Skip to main content

Advertisement

Log in

The Impact of Traumatic Brain Injury on the Aging Brain

  • Geriatric Disorders (W McDonald, Section Editor)
  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

Traumatic brain injury (TBI) has come to the forefront of both the scientific and popular culture. Specifically, sports-related concussions or mild TBI (mTBI) has become the center of scientific scrutiny with a large amount of research focusing on the long-term sequela of this type of injury. As the populace continues to age, the impact of TBI on the aging brain will become clearer. Currently, reports have come to light that link TBI to neurodegenerative disorders such as Alzheimer’s and Parkinson’s diseases, as well as certain psychiatric diseases. Whether these associations are causations, however, is yet to be determined. Other long-term sequelae, such as chronic traumatic encephalopathy (CTE), appear to be associated with repetitive injuries. Going forward, as we gain better understanding of the pathophysiological process involved in TBI and subclinical head traumas, and individual traits that influence susceptibility to neurocognitive diseases, a clearer, more comprehensive understanding of the connection between brain injury and resultant disease processes in the aging brain will become evident.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Warden D. Military TBI, during the Iraq and Afghanistan wars. J Head Trauma Rehabil. 2006;21(5):398–402.

    Article  PubMed  Google Scholar 

  2. Hobbs JG, Young JS, Bailes JE. Sports-related concussions: diagnosis, complications, and current management strategies. Neurosurg Focus. 2016;40(4):E5. doi:10.3171/2016.1.FOCUS15617.

    Article  PubMed  Google Scholar 

  3. Guskiewicz KM, McCrea M, Marshall SW, Cantu RC, Randolph C, Barr W, et al. Cumulative effects associated with recurrent concussion in collegiate football players: the NCAA Concussion Study. JAMA : J Am Med Assoc. 2003;290(19):2549–55. doi:10.1001/jama.290.19.2549.

    Article  CAS  Google Scholar 

  4. Collins MW, Lovell MR, Iverson GL, Cantu RC, Maroon JC, Field M. Cumulative effects of concussion in high school athletes. Neurosurgery. 2002;51(5):1175–9. discussion 80-1.

    Article  PubMed  Google Scholar 

  5. Ledwidge PS, Molfese DL. Long-term effects of concussion on electrophysiological indices of attention in varsity college athletes: an ERP and sLORETA approach. J Neurotrauma. 2016. doi:10.1089/neu.2015.4251.

    PubMed  Google Scholar 

  6. Omalu B, Bailes J, Hamilton RL, Kamboh MI, Hammers J, Case M, et al. Emerging histomorphologic phenotypes of chronic traumatic encephalopathy in American athletes. Neurosurgery. 2011;69(1):173–83. doi:10.1227/NEU.0b013e318212bc7b. discussion 83.

    Article  PubMed  Google Scholar 

  7. Omalu BI, DeKosky ST, Hamilton RL, Minster RL, Kamboh MI, Shakir AM, et al. Chronic traumatic encephalopathy in a national football league player: part II. Neurosurgery. 2006;59(5):1086–92. doi:10.1227/01.NEU.0000245601.69451.27. discussion 92-3.

    PubMed  Google Scholar 

  8. Xu L, Nguyen JV, Lehar M, Menon A, Rha E, Arena J, et al. Repetitive mild traumatic brain injury with impact acceleration in the mouse: multifocal axonopathy, neuroinflammation, and neurodegeneration in the visual system. Exp Neurol. 2016;275(Pt 3):436–49. doi:10.1016/j.expneurol.2014.11.004. Basic science experiment utilizing a murine model of repetitive mTBI that demonstrates how neuroinflammation can lead to neurodegeneration of certain neural systems.

    Article  PubMed  Google Scholar 

  9. Fidan E, Lewis J, Kline AE, Garman RH, Alexander H, Cheng JP, et al. Repetitive mild traumatic brain injury in the developing brain: effects on long-term functional outcome and neuropathology. J Neurotrauma. 2016;33(7):641–51. doi:10.1089/neu.2015.3958.

    Article  PubMed  Google Scholar 

  10. Aungst SL, Kabadi SV, Thompson SM, Stoica BA, Faden AI. Repeated mild traumatic brain injury causes chronic neuroinflammation, changes in hippocampal synaptic plasticity, and associated cognitive deficits. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 2014;34(7):1223–32. doi:10.1038/jcbfm.2014.75.

