Skip to main content
Log in

Age and sex modify cellular proliferation responses to oxidative stress and glucocorticoid challenges in baboon cells

  • Original Article
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Aging is associated with progressive loss of cellular homeostasis resulting from intrinsic and extrinsic challenges. Lack of a carefully designed, well-characterized, precise, translational experimental model is a major limitation to understanding the cellular perturbations that characterize aging. Here, we tested the feasibility of primary fibroblasts isolated from nonhuman primates (baboons) as a model of cellular resilience in response to homeostatic challenge. Using a real-time live-cell imaging system, we precisely defined a protocol for testing effects of prooxidant compounds (e.g., hydrogen peroxide (H2O2), paraquat), thapsigargin, dexamethasone, and a low glucose environment on cell proliferation in fibroblasts derived from baboons across the life course (n = 11/sex). Linear regression analysis indicated that donor age significantly reduced the ability of cells to proliferate following exposure to H2O2 (50 and 100 µM) and paraquat (100 and 200 µM) challenges in cells from males (6.4–21.3 years; average lifespan 21 years) but not cells from females (4.3–15.9 years). Inhibitory effects of thapsigargin on cell proliferation were dependent on challenge duration (2 vs 24 h) and concentration (0.1 and 1 µM). Cells from older females (14.4–15.9 years) exhibited greater resilience to thapsigargin (1 µM; 24 h) and dexamethasone (500 µM) challenges than did those from younger females (4.3–6.7 years). The cell proliferation response to low glucose (1 mM) was reduced with age in both sexes. These data indicate that donor’s chronological age and sex are important variables in determining fibroblast responses to metabolite and other challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References 

  1. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194–217. https://doi.org/10.1016/j.cell.2013.05.039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sapolsky R, Armanini M, Packan D, Tombaugh G. Stress and glucocorticoids in aging. Endocrinol Metab Clin North Am. 1987;16(4):965–80.

    Article  CAS  PubMed  Google Scholar 

  3. Rubin H. Cell aging in vivo and in vitro. Mech Ageing Dev. 1997;98(1):1–35. https://doi.org/10.1016/s0047-6374(97)00067-5.

    Article  CAS  PubMed  Google Scholar 

  4. Park WH. The effects of exogenous H2O2 on cell death, reactive oxygen species and glutathione levels in calf pulmonary artery and human umbilical vein endothelial cells. Int J Mol Med. 2013;31(2):471–6. https://doi.org/10.3892/ijmm.2012.1215.

    Article  CAS  PubMed  Google Scholar 

  5. Lytton J, Westlin M, Hanley MR. Thapsigargin inhibits the sarcoplasmic or endoplasmic reticulum Ca-ATPase family of calcium pumps. J Biol Chem. 1991;266(26):17067–71.

    Article  CAS  PubMed  Google Scholar 

  6. Mekahli D, Bultynck G, Parys JB, De Smedt H, Missiaen L. Endoplasmic-reticulum calcium depletion and disease. Cold Spring Harb Perspect Biol. 2011;3(6):a004317. https://doi.org/10.1101/cshperspect.a004317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Szegezdi E, Logue SE, Gorman AM, Samali A. Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep. 2006;7(9):880–5. https://doi.org/10.1038/sj.embor.7400779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ben-Zvi A, Miller EA, Morimoto RI. Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging. Proc Natl Acad Sci U S A. 2009;106(35):14914–9. https://doi.org/10.1073/pnas.0902882106.

    Article  PubMed  PubMed Central  Google Scholar 

  9. DiLoreto R, Murphy CT. The cell biology of aging. Mol Biol Cell. 2015;26(25):4524–31. https://doi.org/10.1091/mbc.E14-06-1084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang J, Alexanian A, Ying R, Kizhakekuttu TJ, Dharmashankar K, Vasquez-Vivar J, et al. Acute exposure to low glucose rapidly induces endothelial dysfunction and mitochondrial oxidative stress: role for AMP kinase. Arterioscler Thromb Vasc Biol. 2012;32(3):712–20. https://doi.org/10.1161/ATVBAHA.111.227389.

    Article  CAS  PubMed  Google Scholar 

  11. Maier PJ, Zemoura K, Acuna MA, Yevenes GE, Zeilhofer HU, Benke D. Ischemia-like oxygen and glucose deprivation mediates down-regulation of cell surface gamma-aminobutyric acidB receptors via the endoplasmic reticulum (ER) stress-induced transcription factor CCAAT/enhancer-binding protein (C/EBP)-homologous protein (CHOP). J Biol Chem. 2014;289(18):12896–907. https://doi.org/10.1074/jbc.M114.550517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Redzic ZB, Malatiali SA, Al-Bader M, Al-Sarraf H. Effects of hypoxia, glucose deprivation and recovery on the expression of nucleoside transporters and adenosine uptake in primary culture of rat cortical astrocytes. Neurochem Res. 2010;35(9):1434–44. https://doi.org/10.1007/s11064-010-0203-6.

