Skip to main content
Log in

Differential mitochondrial bioenergetics and cellular resilience in astrocytes, hepatocytes, and fibroblasts from aging baboons

  • ORIGINAL ARTICLE
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Biological resilience, broadly defined as the ability to recover from an acute challenge and return to homeostasis, is of growing importance to the biology of aging. At the cellular level, there is variability across tissue types in resilience and these differences are likely to contribute to tissue aging rate disparities. However, there are challenges in addressing these cell-type differences at regional, tissue, and subject level. To address this question, we established primary cells from aged male and female baboons between 13.3 and 17.8 years spanning across different tissues, tissue regions, and cell types including (1) fibroblasts from skin and from the heart separated into the left ventricle (LV), right ventricle (RV), left atrium (LA), and right atrium (RA); (2) astrocytes from the prefrontal cortex and hippocampus; and (3) hepatocytes. Primary cells were characterized by their cell surface markers and their cellular respiration was assessed with Seahorse XFe96. Cellular resilience was assessed by modifying a live-cell imaging approach; we previously reported that monitors proliferation of dividing cells following response and recovery to oxidative (50 µM-H2O2), metabolic (1 mM-glucose), and proteostasis (0.1 µM-thapsigargin) stress. We noted significant differences even among similar cell types that are dependent on tissue source and the diversity in cellular response is stressor-specific. For example, astrocytes had a higher oxygen consumption rate and exhibited greater resilience to oxidative stress (OS) than both fibroblasts and hepatocytes. RV and RA fibroblasts were less resilient to OS compared with LV and LA, respectively. Skin fibroblasts were less impacted by proteostasis stress compared to astrocytes and cardiac fibroblasts. Future studies will test the functional relationship of these outcomes to the age and developmental status of donors as potential predictive markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data presented in the work are available from the corresponding author upon request.

References

  1. Tuttle CSL, Waaijer MEC, Slee-Valentijn MS, Stijnen T, Westendorp R, Maier AB. Cellular senescence and chronological age in various human tissues: a systematic review and meta-analysis. Aging Cell. 2020;19(2):e13083. https://doi.org/10.1111/acel.13083.

    Article  CAS  PubMed  Google Scholar 

  2. Tran NM, Shekhar K, Whitney IE, Jacobi A, Benhar I, Hong G, Yan W, Adiconis X, Arnold ME, Lee JM, Levin JZ, Lin D, Wang C, Lieber CM, Regev A, He Z, Sanes JR. Single-cell profiles of retinal ganglion cells differing in resilience to injury reveal neuroprotective genes. Neuron. 2019;104(6):1039-1055.e12. https://doi.org/10.1016/j.neuron.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nie C, Li Y, Li R, Yan Y, Zhang D, Li T, Li Z, Sun Y, Zhen H, Ding J, Wan Z, Gong J, Shi Y, Huang Z, Wu Y, Cai K, Zong Y, Wang Z, Wang R, Jian M, Jin X, Wang J, Yang H, Han JJ, Zhang X, Franceschi C, Kennedy BK, Xu X. Distinct biological ages of organs and systems identified from a multi-omics study. Cell Rep. 2022;38(10):110459. https://doi.org/10.1016/j.celrep.2022.110459.

    Article  CAS  PubMed  Google Scholar 

  4. Zhan M, Yamaza H, Sun Y, Sinclair J, Li H, Zou S. Temporal and spatial transcriptional profiles of aging in Drosophila melanogaster. Genome Res. 2007;17(8):1236–43. https://doi.org/10.1101/gr.6216607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Picard M, McEwen BS, Epel ES, Sandi C. An energetic view of stress: focus on mitochondria. Front Neuroendocrinol. 2018;49:72–85. https://doi.org/10.1016/j.yfrne.2018.01.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lee HY, Choi CS, Birkenfeld AL, Alves TC, Jornayvaz FR, Jurczak MJ, Zhang D, Woo DK, Shadel GS, Ladiges W, Rabinovitch PS, Santos JH, Petersen KF, Samuel VT, Shulman GI. Targeted expression of catalase to mitochondria prevents age-associated reductions in mitochondrial function and insulin resistance. Cell Metab. 2010;12(6):668–74. https://doi.org/10.1016/j.cmet.2010.11.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kimmel JC, Penland L, Rubinstein ND, Hendrickson DG, Kelley DR, Rosenthal AZ. Murine single-cell RNA-seq reveals cell-identity- and tissue-specific trajectories of aging. Genome Res. 2019;29(12):2088–103. https://doi.org/10.1101/gr.253880.119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang X, Azhar G, Nagano K, Wei JY. Differential vulnerability to oxidative stress in rat cardiac myocytes versus fibroblasts. J Am Coll Cardiol. 2001;38(7):2055–62. https://doi.org/10.1016/s0735-1097(01)01665-5.