    Article  CAS  Google Scholar 

  11. Lourbopoulos A, Erturk A, Hellal F. Microglia in action: how aging and injury can change the brain’s guardians. Front Cell Neurosci. 2015;9:54. doi:10.3389/fncel.2015.00054.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ziebell JM, Rowe RK, Muccigrosso MM, Reddaway JT, Adelson PD, Godbout JP, et al. Aging with a traumatic brain injury: could behavioral morbidities and endocrine symptoms be influenced by microglial priming? Brain Behav Immun. 2016. doi:10.1016/j.bbi.2016.03.008.

    PubMed  Google Scholar 

  13. Barrientos RM, Kitt MM, Watkins LR, Maier SF. Neuroinflammation in the normal aging hippocampus. Neuroscience. 2015;309:84–99. doi:10.1016/j.neuroscience.2015.03.007.

    Article  CAS  PubMed  Google Scholar 

  14. Goddeyne C, Nichols J, Wu C, Anderson T. Repetitive mild traumatic brain injury induces ventriculomegaly and cortical thinning in juvenile rats. J Neurophysiol. 2015;113(9):3268–80. doi:10.1152/jn.00970.2014.

    Article  PubMed  PubMed Central  Google Scholar 

  15. De Beaumont L, Henry LC, Gosselin N. Long-term functional alterations in sports concussion. Neurosurg Focus. 2012;33(6):E8: 1–7. doi:10.3171/2012.9.FOCUS12278.

    Article  PubMed  Google Scholar 

  16. Esopenko C, Levine B. Aging, neurodegenerative disease, and traumatic brain injury: the role of neuroimaging. J Neurotrauma. 2015;32(4):209–20. doi:10.1089/neu.2014.3506. Review manuscript highlights the neuroimaging changes associated with unhealthy brain aging in the setting of a remote TBI.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Toth A, Kovacs N, Perlaki G, Orsi G, Aradi M, Komaromy H, et al. Multi-modal magnetic resonance imaging in the acute and sub-acute phase of mild traumatic brain injury: can we see the difference? J Neurotrauma. 2013;30(1):2–10. doi:10.1089/neu.2012.2486.

    Article  PubMed  Google Scholar 

  18. Tremblay S, De Beaumont L, Henry LC, Boulanger Y, Evans AC, Bourgouin P, et al. Sports concussions and aging: a neuroimaging investigation. Cereb Cortex. 2013;23(5):1159–66. doi:10.1093/cercor/bhs102. Neuroimaging investigation of former athletes with a concussion history that provides the first in vivo neuroanatomical evidence of the relationship between cognitive decline in late adulthood and sports concussions experienced in early adulthood.

    Article  PubMed  Google Scholar 

  19. De Beaumont L, Theoret H, Mongeon D, Messier J, Leclerc S, Tremblay S, et al. Brain function decline in healthy retired athletes who sustained their last sports concussion in early adulthood. Brain : J Neurol. 2009;132(Pt 3):695–708. doi:10.1093/brain/awn347.

    Article  Google Scholar 

  20. Strain JF, Womack KB, Didehbani N, Spence JS, Conover H, Hart Jr J, et al. Imaging correlates of memory and concussion history in retired national football league athletes. JAMA Neurol. 2015;72(7):773–80. doi:10.1001/jamaneurol.2015.0206.

    Article  PubMed  Google Scholar 

  21. Singh R, Meier TB, Kuplicki R, Savitz J, Mukai I, Cavanagh L, et al. Relationship of collegiate football experience and concussion with hippocampal volume and cognitive outcomes. JAMA : J Am Med Assoc. 2014;311(18):1883–8. doi:10.1001/jama.2014.3313. A significant inverse relationship exists between concussions and hippocampal volume amongst a population of former collegiate football athletes.

    Article  CAS  Google Scholar 

  22. Guskiewicz KM, Marshall SW, Bailes J, McCrea M, Cantu RC, Randolph C, et al. Association between recurrent concussion and late-life cognitive impairment in retired professional football players. Neurosurgery. 2005;57(4):719–26. discussion -26.

    Article  PubMed  Google Scholar 

  23. Tremblay S, Henry LC, Bedetti C, Larson-Dupuis C, Gagnon JF, Evans AC, et al. Diffuse white matter tract abnormalities in clinically normal ageing retired athletes with a history of sports-related concussions. Brain : J Neurol. 2014;137(Pt 11):2997–3011. doi:10.1093/brain/awu236.

