Skip to main content

Advertisement

Log in

A loss of primary cilia by a reduction in mTOR signaling correlates with age-related deteriorations in condylar cartilage

  • ORIGINAL ARTICLE
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Age-related deterioration of condylar cartilage is an etiological factor in temporomandibular joint-osteoarthritis (TMJ-OA). However, its underlying mechanism remains unknown. Therefore, we examined age-related changes and the relationship between mTOR signaling and primary cilia in condylar cartilage to determine the intrinsic mechanisms of age-related TMJ-OA. Age-related morphological changes were analyzed using micro-computed tomography and safranin O-stained histological samples of the mandibular condyle of C57BL/6J mice (up to 78 weeks old). Immunohistochemistry was used to assess the activity of mTOR signaling, primary cilia frequency, and Golgi size of condylar chondrocytes. Four-week-old mice receiving an 11-week series of intraperitoneal injections of rapamycin, a potent mTOR signaling inhibitor, were used for the histological evaluation of the condylar cartilage. The condylar cartilage demonstrated an age-related reduction in cartilage area, including chondrocyte size, cell density, and cell size distribution. The Golgi size, primary cilia frequency, and mTOR signaling also decreased with age. Rapamycin injections resulted in both diminished cartilage area and cell size, resembling the phenotypes observed in aged mice. Rapamycin-injected mice also exhibited a smaller Golgi size and lower primary cilia frequency in condylar cartilage. We demonstrated that a loss of primary cilia due to a decline in mTOR signaling was correlated with age-related deteriorations in condylar cartilage. Our findings provide new insights into the tissue homeostasis of condylar cartilage, contributing to understanding the etiology of age-related TMJ-OA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

TMJ:

Temporomandibular joint

OA:

Osteoarthritis

ECM:

Extracellular matrix

IFT:

Intraflagellar transport

mTOR:

Mechanistic/mammalian target of Rapamycin

pS6:

Phosphorylated ribosomal protein S6 kinase

References

  1. Glyn-Jones S, Palmer AJ, Agricola R, Price AJ, Vincent TL, Weinans H, Carr AJ. Osteoarthr Lancet. 2015;386:376–87. https://doi.org/10.1016/S0140-6736(14)60802-3.

    Article  CAS  Google Scholar 

  2. Al-Ani Z. Temporomandibular joint osteoarthrosis: a review of clinical aspects and management. Prim Dent J. 2021;10:132–40. https://doi.org/10.1177/2050168420980977.

    Article  PubMed  Google Scholar 

  3. Kelemen K, Konig J, Czumbel M, Szabo B, Hegyi P, Gerber G, Borbely J, Mikulas K, Schmidt P, Hermann P. Additional splint therapy has no superiority in myogenic temporomandibular disorders: a systematic review and meta-analysis of randomized controlled trials. J Prosthodont Res. 2024;68:12–9. https://doi.org/10.2186/jpr.JPR_D_22_00264.

    Article  PubMed  Google Scholar 

  4. Zhou Y, Al-Naggar IMA, Chen PJ, Gasek NS, Wang K, Mehta S, Kuchel GA, Yadav S, Xu M. Senolytics alleviate the degenerative disorders of temporomandibular joint in old age. Aging Cell. 2021;20:e13394. https://doi.org/10.1111/acel.13394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pereira FJ Jr, Lundh H, Westesson PL. Morphologic changes in the temporomandibular joint in different age groups. An autopsy investigation. Oral Surg Oral Med Oral Pathol. 1994;78:279–87.

    Article  PubMed  Google Scholar 

  6. Chen PJ, Dutra EH, Mehta S, O’Brien MH, Yadav S. Age-related changes in the cartilage of the temporomandibular joint. Geroscience. 2020;42:995–1004. https://doi.org/10.1007/s11357-020-00160-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Delpachitra SN, Dimitroulis G. Osteoarthritis of the temporomandibular joint: a review of aetiology and pathogenesis. Br J Oral Maxillofac Surg. 2022;60:387–96. https://doi.org/10.1016/j.bjoms.2021.06.017.

    Article  CAS  PubMed  Google Scholar 

  8. Ootake T, Ishii T, Sueishi K, Watanabe A, Ishizuka Y, Amano K, Nagao M, Nishimura K, Nishii Y. Effects of mechanical stress and deficiency of dihydrotestosterone or 17β-estradiol on temporomandibular joint osteoarthritis in mice. Osteoarthritis Cartilage. 2021;29:1575–89. https://doi.org/10.1016/j.joca.2021.08.005.

