2017;65(9):1423–38.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Trautz F, et al. Survival-time dependent increase in neuronal IL-6 and astroglial GFAP expression in fatally injured human brain tissue. Sci Rep. 2019;9(1):1–15.

    Article  CAS  Google Scholar 

  71. Todd BP, et al. Traumatic brain injury results in unique microglial and astrocyte transcriptomes enriched for type I interferon response. J Neuroinflammation. 2021;18(1):151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. LoBue C, et al. Neurodegenerative dementias after traumatic brain injury. J Neuropsychiatry Clin Neurosci. 2017;30(1):7–13.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Davies TA, et al. β amyloid fragments derived from activated platelets deposit in cerebrovascular endothelium: usage of a novel blood brain barrier endothelial cell model system. Amyloid. 2000;7(3):153–65.

    Article  CAS  PubMed  Google Scholar 

  74. Mlekusch R, Humpel C. Matrix metalloproteinases-2 and-3 are reduced in cerebrospinal fluid with low beta-amyloid1–42 levels. Neurosci Lett. 2009;466(3):135–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Palmer JC, Kehoe PG, Love S. Endothelin-converting enzyme-1 in Alzheimer’s disease and vascular dementia. Neuropathol Appl Neurobiol. 2010;36(6):487–97.

    Article  CAS  PubMed  Google Scholar 

  76. Miners JS, et al. Aβ degradation or cerebral perfusion? Divergent effects of multifunctional enzymes. Front Aging Neurosci. 2014;6:238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Moloney CM, Lowe VJ, Murray ME. Visualization of neurofibrillary tangle maturity in Alzheimer’s disease: a clinicopathologic perspective for biomarker research. Alzheimer’s Dement. 2021;17(9):1554–74.

    Article  CAS  Google Scholar 

  78. Carron SF, Alwis DS, Rajan R. Traumatic brain injury and neuronal functionality changes in sensory cortex. Front Syst Neurosci. 2016;(10):47.

  79. Crocker LD, et al. Mild traumatic brain injury burden moderates the relationship between cognitive functioning and suicidality in Iraq/Afghanistan-Era veterans. J Int Neuropsychol Soc. 2019;25(1):79–89.

    Article  PubMed  Google Scholar 

  80. Malkesman O, et al. Traumatic brain injury - modeling neuropsychiatric symptoms in rodents. Front Neurol. 2013;4:157–157.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Fleminger S, et al. Head injury as a risk factor for Alzheimer’s disease: the evidence 10 years on; a partial replication. J Neurol Neurosurg Psychiatry. 2003;74(7):857–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Vasterling JJ, et al. Neuropsychological outcomes of mild traumatic brain injury, post-traumatic stress disorder and depression in Iraq-deployed US Army soldiers. Br J Psychiatry. 2012;201(3):186–92.

    Article  PubMed  Google Scholar 

  83. Aungst SL, et al. Repeated mild traumatic brain injury causes chronic neuroinflammation, changes in hippocampal synaptic plasticity, and associated cognitive deficits. J Cereb Blood Flow Metab. 2014;34(7):1223–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sharp DJ, Scott G, Leech R. Network dysfunction after traumatic brain injury. Nat Rev Neurol. 2014;10(3):156–66.

    Article  PubMed  Google Scholar 

  85. Li Y, et al. Head injury as a risk factor for dementia and Alzheimer’s disease: a systematic review and meta-analysis of 32 observational studies. PLoS ONE. 2017;12(1): e0169650.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the electron microscopy and histology core, and small animal imaging core at AU for histological and MRI assistance respectively.

Funding

Financial support for this project was provided by the awards from the Augusta University Research Institute MCGFD08343 and RIA00056 to KV, and partially by extramural funds NIA R01AG062655 to FD, and NINDS R01NS114560 to KV.

Author information

Authors and Affiliations

Authors

Contributions

KV conceptualized the project, designed the experiments, prepared the TBI model, and supervised the entire project. KV, AA, FLV, FD, RK, MA, MK, MG, and PA wrote the manuscript. AA, VA, and KV assisted with MRI experiments and analysis. MA, LG, MG, and KV assisted with mice behavior tests and analysis. FD, AMR, JBM, and KV assisted with synaptic plasticity experiments and analysis. MG, VA, MGZ, MA, and KV assisted with histology and immunohistochemistry experiments. MA, PKA, AKM, RK, and KV assisted with Nanostring transcriptomic experiments and initial analysis of data. MA and MK assisted with data interpretation. PKA did final transcriptomic analysis and prepared respective figures. All authors read, revised, and approved the manuscript for publication.

Corresponding author

Correspondence to Kumar Vaibhav.

Ethics declarations

Conflict of interest

The authors declare that there is no financial conflict of interest. We also declare that one of the co-authors (FD) is an Associate Editor of Geroscience.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1742 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaibhav, K., Gulhane, M., Ahluwalia, P. et al. Single episode of moderate to severe traumatic brain injury leads to chronic neurological deficits and Alzheimer’s-like pathological dementia. GeroScience (2024). https://doi.org/10.1007/s11357-024-01183-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11357-024-01183-3

Keywords

Navigation