    Article  Google Scholar 

  24. Trotter BB, Robinson ME, Milberg WP, McGlinchey RE, Salat DH. Military blast exposure, ageing and white matter integrity. Brain : J Neurol. 2015;138(Pt 8):2278–92. doi:10.1093/brain/awv139.

    Article  Google Scholar 

  25. Koerte IK, Lin AP, Muehlmann M, Merugumala S, Liao H, Starr T, et al. Altered neurochemistry in former professional soccer players without a history of concussion. J Neurotrauma. 2015;32(17):1287–93. doi:10.1089/neu.2014.3715.

    Article  PubMed  Google Scholar 

  26. Lehman EJ, Hein MJ, Baron SL, Gersic CM. Neurodegenerative causes of death among retired National Football League players. Neurology. 2012;79(19):1970–4. doi:10.1212/WNL.0b013e31826daf50.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hart Jr J, Kraut MA, Womack KB, Strain J, Didehbani N, Bartz E, et al. Neuroimaging of cognitive dysfunction and depression in aging retired National Football League players: a cross-sectional study. JAMA Neurol. 2013;70(3):326–35. doi:10.1001/2013.jamaneurol.340.

    Article  PubMed  PubMed Central  Google Scholar 

  28. DeKosky ST, Abrahamson EE, Ciallella JR, Paljug WR, Wisniewski SR, Clark RS, et al. Association of increased cortical soluble abeta42 levels with diffuse plaques after severe brain injury in humans. Arch Neurol. 2007;64(4):541–4. doi:10.1001/archneur.64.4.541.

    Article  PubMed  Google Scholar 

  29. Yoshiyama Y, Uryu K, Higuchi M, Longhi L, Hoover R, Fujimoto S, et al. Enhanced neurofibrillary tangle formation, cerebral atrophy, and cognitive deficits induced by repetitive mild brain injury in a transgenic tauopathy mouse model. J Neurotrauma. 2005;22(10):1134–41. doi:10.1089/neu.2005.22.1134.

    Article  PubMed  Google Scholar 

  30. Wang HK, Lin SH, Sung PS, Wu MH, Hung KW, Wang LC, et al. Population based study on patients with traumatic brain injury suggests increased risk of dementia. J Neurol Neurosurg Psychiatry. 2012;83(11):1080–5. doi:10.1136/jnnp-2012-302633.

    Article  PubMed  Google Scholar 

  31. Bigler ED. Traumatic brain injury, neuroimaging, and neurodegeneration. Front Hum Neurosci. 2013;7:395. doi:10.3389/fnhum.2013.00395. Review manuscript examines the dynamic changes that following a TBI during brain development and how TBI interferes with typical aging.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Dams-O’Connor K, Gibbons LE, Bowen JD, McCurry SM, Larson EB, Crane PK. Risk for late-life re-injury, dementia and death among individuals with traumatic brain injury: a population-based study. J Neurol Neurosurg Psychiatry. 2013;84(2):177–82. doi:10.1136/jnnp-2012-303938.

    Article  PubMed  Google Scholar 

  33. Plassman BL, Havlik RJ, Steffens DC, Helms MJ, Newman TN, Drosdick D, et al. Documented head injury in early adulthood and risk of Alzheimer’s disease and other dementias. Neurology. 2000;55(8):1158–66.

    Article  CAS  PubMed  Google Scholar 

  34. McKee AC, Robinson ME. Military-related traumatic brain injury and neurodegeneration. Alzheimers Dement : J Alzheimers Assoc. 2014;10(3 Suppl):S242–53. doi:10.1016/j.jalz.2014.04.003.

    Article  Google Scholar 

  35. McKee AC, Stern RA, Nowinski CJ, Stein TD, Alvarez VE, Daneshvar DH, et al. The spectrum of disease in chronic traumatic encephalopathy. Brain : J Neurol. 2013;136(Pt 1):43–64. doi:10.1093/brain/aws307.