    Article  CAS  PubMed  Google Scholar 

  9. Adekunbi DA, Li C, Nathanielsz PW, Salmon AB. Age and sex modify cellular proliferation responses to oxidative stress and glucocorticoid challenges in baboon cells. Geroscience. 2021;43(4):2067–85. https://doi.org/10.1007/s11357-021-00395-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Huber HF, Gerow KG, Li C, Nathanielsz PW. Walking speed declines with age in male and female baboons (Papio sp.): Confirmation of findings with sex as a biological variable. J Med Primatol. 2021;50(5):273–5. https://doi.org/10.1111/jmp.12538.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kuo AH, Li C, Huber HF, Nathanielsz PW, Clarke GD. Ageing changes in biventricular cardiac function in male and female baboons (Papio spp.). J Physiol. 2018;596(21):5083–98. https://doi.org/10.1113/JP276338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cox LA, Puppala S, Chan J, Zimmerman KD, Hamid Z, Ampong I, Huber HF, Li G, Jadhav AYL, Wang B, Li C, Baxter MG, Shively C, Clarke GD, Register TC, Nathanielsz PW, Olivier M. Integrated multi-omics analysis of brain aging in female nonhuman primates reveals altered signaling pathways relevant to age-related disorders. Neurobiol Aging. 2023;132:109–19. https://doi.org/10.1016/j.neurobiolaging.2023.08.009.

    Article  CAS  PubMed  Google Scholar 

  13. Rosenberg PA, Aizenman E. Hundred-fold increase in neuronal vulnerability to glutamate toxicity in astrocyte-poor cultures of rat cerebral cortex. Neurosci Lett. 1989;103(2):162–8.

    Article  CAS  PubMed  Google Scholar 

  14. Davis CH, Kim KY, Bushong EA, Mills EA, Boassa D, Shih T, Kinebuchi M, Phan S, Zhou Y, Bihlmeyer NA, Nguyen JV, Jin Y, Ellisman MH, Marsh-Armstrong N. Transcellular degradation of axonal mitochondria. Proc Natl Acad Sci U S A. 2014;111(26):9633–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kanekar S, Hirozanne T, Terracio L, Borg TK. Cardiac fibroblasts form and function. Cardiovasc Pathol. 1998;7(3):127–33. https://doi.org/10.1016/s1054-8807(97)00119-1.

    Article  CAS  PubMed  Google Scholar 

  16. Plikus MV, Wang X, Sinha S, Forte E, Thompson SM, Herzog EL, Driskell RR, Rosenthal N, Biernaskie J, Horsley V. Fibroblasts: origins, definitions, and functions in health and disease. Cell. 2021;184(15):3852–72. https://doi.org/10.1016/j.cell.2021.06.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tian G, Ren T. Mechanical stress regulates the mechanotransduction and metabolism of cardiac fibroblasts in fibrotic cardiac diseases. Eur J Cell Biol. 2023;102(2):151288. https://doi.org/10.1016/j.ejcb.2023.151288.

    Article  CAS  PubMed  Google Scholar 

  18. Buchakjian MR, Kornbluth S. The engine driving the ship: metabolic steering of cell proliferation and death. Nat Rev Mol Cell Biol. 2010;11(10):715–27. https://doi.org/10.1038/nrm2972.

    Article  CAS  PubMed  Google Scholar 

  19. Grieves JL, Dick EJ Jr, Schlabritz-Loutsevich NE, Butler SD, Leland MM, Price SE, Schmidt CR, Nathanielsz PW, Hubbard GB. Barbiturate euthanasia solution-induced tissue artifact in nonhuman primates. J Med Primatol. 2008;37(3):154–61. https://doi.org/10.1111/j.1600-0684.2007.00271.x.