    Article  CAS  PubMed  Google Scholar 

  9. Sangani D, Suzuki A, VonVille H, Hixson JE, Iwata J. Gene mutations associated with temporomandibular joint disorders: A systematic review. OAlib. 2015;2:e1583. https://doi.org/10.4236/oalib.1101583.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lai Y, Zheng W, Qu M, Xiao CC, Chen S, Yao Q, Gong W, Tao C, Yan Q, Zhang P, Wu X, Xiao G. Kindlin-2 loss in condylar chondrocytes causes spontaneous osteoarthritic lesions in the temporomandibular joint in mice. Int J Oral Sci. 2022;14:33. https://doi.org/10.1038/s41368-022-00185-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nakao Y, Konno-Nagasaka M, Toriya N, Arakawa T, Kashio H, Takuma T, Mizoguchi I. Proteoglycan expression is influenced by mechanical load in TMJ discs. J Dent Res. 2015;94:93–100. https://doi.org/10.1177/0022034514553816.

    Article  CAS  PubMed  Google Scholar 

  12. Knudson CB, Knudson W. Cartilage proteoglycans. Semin Cell Dev Biol. 2001;12:69–78. https://doi.org/10.1006/scdb.2000.0243.

    Article  CAS  PubMed  Google Scholar 

  13. Livne E. Matrix synthesis in mandibular condylar cartilage of aging mice. Osteoarthr Cartil. 1994;2:187–97. https://doi.org/10.1016/s1063-4584(05)80068-8.

    Article  CAS  Google Scholar 

  14. Yang MC, Nakamura M, Kageyama Y, Igari Y, Sasano Y. Age-related gene and protein expression in mouse mandibular condyle analyzed by cap analysis of gene expression and immunohistochemistry. Gerontology. 2023;69:1295–306. https://doi.org/10.1159/000533921.

    Article  CAS  PubMed  Google Scholar 

  15. Elshawi A, Wakamatsu N, Iinuma M, Nagayama M, Tamura Y. TMJ degenerative changes in SAMP3 mice by occlusal disharmony and aging. J Hard Tissue Biol. 2012;2012(21):399–406. https://doi.org/10.2485/jhtb.21.399.

    Article  Google Scholar 

  16. Ishizuka Y, Shibukawa Y, Nagayama M, Decker R, Kinumatsu T, Saito A, Pacifici M, Koyama E. TMJ degeneration in SAMP8 mice is accompanied by deranged Ihh signaling. J Dent Res. 2014;2014(93):281–7. https://doi.org/10.1177/0022034513519649.

    Article  CAS  Google Scholar 

  17. Cardoneanu A, Macovei LA, Burlui AM, Mihai IR, Bratoiu I, Rezus II, Richter P, Tamba BI, Rezus E. Temporomandibular joint osteoarthritis: Pathogenic mechanisms involving the cartilage and subchondral bone, and potential therapeutic strategies for joint regeneration. Int J Mol Sci. 2022;24:171. https://doi.org/10.3390/ijms24010171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shi Y, Hu X, Cheng J, Zhang X, Zhao F, Shi W, Ren B, Yu H, Yang P, Li Z, Duan X, Fu X, Zhang J, Wang J, Ao Y. A small molecule promotes cartilage extracellular matrix generation and inhibits osteoarthritis development. Nat Commun. 2019;10:1914. https://doi.org/10.1038/s41467-019-09839-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen HY, Kelley RA, Li T, Swaroop A. Primary cilia biogenesis and associated retinal ciliopathies. Semin Cell Dev Biol. 2021;110:70–88. https://doi.org/10.1016/j.semcdb.2020.07.013.

    Article  CAS  PubMed  Google Scholar 

  20. Noda K, Kitami M, Kitami K, Kaku M, Komatsu Y. Canonical and noncanonical intraflagellar transport regulates craniofacial skeletal development. Proc Natl Acad Sci U S A. 2016;113:E2589–97. https://doi.org/10.1073/pnas.1519458113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Berbari NF, O’Connor AK, Haycraft CJ, Yoder BK. The primary cilium as a complex signaling center. Curr Biol. 2009;19:R526–35. https://doi.org/10.1016/j.cub.2009.05.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kaku M, Komatsu Y. Functional diversity of ciliary proteins in bone development and disease. Curr Osteoporos Rep. 2017;15:96–102. https://doi.org/10.1007/s11914-017-0351-6.

    Article  PubMed  Google Scholar 

  23. Chinipardaz Z, Liu M, Graves DT, Yang S. Role of primary cilia in bone and cartilage. J Dent Res. 2022;101:253–60. https://doi.org/10.1177/00220345211046606.