    Article  Google Scholar 

  36. Stein TD, Alvarez VE, McKee AC. Chronic traumatic encephalopathy: a spectrum of neuropathological changes following repetitive brain trauma in athletes and military personnel. Alzheimers Res Ther. 2014;6(1):4. doi:10.1186/alzrt234.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Gupta R, Sen N. Traumatic brain injury: a risk factor for neurodegenerative diseases. Rev Neurosci. 2016;27(1):93–100. doi:10.1515/revneuro-2015-0017. Review that describes the biochemical events that occur following a TBI that may lead to the development of neurodegenerative diseases.

    Article  PubMed  Google Scholar 

  38. Perry DC, Sturm VE, Peterson MJ, Pieper CF, Bullock T, Boeve BF, et al. Association of traumatic brain injury with subsequent neurological and psychiatric disease: a meta-analysis. J Neurosurg. 2016;124(2):511–26. doi:10.3171/2015.2.JNS14503. Meta-analysis of all studies from 1995 – 2012 that report TBI as a risk factor for the future development of neurological and psychiatric disease.

    Article  PubMed  Google Scholar 

  39. Goldman SM, Tanner CM, Oakes D, Bhudhikanok GS, Gupta A, Langston JW. Head injury and Parkinson’s disease risk in twins. Ann Neurol. 2006;60(1):65–72. doi:10.1002/ana.20882.

    Article  PubMed  Google Scholar 

  40. Taylor CA, Saint-Hilaire MH, Cupples LA, Thomas CA, Burchard AE, Feldman RG, et al. Environmental, medical, and family history risk factors for Parkinson’s disease: a New England-based case control study. Am J Med Genet. 1999;88(6):742–9.

    Article  CAS  PubMed  Google Scholar 

  41. Maher NE, Golbe LI, Lazzarini AM, Mark MH, Currie LJ, Wooten GF, et al. Epidemiologic study of 203 sibling pairs with Parkinson’s disease: the GenePD study. Neurology. 2002;58(1):79–84.

    Article  CAS  PubMed  Google Scholar 

  42. Kalkonde YV, Jawaid A, Qureshi SU, Shirani P, Wheaton M, Pinto-Patarroyo GP, et al. Medical and environmental risk factors associated with frontotemporal dementia: a case-control study in a veteran population. Alzheimers Dement : J Alzheimers Assoc. 2012;8(3):204–10. doi:10.1016/j.jalz.2011.03.011.

    Article  Google Scholar 

  43. Rosso SM, Landweer EJ, Houterman M, Donker Kaat L, van Duijn CM, van Swieten JC. Medical and environmental risk factors for sporadic frontotemporal dementia: a retrospective case-control study. J Neurol Neurosurg Psychiatry. 2003;74(11):1574–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kang JH, Lin HC. Increased risk of multiple sclerosis after traumatic brain injury: a nationwide population-based study. J Neurotrauma. 2012;29(1):90–5. doi:10.1089/neu.2011.1936.

    Article  PubMed  Google Scholar 

  45. Al-Afasy HH, Al-Obaidan MA, Al-Ansari YA, Al-Yatama SA, Al-Rukaibi MS, Makki NI, et al. Risk factors for multiple sclerosis in Kuwait: a population-based case-control study. Neuroepidemiology. 2013;40(1):30–5. doi:10.1159/000341240.

    Article  PubMed  Google Scholar 

  46. Pfleger CC, Koch-Henriksen N, Stenager E, Flachs EM, Johansen C. Head injury is not a risk factor for multiple sclerosis: a prospective cohort study. Mult Scler. 2009;15(3):294–8. doi:10.1177/1352458508099475.

    Article  CAS  PubMed  Google Scholar 

  47. Goldacre MJ, Abisgold JD, Yeates DG, Seagroatt V. Risk of multiple sclerosis after head injury: record linkage study. J Neurol Neurosurg Psychiatry. 2006;77(3):351–3. doi:10.1136/jnnp.2005.077693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chio A, Benzi G, Dossena M, Mutani R, Mora G. Severely increased risk of amyotrophic lateral sclerosis among Italian professional football players. Brain : J Neurol. 2005;128(Pt 3):472–6. doi:10.1093/brain/awh373.