    Article  CAS  PubMed  Google Scholar 

  13. Graham NA, Tahmasian M, Kohli B, Komisopoulou E, Zhu M, Vivanco I, et al. Glucose deprivation activates a metabolic and signaling amplification loop leading to cell death. Mol Syst Biol. 2012;8:589. https://doi.org/10.1038/msb.2012.20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vander Heiden MG, Plas DR, Rathmell JC, Fox CJ, Harris MH, Thompson CB. Growth factors can influence cell growth and survival through effects on glucose metabolism. Mol Cell Biol. 2001;21(17):5899–912. https://doi.org/10.1128/mcb.21.17.5899-5912.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. van den Beld AW, Kaufman JM, Zillikens MC, Lamberts SWJ, Egan JM, van der Lely AJ. The physiology of endocrine systems with ageing. Lancet Diabetes Endocrinol. 2018;6(8):647–58. https://doi.org/10.1016/S2213-8587(18)30026-3.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Nathanielsz PW, Huber HF, Li C, Clarke GD, Kuo AH, Zambrano E. The nonhuman primate hypothalamo-pituitary-adrenal axis is an orchestrator of programming-aging interactions: role of nutrition. Nutr Rev. 2020;78(Supplement_2):48–61. https://doi.org/10.1093/nutrit/nuaa018.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhao ZY, Lu FH, Xie Y, Fu YR, Bogdan A, Touitou Y. Cortisol secretion in the elderly. Influence of age, sex and cardiovascular disease in a Chinese population. Steroids. 2003;68(6):551–5. https://doi.org/10.1016/s0039-128x(03)00083-7.

    Article  CAS  PubMed  Google Scholar 

  18. Yang S, Gerow KG, Huber HF, Considine MM, Li C, Mattern V, et al. A decline in female baboon hypothalamo-pituitary-adrenal axis activity anticipates aging. Aging (Albany NY). 2017;9(5):1375–85. https://doi.org/10.18632/aging.101235.

    Article  CAS  Google Scholar 

  19. Zambrano E, Reyes-Castro LA, Nathanielsz PW. Aging, glucocorticoids and developmental programming. Age (Dordr). 2015;37(3):9774. https://doi.org/10.1007/s11357-015-9774-0.

    Article  CAS  Google Scholar 

  20. Mawal-Dewan M, Frisoni L, Cristofalo VJ, Sell C. Extension of replicative lifespan in WI-38 human fibroblasts by dexamethasone treatment is accompanied by suppression of p21 Waf1/Cip1/Sdi1 levels. Exp Cell Res. 2003;285(1):91–8. https://doi.org/10.1016/s0014-4827(03)00013-2.

    Article  CAS  PubMed  Google Scholar 

  21. Spiers JG, Chen HJ, Sernia C, Lavidis NA. Activation of the hypothalamic-pituitary-adrenal stress axis induces cellular oxidative stress. Front Neurosci. 2014;8:456. https://doi.org/10.3389/fnins.2014.00456.

    Article  PubMed  Google Scholar 

  22. Pham-Huy LA, He H, Pham-Huy C. Free radicals, antioxidants in disease and health. Int J Biomed Sci. 2008;4(2):89–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Valerie K, Povirk LF. Regulation and mechanisms of mammalian double-strand break repair. Oncogene. 2003;22(37):5792–812. https://doi.org/10.1038/sj.onc.1206679.

    Article  CAS  PubMed  Google Scholar 

  24. Taylor RC. Aging and the UPR(ER). Brain Res. 2016;1648(Pt B):588–93. https://doi.org/10.1016/j.brainres.2016.04.017.

    Article  CAS  PubMed  Google Scholar 

  25. Bruggisser R, von Daeniken K, Jundt G, Schaffner W, Tullberg-Reinert H. Interference of plant extracts, phytoestrogens and antioxidants with the MTT tetrazolium assay. Planta Med. 2002;68(5):445–8. https://doi.org/10.1055/s-2002-32073.

    Article  CAS  PubMed  Google Scholar 

  26. Vistica DT, Skehan P, Scudiero D, Monks A, Pittman A, Boyd MR. Tetrazolium-based assays for cellular viability: a critical examination of selected parameters affecting formazan production. Cancer Res. 1991;51(10):2515–20.