    Article  CAS  PubMed  Google Scholar 

  24. Arseni L, Lombardi A, Orioli D. From structure to phenotype: Impact of collagen alterations on human health. Int J Mol Sci. 2018;19:1407. https://doi.org/10.3390/ijms19051407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Collins I, Wann AKT. Regulation of the extracellular matrix by ciliary machinery. Cells. 2020;9:278. https://doi.org/10.3390/cells9020278.

    Article  CAS  PubMed  Google Scholar 

  26. Yuan X, Yang S. Deletion of ift80 impairs epiphyseal and articular cartilage formation due to disruption of chondrocyte differentiation. PLoS ONE. 2015;10:e0130618.

    Article  PubMed  PubMed Central  Google Scholar 

  27. McGlashan SR, Haycraft CJ, Jensen CG, Yoder BK, Poole CA. Articular cartilage and growth plate defects are associated with chondrocyte cytoskeletal abnormalities in Tg737orpk mice lacking the primary cilia protein polaris. Matrix Biol. 2007;26:234–46. https://doi.org/10.1016/j.matbio.2006.12.003.

    Article  CAS  PubMed  Google Scholar 

  28. Kitami M, Yamaguchi H, Ebina M, Kaku M, Chen D, Komatsu Y. IFT20 is required for the maintenance of cartilaginous matrix in condylar cartilage. Biochem Biophys Res Commun. 2019;509:222–6. https://doi.org/10.1016/j.bbrc.2018.12.107.

    Article  CAS  PubMed  Google Scholar 

  29. Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell. 2006;124:471–84. https://doi.org/10.1016/j.cell.2006.01.016.

    Article  CAS  PubMed  Google Scholar 

  30. Lai Y, Jiang Y. Reciprocal regulation between primary cilia and mTORC1. Genes (Basel). 2020;11:711. https://doi.org/10.3390/genes11060711.

    Article  CAS  PubMed  Google Scholar 

  31. DiBella LM, Park A, Sun Z. Zebrafish TSC1 reveals functional interactions between the cilium and the TOR pathway. Hum Mol Genet. 2009;18:595–606. https://doi.org/10.1093/hmg/ddn384.

    Article  CAS  PubMed  Google Scholar 

  32. Rosengren T, Larsen LJ, Pedersen LB, Christensen ST, Moller LB. TSC21 and TSC2 regulate cilia length and canonical hedgehog signaling via different mechanisms. Cell Mol Life Sci. 2018;75:2663–80. https://doi.org/10.1007/s00018-018-2761-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yuan S, Li J, Diener DR, Choma MA, Rosenbaum JL, Sun Z. Target-of-rapamycin complex 1 (Torc1) signaling modulates cilia size and function through protein synthesis regulation. Proc Natl Acad Sci U S A. 2012;109:2021–6. https://doi.org/10.1073/pnas.1112834109.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hartman TR, Liu D, Zilfou JT, Robb V, Morrison T, Watnick T, Henske EP. The tuberous sclerosis proteins regulate formation of the primary cilium via a rapamycin-insensitive and polycystin 1-independent pathway. Hum Mol Genet. 2009;18:151–63. https://doi.org/10.1093/hmg/ddn325.

    Article  CAS  PubMed  Google Scholar 

  35. Yan B, Zhang Z, Jin D, Cai C, Jia C, Liu W, Wang T, Li S, Zhang H, Huang B, Lai P, Wang H, Liu A, Zeng C, Cai D, Jiang Y, Bai X. mTORC1 regulates PTHrP to coordinate chondrocyte growth, proliferation and differentiation. Nat Commun. 7:11151. https://doi.org/10.1038/ncomms11151.

  36. Charan J, Kantharia ND. How to calculate sample size in animal studies? J Pharmacol Pharmacother. 2013;4:303–6. https://doi.org/10.4103/0976-500X.119726.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhao S, Chen C, Wang S, Ji F, Xie Y. Mhy1485 activates mTOR and protects osteoblasts from dexamethasone. Biochem Biophys Res Commun. 2016;481:212–8. https://doi.org/10.1016/j.bbrc.2016.10.104.