    Article  Google Scholar 

  49. McKee AC, Gavett BE, Stern RA, Nowinski CJ, Cantu RC, Kowall NW, et al. TDP-43 proteinopathy and motor neuron disease in chronic traumatic encephalopathy. J Neuropathol Exp Neurol. 2010;69(9):918–29. doi:10.1097/NEN.0b013e3181ee7d85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zgaljardic DJ, Seale GS, Schaefer LA, Temple RO, Foreman J, Elliott TR. Psychiatric disease and post-acute traumatic brain injury. J Neurotrauma. 2015;32(23):1911–25. doi:10.1089/neu.2014.3569. Review that describes the development of long-term psychiatric disorders and the life-long challenges they pose to patients after traumatic brain injury.

    Article  PubMed  Google Scholar 

  51. Seel RT, Kreutzer JS. Depression assessment after traumatic brain injury: an empirically based classification method. Arch Phys Med Rehabil. 2003;84(11):1621–8.

    Article  PubMed  Google Scholar 

  52. Guskiewicz KM, Marshall SW, Bailes J, McCrea M, Harding Jr HP, Matthews A, et al. Recurrent concussion and risk of depression in retired professional football players. Med Sci Sports Exerc. 2007;39(6):903–9. doi:10.1249/mss.0b013e3180383da5.

    Article  PubMed  Google Scholar 

  53. Bryant RA, O’Donnell ML, Creamer M, McFarlane AC, Clark CR, Silove D. The psychiatric sequelae of traumatic injury. Am J Psychiatry. 2010;167(3):312–20. doi:10.1176/appi.ajp.2009.09050617.

    Article  PubMed  Google Scholar 

  54. Jorge RE, Starkstein SE. Pathophysiologic aspects of major depression following traumatic brain injury. J Head Trauma Rehabil. 2005;20(6):475–87.

    Article  PubMed  Google Scholar 

  55. Ponsford J, Cameron P, Fitzgerald M, Grant M, Mikocka-Walus A. Long-term outcomes after uncomplicated mild traumatic brain injury: a comparison with trauma controls. J Neurotrauma. 2011;28(6):937–46. doi:10.1089/neu.2010.1516.

    Article  PubMed  Google Scholar 

  56. van Reekum R, Cohen T, Wong J. Can traumatic brain injury cause psychiatric disorders? J Neuropsychiatry Clin Neurosci. 2000;12(3):316–27. doi:10.1176/jnp.12.3.316.

    Article  PubMed  Google Scholar 

  57. Schonberger M, Ponsford J, Gould KR, Johnston L. The temporal relationship between depression, anxiety, and functional status after traumatic brain injury: a cross-lagged analysis. J Int Neuropsychol Soc : JINS. 2011;17(5):781–7. doi:10.1017/S1355617711000701.

    Article  PubMed  Google Scholar 

  58. Miller SC, Baktash SH, Webb TS, Whitehead CR, Maynard C, Wells TS, et al. Risk for addiction-related disorders following mild traumatic brain injury in a large cohort of active-duty U.S. airmen. Am J Psychiatry. 2013;170(4):383–90. doi:10.1176/appi.ajp.2012.12010126.

    Article  PubMed  Google Scholar 

  59. Miles SR, Graham DP, Teng EJ. Examining the influence of mild traumatic brain injury and posttraumatic stress disorder on alcohol use disorder in OEF/OIF veterans. Mil Med. 2015;180(1):45–52. doi:10.7205/MILMED-D-14-00187.

    Article  PubMed  Google Scholar 

  60. Anderson V, Catroppa C, Morse S, Haritou F, Rosenfeld J. Functional plasticity or vulnerability after early brain injury? Pediatrics. 2005;116(6):1374–82. doi:10.1542/peds.2004-1728.

    Article  PubMed  Google Scholar 

  61. McCrory P, Collie A, Anderson V, Davis G. Can we manage sport related concussion in children the same as in adults? Br J Sports Med. 2004;38(5):516–9. doi:10.1136/bjsm.2004.014811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Katz DI, Alexander MP. Traumatic brain injury. Predicting course of recovery and outcome for patients admitted to rehabilitation. Arch Neurol. 1994;51(7):661–70.

    Article  CAS  PubMed  Google Scholar 

  63. Johnson VE, Stewart W. Traumatic brain injury: age at injury influences dementia risk after TBI. Nat Rev Neurol. 2015;11(3):128–30. doi:10.1038/nrneurol.2014.241.