    CAS  PubMed  Google Scholar 

  27. Wang P, Henning SM, Heber D. Limitations of MTT and MTS-based assays for measurement of antiproliferative activity of green tea polyphenols. PLoS ONE. 2010;5(4):e10202. https://doi.org/10.1371/journal.pone.0010202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schlabritz-Loutsevitch NE, Howell K, Rice K, Glover EJ, Nevill CH, Jenkins SL, et al. Development of a system for individual feeding of baboons maintained in an outdoor group social environment. J Med Primatol. 2004;33(3):117–26. https://doi.org/10.1111/j.1600-0684.2004.00067.x.

    Article  PubMed  Google Scholar 

  29. Salmon AB, Murakami S, Bartke A, Kopchick J, Yasumura K, Miller RA. Fibroblast cell lines from young adult mice of long-lived mutant strains are resistant to multiple forms of stress. Am J Physiol Endocrinol Metab. 2005;289(1):E23–9. https://doi.org/10.1152/ajpendo.00575.2004.

    Article  CAS  PubMed  Google Scholar 

  30. Salmon AB, Sadighi Akha AA, Buffenstein R, Miller RA. Fibroblasts from naked mole-rats are resistant to multiple forms of cell injury, but sensitive to peroxide, ultraviolet light, and endoplasmic reticulum stress. J Gerontol A Biol Sci Med Sci. 2008;63(3):232–41. https://doi.org/10.1093/gerona/63.3.232.

    Article  PubMed  Google Scholar 

  31. Johnson DM, Newby RF, Bourgeois S. Membrane permeability as a determinant of dexamethasone resistance in murine thymoma cells. Cancer Res. 1984;44(6):2435–40.

    CAS  PubMed  Google Scholar 

  32. Salmon AB, Dorigatti J, Huber HF, Li C, Nathanielsz PW. Maternal nutrient restriction in baboon programs later-life cellular growth and respiration of cultured skin fibroblasts: a potential model for the study of aging-programming interactions. Geroscience. 2018;40(3):269–78. https://doi.org/10.1007/s11357-018-0024-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Smith JR, Pereira-Smith OM, Schneider EL. Colony size distributions as a measure of in vivo and in vitro aging. Proc Natl Acad Sci U S A. 1978;75(3):1353–6. https://doi.org/10.1073/pnas.75.3.1353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schneider EL, Mitsui Y. The relationship between in vitro cellular aging and in vivo human age. Proc Natl Acad Sci U S A. 1976;73(10):3584–8. https://doi.org/10.1073/pnas.73.10.3584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cristofalo VJ, Allen RG, Pignolo RJ, Martin BG, Beck JC. Relationship between donor age and the replicative lifespan of human cells in culture: a reevaluation. Proc Natl Acad Sci U S A. 1998;95(18):10614–9. https://doi.org/10.1073/pnas.95.18.10614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Smith JR, Venable S, Roberts TW, Metter EJ, Monticone R, Schneider EL. Relationship between in vivo age and in vitro aging: assessment of 669 cell cultures derived from members of the Baltimore Longitudinal Study of Aging. J Gerontol A Biol Sci Med Sci. 2002;57(6):B239–46. https://doi.org/10.1093/gerona/57.6.b239.

    Article  PubMed  Google Scholar 

  37. Smirnova L, Harris G, Leist M, Hartung T. Cellular resilience. Altex. 2015;32(4):247–60. https://doi.org/10.14573/altex.1509271.

    Article  PubMed  Google Scholar 

  38. Bronikowski AM, Alberts SC, Altmann J, Packer C, Carey KD, Tatar M. The aging baboon: comparative demography in a non-human primate. Proc Natl Acad Sci U S A. 2002;99(14):9591–5. https://doi.org/10.1073/pnas.142675599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Stice JP, Lee JS, Pechenino AS, Knowlton AA. Estrogen, aging and the cardiovascular system. Future Cardiol. 2009;5(1):93–103. https://doi.org/10.2217/14796678.5.1.93.

    Article  CAS  PubMed  Google Scholar 

  40. Borras C, Gambini J, Vina J. Mitochondrial oxidant generation is involved in determining why females live longer than males. Front Biosci. 2007;12:1008–13. https://doi.org/10.2741/2120.

    Article  CAS  PubMed  Google Scholar 

  41. Tenkorang MA, Snyder B, Cunningham RL. Sex-related differences in oxidative stress and neurodegeneration. Steroids. 2018;133:21–7. https://doi.org/10.1016/j.steroids.2017.12.010.