    Article  CAS  PubMed  Google Scholar 

  38. Yang J, Kitami M, Pan H, Nakamura MT, Zhang H, Liu F, Zhu L, Komatsu Y, Mishina Y. Augmented BMP signaling commits cranial neural crest cells to a chondrogenic fate by suppressing autophagic β-catenin degradation. Sci Signal. 2021;14:eaaz9368. https://doi.org/10.1126/scisignal.aaz9368

  39. Ramos FJ, Chen SC, Garelick MG, Dai DF, Liao CY, Schreiber KH, MacKay VL, An EH, Strong R, Ladiges WC, Rabinovitch PS, Kaeberlein M, Kennedy BK. Rapamycin reverses elevated mTORC1 signaling in lamin A/C-deficient mice, rescues cardiac and skeletal muscle function, and extends survival. Sci Transl Med. 2012;4:144ra103. https://doi.org/10.1126/scitranslmed.3003802

  40. Bitto A, Ito TK, Pineda VV, LeTexier NJ, Huang HZ, Sutlief E, Tung H, Vizzini N, Chen B, Smith K, Meza D, Yajima M, Beyer RP, Kerr KF, Davis DJ, Gillespie CH, Snyder JM, Treuting PM, Kaeberlein M. Transient rapamycin treatment can increase lifespan and healthspan in middle-aged mice. Elife. 2016;5:e16351. https://doi.org/10.7554/eLife.16351.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Cameron DA. The Golgi apparatus in bone and cartilage cells. Clin Orthop Relat Res. 1968;58:191–211.

    Article  CAS  PubMed  Google Scholar 

  42. Kinumatsu T, Shibukawa Y, Yasuda T, Nagayama M, Yamada S, Serra R, Pacifici M, Koyama E. TMJ development and growth require primary cilia function. J Dent Res. 2011;90:988–94. https://doi.org/10.1177/0022034511409407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sherpa RT, Atkinson KF, Ferreira VP, Nauli SM. Rapamycin increases length and mechanosensory function of primary cilia in renal epithelial and vascular endothelial cells. Int Educ Res J. 2016;2:91–7.

    PubMed  PubMed Central  Google Scholar 

  44. Jamal MH, Nunes ACF, Vaziri ND, Ramchandran R, Bacallao RL, Nauli AM, Nauli SM. Rapamycin treatment correlates changes in primary cilia expression with cell cycle regulation in epithelial cells. Biochem Pharmacol. 2020;178:114056. https://doi.org/10.1016/j.bcp.2020.114056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mukhopadhyay S, Frias MA, Chatterjee A, Yellen P, Foster DA. The enigma of rapamycin dosage. Mol Cancer Ther. 2016;15:347–53. https://doi.org/10.1158/1535-7163.MCT-15-0720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Blagosklonny MV. Cell senescence, rapamycin and hyperfunction theory of aging. Cell Cycle. 2022;21:1456–67. https://doi.org/10.1080/15384101.2022.2054636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sasaki N, Itakura Y, Toyoda M. Rapamycin promotes endothelial-mesenchymal transition during stress-induced premature senescence through the activation of autophagy. Cell Commun Signal. 2020;18:43. https://doi.org/10.1186/s12964-020-00533-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Caramés B, Taniguchi N, Seino D, Blanco FJ, D’Lima D, Lotz M. Mechanical injury suppresses autophagy regulators and pharmacologic activation of autophagy results in chondroprotection. Arthritis Rheum. 2012;64:1182–92. https://doi.org/10.1002/art.33444.

    Article  CAS  PubMed  Google Scholar 

  49. Caramés B, Hasegawa A, Taniguchi N, Miyaki S, Blanco FJ, Lotz M. Autophagy activation by rapamycin reduces severity of experimental osteoarthritis. Ann Rheum Dis. 2012;71:575–81. https://doi.org/10.1136/annrheumdis-2011-200557.

    Article  CAS  PubMed  Google Scholar 

  50. Thomson AW, Turnquist HR, Raimondi G. Immunoregulatory functions of mTOR inhibition. Nat Rev Immunol. 2009;9:324–37. https://doi.org/10.1038/nri2546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mondino A, Mueller DL. mTOR at the crossroads of T cell proliferation and tolerance. Semin Immunol. 2007;19:162–72. https://doi.org/10.1016/j.smim.2007.02.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kasahara K, Inagaki M. Primary ciliary signaling: Links with the cell cycle. Trends Cell Biol. 2021;31:954–64. https://doi.org/10.1016/j.tcb.2021.07.009.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (JP19K19088 and JP21K17035 to MKi).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: M.Ki; Conducting the experiments: M.Ki. L.T.; Analysis and interpretation of the data: M.Ki; Drafting of the article: M.Ki.; Review and editing of the article: M.Ka and T.M.

Corresponding authors

Correspondence to Megumi Kitami or Masaru Kaku.

Ethics declarations

Ethical statement

All animal experimental protocols were approved by the Animal Care and Experimentation Committee of Niigata University (SA00959).

Competing interests

No potential conflict of interest was reported by the authors.