    Article  PubMed  Google Scholar 

  64. Gardner RC, Burke JF, Nettiksimmons J, Kaup A, Barnes DE, Yaffe K. Dementia risk after traumatic brain injury vs nonbrain trauma: the role of age and severity. JAMA Neurol. 2014;71(12):1490–7. doi:10.1001/jamaneurol.2014.2668.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Fakhran S, Yaeger K, Collins M, Alhilali L. Sex differences in white matter abnormalities after mild traumatic brain injury: localization and correlation with outcome. Radiology. 2014;272(3):815–23. doi:10.1148/radiol.14132512.

    Article  PubMed  Google Scholar 

  66. Bazarian JJ, Blyth B, Mookerjee S, He H, McDermott MP. Sex differences in outcome after mild traumatic brain injury. J Neurotrauma. 2010;27(3):527–39. doi:10.1089/neu.2009.1068.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Gessel LM, Fields SK, Collins CL, Dick RW, Comstock RD. Concussions among United States high school and collegiate athletes. J Athl Train. 2007;42(4):495–503.

    PubMed  PubMed Central  Google Scholar 

  68. Broshek DK, Kaushik T, Freeman JR, Erlanger D, Webbe F, Barth JT. Sex differences in outcome following sports-related concussion. J Neurosurg. 2005;102(5):856–63. doi:10.3171/jns.2005.102.5.0856.

    Article  PubMed  Google Scholar 

  69. Covassin T, Elbin RJ, Crutcher B, Burkhart S. The management of sport-related concussion: considerations for male and female athletes. Transl Stroke Res. 2013;4(4):420–4. doi:10.1007/s12975-012-0228-z.

    Article  PubMed  Google Scholar 

  70. Ponsford J, McLaren A, Schonberger M, Burke R, Rudzki D, Olver J, et al. The association between apolipoprotein E and traumatic brain injury severity and functional outcome in a rehabilitation sample. J Neurotrauma. 2011;28(9):1683–92. doi:10.1089/neu.2010.1623.

    Article  PubMed  Google Scholar 

  71. Schipper HM. Apolipoprotein E: implications for AD neurobiology, epidemiology and risk assessment. Neurobiol Aging. 2011;32(5):778–90. doi:10.1016/j.neurobiolaging.2009.04.021.

    Article  CAS  PubMed  Google Scholar 

  72. Jordan BD, Relkin NR, Ravdin LD, Jacobs AR, Bennett A, Gandy S. Apolipoprotein E epsilon4 associated with chronic traumatic brain injury in boxing. JAMA : J Am Med Assoc. 1997;278(2):136–40.

    Article  CAS  Google Scholar 

  73. Stern Y. What is cognitive reserve? Theory and research application of the reserve concept. J Int Neuropsychol Soc : JINS. 2002;8(3):448–60.

    Article  PubMed  Google Scholar 

  74. Broglio SP, Eckner JT, Paulson HL, Kutcher JS. Cognitive decline and aging: the role of concussive and subconcussive impacts. Exerc Sport Sci Rev. 2012;40(3):138–44. doi:10.1097/JES.0b013e3182524273.

    PubMed  PubMed Central  Google Scholar 

  75. Tashlykov V, Katz Y, Gazit V, Zohar O, Schreiber S, Pick CG. Apoptotic changes in the cortex and hippocampus following minimal brain trauma in mice. Brain Res. 2007;1130(1):197–205. doi:10.1016/j.brainres.2006.10.032.

    Article  CAS  PubMed  Google Scholar 

  76. Hehar H, Mychasiuk R. The use of telomere length as a predictive biomarker for injury prognosis in juvenile rats following a concussion/mild traumatic brain injury. Neurobiol Dis. 2016;87:11–8. doi:10.1016/j.nbd.2015.12.007.

    Article  CAS  PubMed  Google Scholar 

  77. Townsley DM, Dumitriu B, Liu D, Biancotto A, Weinstein B, Chen C, et al. Danazol Treatment for Telomere Diseases. N Engl J Med. 2016;374(20):1922–31. doi:10.1056/NEJMoa1515319.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan G. Hobbs.

Ethics declarations

Conflict of Interest

Jacob S. Young, Jonathan G. Hobbs, and Julian E. Bailes declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Geriatric Disorders

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Young, J.S., Hobbs, J.G. & Bailes, J.E. The Impact of Traumatic Brain Injury on the Aging Brain. Curr Psychiatry Rep 18, 81 (2016). https://doi.org/10.1007/s11920-016-0719-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11920-016-0719-9

Keywords

Navigation