    Article  CAS  PubMed  Google Scholar 

  20. Noble M, Mayer-Proschel M. Culture of astrocytes, oligodendrocytes, and O-2A progenitor cells. G. Banker, K. Goslin (Eds.), Culturing Nerve Cells, MIT Press, Cambridge, Massachusetts;1998, pp.499–54

  21. Lin DT, Wu J, Holstein D, Upadhyay G, Rourk W, Muller E, Lechleiter JD. Ca2+ signaling, mitochondria and sensitivity to oxidative stress in aging astrocytes. Neurobiol Aging. 2007;28(1):99–111. https://doi.org/10.1016/j.neurobiolaging.

    Article  PubMed  Google Scholar 

  22. Blondel B, Roijen I, Cheneval JP. Heart cells in culture: a simple method for increasing the proportion of myoblasts. Experientia. 1971;27(3):356–8. https://doi.org/10.1007/BF02138197.

    Article  CAS  PubMed  Google Scholar 

  23. Seglen PO. Preparation of isolated rat liver cells. Methods Cell Biol. 1976;13:29–83. https://doi.org/10.1016/s0091-679x(08)61797-5.

    Article  CAS  PubMed  Google Scholar 

  24. Lee SM, Schelcher C, Demmel M, Hauner M, Thasler WE. Isolation of human hepatocytes by a two-step collagenase perfusion procedure. J Vis Exp. 2013;79:50615. https://doi.org/10.3791/50615.

    Article  CAS  Google Scholar 

  25. Franke K, Clarke GD, Dahnke R, Gaser C, Kuo AH, Li C, Schwab M, Nathanielsz PW. Premature brain aging in baboons resulting from moderate fetal undernutrition. Front Aging Neurosci. 2017;9:92. https://doi.org/10.3389/fnagi.2017.00092.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kuo AH, Li C, Li J, Huber HF, Nathanielsz PW, Clarke GD. Cardiac remodelling in a baboon model of intrauterine growth restriction mimics accelerated ageing. J Physiol. 2017;595(4):1093–110. https://doi.org/10.1113/JP272908.

    Article  CAS  PubMed  Google Scholar 

  27. Choi J, Li C, McDonald TJ, Comuzzie A, Mattern V, Nathanielsz PW. Emergence of insulin resistance in juvenile baboon offspring of mothers exposed to moderate maternal nutrient reduction. Am J Physiol Regul Integr Comp Physiol. 2011;301(3):R757–62. https://doi.org/10.1152/ajpregu.00051.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Eugster AK, Kalter SS. Viral susceptibility of some in vitro cultured tissues from baboons (Papio sp.). Arch Gesamte Virusforsch. 1969;26(3):249–59. https://doi.org/10.1007/BF01242377.

    Article  CAS  PubMed  Google Scholar 

  29. Martin LJ, Mahaney MC, Bronikowski AM, Carey KD, Dyke B, Comuzzie AG. Lifespan in captive baboons is heritable. Mech Ageing Dev. 2002;123(11):1461–7. https://doi.org/10.1016/s0047-6374(02)00083-0.

    Article  PubMed  Google Scholar 

  30. Bronikowski AM, Alberts SC, Altmann J, Packer C, Carey KD, Tatar M. The aging baboon: comparative demography in a non-human primate. Proc Natl Acad Sci U S A. 2002;99(14):9591–5. https://doi.org/10.1073/pnas.142675599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vakifahmetoglu-Norberg H, Ouchida AT, Norberg E. The role of mitochondria in metabolism and cell death. Biochem Biophys Res Commun. 2017;482(3):426–31. https://doi.org/10.1016/j.bbrc.2016.11.088.

    Article  CAS  PubMed  Google Scholar 

  32. Glancy B, Kim Y, Katti P, Willingham TB. The functional impact of mitochondrial structure across subcellular scales. Front Physiol. 2020;11:541040. https://doi.org/10.3389/fphys.2020.541040.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Nguyen BY, Ruiz-Velasco A, Bui T, Collins L, Wang X, Liu W. Mitochondrial function in the heart: the insight into mechanisms and therapeutic potentials. Br J Pharmacol. 2019;176(22):4302–18. https://doi.org/10.1111/bph.14431.