(A) Micro-CT analysis of mouse mandibular condyle at 5, 15, 26, 52, and 78 weeks. Bar, 0.5 mm. (B) Bone mineral density (BMD) of the mandibular condyle. (C) The mandibular condyle was stained with safranin O at five, 15, 26, 52, and 78 weeks. Bar, 50 μm. (D–G) Cartilage area, safranin O-positive area, cell density, and cell size distribution were quantified in the condylar cartilage with age. Data in (B), (D), (E), and (F) are represented as mean ± SD; n = 5 in each group. aP < 0.05, vs. 5 w; AP < 0.01, vs. 5 w; bP < 0.05, vs. 15 w; BP < 0.01, vs. 15 w; cP < 0.05, vs. 26 w; CP < 0.01, vs. 26 w; DP < 0.01, vs. 52 w.

(A) Immunohistochemistry of cis-Golgi marker GM130 in condylar cartilage. Bars, 10 μm. (B) The Golgi apparatus size of chondrocytes of all layers in the condylar cartilage was quantified. (C) Age-related changes in primary cilia were examined via immunohistochemistry of the condylar cartilage using anti-acetylated tubulin and anti-gamma-tubulin antibodies. Bars, 10 μm. (D) Primary cilia frequency in chondrocytes. (E) Immunohistochemistry analysis of pS6. Bars, 10 μm. (F) The ratio of pS6-positive chondrocytes. The white square indicates the region of interest in the high-magnification image shown in (A) (C) and (E). Data in (B) (D) and (F) are represented as mean ± SD; n = 5 in each group. aP < 0.05, vs. 5 w; AP < 0.01, vs. 5 w; bP < 0.05, vs. 15 w; BP < 0.01, vs. 15 w; cP < 0.05, vs. 26 w.

(A-D) ATDC5 cells, a chondroprogenitor cell line, were treated with DMSO as control (Cont) or MHY1485. (A) Immunocytochemistry analysis using anti-acetylated tubulin, anti-gamma-tubulin, and anti-pS6. Cells were counterstained with DAPI. Bars, 10 μm. (B) Cell number. (C) The ratio of pS6-positive cells. (D) Primary cilia frequency. (E–H) ATDC5 cells were treated with ethanol as control (Cont) or Rapamycin (RAP). (E) Immunocytochemistry analysis using anti-acetylated tubulin, anti-gamma-tubulin, and anti-pS6. Cells were counterstained with DAPI. Bars, 10 μm. (F) Cell number. (G) The ratio of pS6-positive cells. (H) Primary cilia frequency. The white square indicates the region of interest in the high-magnification image shown in (A) and (E). Arrowheads indicate the primary cilia. Data in (B), (C), (D), (F), (G), and (H) are represented as mean ± SD; n = 6 in each group. *: P < 0.05, as compared to vehicle.

(A-C) Mice were injected with the vehicle as control (Cont) or rapamycin (RAP) for one week. (A) Immunohistochemistry analysis using anti-acetylated tubulin, anti-gamma-tubulin, and anti-pS6 antibodies in the condylar cartilage. Bars, 10 μm. (B) The ratio of pS6-positive cells. (C) Primary cilia frequency. (D-F) Mice were injected with a vehicle as control (Cont) or rapamycin (RAP) for 11 weeks. (D) Immunohistochemistry analysis in the condylar cartilage. Bars, 10 μm. (E) The ratio of pS6-positive cells. (F) Primary cilia frequency. The white square indicates the region of interest in the high-magnification image shown in (A) and (D). Arrowheads indicate the primary cilia. Data in (B), (C), (E), and (F) are represented as mean ± SD; n = 6 in each group. *: P < 0.05, as compared to control.

Mice were injected with a vehicle as control (Cont) or rapamycin (RAP) for 11 weeks. (A) The mandibular condylar cartilage was stained with safranin O Bars, 100 μm. (B–E) Cartilage area, safranin O-positive area, cell density, and cell size distribution of the condylar cartilage in rapamycin/vehicle-injected mice. (F) cis-Golgi marker GM130 in condylar cartilage in rapamycin/vehicle-injected mice. Bars, 10 μm. (G) Golgi apparatus size. The white square indicates the region of interest in the high-magnification image shown in (F). Data in (B), (C), (D), and (G) are represented as mean ± SD; n = 6 in each group. *: P < 0.05, as compared to control.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kitami, M., Kaku, M., Thant, L. et al. A loss of primary cilia by a reduction in mTOR signaling correlates with age-related deteriorations in condylar cartilage. GeroScience (2024). https://doi.org/10.1007/s11357-024-01143-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11357-024-01143-x

Keywords

Navigation