    Article  CAS  PubMed  Google Scholar 

  42. Tower J, Pomatto LCD, Davies KJA. Sex differences in the response to oxidative and proteolytic stress. Redox Biol. 2020;31:101488. https://doi.org/10.1016/j.redox.2020.101488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chao HX, Poovey CE, Privette AA, Grant GD, Chao HY, Cook JG, et al. Orchestration of DNA Damage Checkpoint Dynamics across the Human Cell Cycle. Cell Syst. 2017;5(5):445-59.e5. https://doi.org/10.1016/j.cels.2017.09.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhou L, Chen X, Liu T, Gong Y, Chen S, Pan G, et al. Melatonin reverses H2 O2 -induced premature senescence in mesenchymal stem cells via the SIRT1-dependent pathway. J Pineal Res. 2015;59(2):190–205. https://doi.org/10.1111/jpi.12250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vilema-Enriquez G, Arroyo A, Grijalva M, Amador-Zafra RI, Camacho J. Molecular and Cellular Effects of Hydrogen Peroxide on Human Lung Cancer Cells: Potential Therapeutic Implications. Oxid Med Cell Longev. 2016;2016:1908164. https://doi.org/10.1155/2016/1908164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Prakriya M, Lewis RS. Store-Operated Calcium Channels. Physiol Rev. 2015;95(4):1383–436. https://doi.org/10.1152/physrev.00020.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang H, Jia XZ, Sui CJ, Zhao YP, Mei YF, Zheng YN, et al. Effects of thapsigargin on the proliferation and survival of human rheumatoid arthritis synovial cells. ScientificWorldJournal. 2014;2014:605416. https://doi.org/10.1155/2014/605416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sato H, Takahashi T, Sumitani K, Takatsu H, Urano S. Glucocorticoid Generates ROS to Induce Oxidative Injury in the Hippocampus, Leading to Impairment of Cognitive Function of Rats. J Clin Biochem Nutr. 2010;47(3):224–32. https://doi.org/10.3164/jcbn.10-58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sionov RV, Cohen O, Kfir S, Zilberman Y, Yefenof E. Role of mitochondrial glucocorticoid receptor in glucocorticoid-induced apoptosis. J Exp Med. 2006;203(1):189–201. https://doi.org/10.1084/jem.20050433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yeager MP, Pioli PA, Guyre PM. Cortisol exerts bi-phasic regulation of inflammation in humans. Dose Response. 2011;9(3):332–47. https://doi.org/10.2203/dose-response.10-013.Yeager.

    Article  CAS  PubMed  Google Scholar 

  51. You JM, Yun SJ, Nam KN, Kang C, Won R, Lee EH. Mechanism of glucocorticoid-induced oxidative stress in rat hippocampal slice cultures. Can J Physiol Pharmacol. 2009;87(6):440–7. https://doi.org/10.1139/y09-027.

    Article  CAS  PubMed  Google Scholar 

  52. Alam MM, Okazaki K, Nguyen LTT, Ota N, Kitamura H, Murakami S, et al. Glucocorticoid receptor signaling represses the antioxidant response by inhibiting histone acetylation mediated by the transcriptional activator NRF2. J Biol Chem. 2017;292(18):7519–30. https://doi.org/10.1074/jbc.M116.773960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Goldstein S, Ballantyne SR, Robson AL, Moerman EJ. Energy metabolism in cultured human fibroblasts during aging in vitro. J Cell Physiol. 1982;112(3):419–24. https://doi.org/10.1002/jcp.1041120316.

    Article  CAS  PubMed  Google Scholar 

  54. Dimozi A, Mavrogonatou E, Sklirou A, Kletsas D. Oxidative stress inhibits the proliferation, induces premature senescence and promotes a catabolic phenotype in human nucleus pulposus intervertebral disc cells. Eur Cell Mater. 2015;30:89–102. https://doi.org/10.22203/ecm.v030a07 (discussion 3).

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was funded in part by R01 AG050797 and R01 AG057431 (ABS) and the Geriatric Research, Education and Clinical Center of the South Texas Veterans Health Care System. This material is the result of work supported with resources and the use of facilities at South Texas Veterans Health Care System, San Antonio, Texas. The contents do not represent the views of the U.S. Department of Veterans Affairs or the United States Government. Baboons in this study were maintained under 1U19AG057758-01A1 (PWN). The authors acknowledge the administrative and technical support of Karen Moore and Yuhong Liu. We also acknowledge support from the SNPRC which is funded by P51 OD011133.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam B. Salmon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adekunbi, D.A., Li, C., Nathanielsz, P.W. et al. Age and sex modify cellular proliferation responses to oxidative stress and glucocorticoid challenges in baboon cells. GeroScience 43, 2067–2085 (2021). https://doi.org/10.1007/s11357-021-00395-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-021-00395-1

Keywords

Navigation