    Article  CAS  PubMed  Google Scholar 

  34. Yin F, Sancheti H, Patil I, Cadenas E. Energy metabolism and inflammation in brain aging and Alzheimer’s disease. Free Radic Biol Med. 2016;100:108–22. https://doi.org/10.1016/j.freeradbiomed.2016.04.200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Phillips D, Covian R, Aponte AM, Glancy B, Taylor JF, Chess D, Balaban RS. Regulation of oxidative phosphorylation complex activity: effects of tissue-specific metabolic stress within an allometric series and acute changes in workload. Am J Physiol Regul Integr Comp Physiol. 2012;302(9):R1034–48. https://doi.org/10.1152/ajpregu.00596.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Benard G, Faustin B, Passerieux E, Galinier A, Rocher C, Bellance N, Delage JP, Casteilla L, Letellier T, Rossignol R. Physiological diversity of mitochondrial oxidative phosphorylation. Am J Physiol Cell Physiol. 2006;291(6):C1172–82. https://doi.org/10.1152/ajpcell.00195.2006.

    Article  CAS  PubMed  Google Scholar 

  37. Gollihue JL, Norris CM. Astrocyte mitochondria: central players and potential therapeutic targets for neurodegenerative diseases and injury. Ageing Res Rev. 2020;59:101039. https://doi.org/10.1016/j.arr.2020.101039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Magistretti PJ, Allaman I. A cellular perspective on brain energy metabolism and functional imaging. Neuron. 2015;86(4):883–901. https://doi.org/10.1016/j.neuron.2015.03.035.

    Article  CAS  PubMed  Google Scholar 

  39. Jakoby P, Schmidt E, Ruminot I, Gutiérrez R, Barros LF, Deitmer JW. Higher transport and metabolism of glucose in astrocytes compared with neurons: a multiphoton study of hippocampal and cerebellar tissue slices. Cereb Cortex. 2014;24(1):222–31. https://doi.org/10.1093/cercor/bhs309.

    Article  PubMed  Google Scholar 

  40. Öz G, DiNuzzo M, Kumar A, Moheet A, Seaquist ER. Revisiting glycogen content in the human brain. Neurochem Res. 2015;40(12):2473–81. https://doi.org/10.1007/s11064-015-1664-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gorski DJ, Petz A, Reichert C, Twarock S, Grandoch M, Fischer JW. Cardiac fibroblast activation and hyaluronan synthesis in response to hyperglycemia and diet-induced insulin resistance. Sci Rep. 2019;9(1):1827. https://doi.org/10.1038/s41598-018-36140-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sathe S, Chan XQ, Jin J, Bernitt E, Döbereiner HG, Yim EKF. Correlation and comparison of cortical and hippocampal neural progenitor morphology and differentiation through the use of micro- and nano-topographies. J Funct Biomater. 2017;8(3):35. https://doi.org/10.3390/jfb8030035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Singh S, White FC, Bloor CM. Myocardial morphometric characteristics in swine. Circ Res. 1981;49(2):434–41. https://doi.org/10.1161/01.res.49.2.434.

    Article  CAS  PubMed  Google Scholar 

  44. Phillips D, Aponte AM, Covian R, Neufeld E, Yu ZX, Balaban RS. Homogenous protein programming in the mammalian left and right ventricle free walls. Physiol Genomics. 2011;43(21):1198–206. https://doi.org/10.1152/physiolgenomics.00121.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tucker NR, Chaffin M, Fleming SJ, Hall AW, Parsons VA, Bedi KC Jr, Akkad AD, Herndon CN, Arduini A, Papangeli I, Roselli C, Aguet F, Choi SH, Ardlie KG, Babadi M, Margulies KB, Stegmann CM, Ellinor PT. Transcriptional and cellular diversity of the human heart. Circulation. 2020;142(5):466–82. https://doi.org/10.1161/CIRCULATIONAHA.119.045401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bernal-Ramirez J, Díaz-Vesga MC, Talamilla M, Méndez A, Quiroga C, Garza-Cervantes JA, Lázaro-Alfaro A, Jerjes-Sanchez C, Henríquez M, García-Rivas G, Pedrozo Z. Exploring functional differences between the right and left ventricles to better understand right ventricular dysfunction. Oxid Med Cell Longev. 2021;28(2021):9993060. https://doi.org/10.1155/2021/9993060.

    Article  CAS  Google Scholar 

  47. Dos Santos Lacerda D, Türck P, Gazzi de Lima-Seolin B, Colombo R, Duarte Ortiz V, PolettoBonetto JH, Campos-Carraro C, Bianchi SE, Belló-Klein A, Linck Bassani V, da Rosa Sander, Araujo A. Pterostilbene reduces oxidative stress, prevents hypertrophy and preserves systolic function of right ventricle in cor pulmonale model. Br J Pharmacol. 2017;174(19):3302–14. https://doi.org/10.1111/bph.13948.

    Article  CAS  Google Scholar 

  48. Schlüter KD, Kutsche HS, Hirschhäuser C, Schreckenberg R, Schulz R. Review on chamber-specific differences in right and left heart reactive oxygen species handling. Front Physiol. 2018;9:1799. https://doi.org/10.3389/fphys.2018.01799.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Park WH. The effects of exogenous H2O2 on cell death, reactive oxygen species and glutathione levels in calf pulmonary artery and human umbilical vein endothelial cells. Int J Mol Med. 2013;31(2):471–6. https://doi.org/10.3892/ijmm.2012.1215.

    Article  CAS  PubMed  Google Scholar 

  50. Graham NA, Tahmasian M, Kohli B, Komisopoulou E, Zhu M, Vivanco I, Teitell MA, Wu H, Ribas A, Lo RS, Mellinghoff IK, Mischel PS, Graeber TG. Glucose deprivation activates a metabolic and signaling amplification loop leading to cell death. Mol Syst Biol. 2012;26(8):589. https://doi.org/10.1038/msb.2012.20.

    Article  CAS  Google Scholar 

  51. Leiser SF, Salmon AB, Miller RA. Correlated resistance to glucose deprivation and cytotoxic agents in fibroblast cell lines from long-lived pituitary dwarf mice. Mech Ageing Dev. 2006;127(11):821–9. https://doi.org/10.1016/j.mad.2006.08.003.

    Article  CAS  PubMed  Google Scholar 

  52. Smirnova L, Harris G, Leist M, Hartung T. Cellular resilience. ALTEX - Altern Animal Experimentation. 2015;32(4):247–60.

    Google Scholar 

  53. Lytton J, Westlin M, Hanley MR. Thapsigargin inhibits the sarcoplasmic or endoplasmic reticulum Ca-ATPase family of calcium pumps. J Biol Chem. 1991;266(26):17067–71.

    Article  CAS  PubMed  Google Scholar 

  54. Szegezdi E, Logue SE, Gorman AM, Samali A. Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep. 2006;7(9):880–5. https://doi.org/10.1038/sj.embor.7400779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bravo R, Parra V, Gatica D, Rodriguez AE, Torrealba N, Paredes F, Wang ZV, Zorzano A, Hill JA, Jaimovich E, Quest AF, Lavandero S. Endoplasmic reticulum and the unfolded protein response: dynamics and metabolic integration. Int Rev Cell Mol Biol. 2013;301:215–90. https://doi.org/10.1016/B978-0-12-407704-1.00005-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. de la Cadena SG, Hernández-Fonseca K, Camacho-Arroyo I, Massieu L. Glucose deprivation induces reticulum stress by the PERK pathway and caspase-7- and calpain-mediated caspase-12 activation. Apoptosis. 2014;19(3):414–27. https://doi.org/10.1007/s10495-013-0930-7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the administrative and technical support of Karen Moore, Wenbo Qi, Benjamin Morr, Raechel Camones, and Jonathan Gelfond. We also acknowledge support from the SNPRC which is funded by P51 OD011133.

Funding

This research was funded in part by R01 AG057431, I01BX004167 (ABS), the San Antonio Nathan Shock Center (P30 AG 013319), and the Geriatric Research, Education and Clinical Center of the South Texas Veterans Health Care System. This material is the result of work supported with resources and the use of facilities at South Texas Veterans Health Care System, San Antonio, Texas. Baboons in this study were maintained under 1U19AG057758-01A1 (PWN, LAC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam B. Salmon.

Ethics declarations

Competing interests

The authors declare no competing interest.

Disclaimer

The contents do not represent the views of the US Department of Veterans Affairs or the US Government.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 244 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adekunbi, D.A., Huber, H.F., Li, C. et al. Differential mitochondrial bioenergetics and cellular resilience in astrocytes, hepatocytes, and fibroblasts from aging baboons. GeroScience (2024). https://doi.org/10.1007/s11357-024-01155-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11357-024-01155-7

Keywords

Navigation