Skip to main content

Advertisement

Log in

Signs of aging in midlife: physical function and sex differences in microbiota

  • ORIGINAL ARTICLE
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Microbiota composition has been linked to physical activity, health measures, and biological age, but a shared profile has yet to be shown. The aim of this study was to examine the associations between microbiota composition and measures of function, such as a composite measure of physical capacity, and biological age in midlife, prior to onset of age-related diseases. Seventy healthy midlife individuals (age 44.58 ± 0.18) were examined cross-sectionally, and their gut-microbiota profile was characterized from stool samples using 16SrRNA gene sequencing. Biological age was measured using the Klemera-Doubal method and a composition of blood and physiological biomarkers. Physical capacity was calculated based on sex-standardized functional tests. We demonstrate that the women had significantly richer microbiota, p = 0.025; however, microbiota diversity was not linked with chronological age, biological age, or physical capacity for either women or men. Men had slightly greater β-diversity; however, β-diversity was positively associated with biological age and with physical capacity for women only (p = 0.01 and p = 0.04; respectively). For women, an increase in abundance of Roseburia faecis and Collinsella aerofaciens, as well as genus Ruminococcus and Dorea, was significantly associated with higher biological age and lower physical capacity; an increase in abundance of Akkermansia muciniphila and genera Bacteroides and Alistipes was associated with younger biological age and increased physical capacity. Differentially abundant taxa were also associated with non-communicable diseases. These findings suggest that microbiota composition is a potential mechanism linking physical capacity and health status; personalized probiotics may serve as a new means to support health-promoting interventions in midlife. Investigating additional factors underlying this link may facilitate the development of a more accurate method to estimate the rate of aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The microbiota data used here is publicly available in the  European Bioinformatics Institute (EBI) database, https://www.ebi.ac.uk/ena/browser/view/PRJEB63185.

References

  1. Jazwinski SM, Kim S. Examination of the dimensions of biological age. Front Genet. 2019;10:263. https://doi.org/10.3389/fgene.2019.00263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Oksuzyan A, Juel K, Vaupel JW, Christensen K. Men: good health and high mortality. Sex differences in health and aging. Aging Clin Exp Res. 2008;20(2):91–102. https://doi.org/10.1007/bf03324754.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cummings SR, Kritchevsky SB. Endpoints for geroscience clinical trials: health outcomes, biomarkers, and biologic age. GeroScience. 2022;44(6):2925–31. https://doi.org/10.1007/s11357-022-00671-8.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Jylhävä J, Pedersen NL, Hägg S. Biological age predictors. EBioMedicine. 2017;21:29–36. https://doi.org/10.1016/j.ebiom.2017.03.046.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bell CG, Lowe R, Adams PD, et al. DNA methylation aging clocks: challenges and recommendations. Genome Biol. 2019;20(1). https://link.springer.com/article/10.1186/s13059-019-1824-y.

  6. Belsky DW, Moffitt TE, Cohen AA, et al. Eleven telomere, epigenetic clock, and biomarker-composite quantifications of biological aging: do they measure the same thing? Am J Epidemiol. 2018;187(6):1220–30. https://doi.org/10.1093/aje/kwx346.

    Article  PubMed  Google Scholar 

  7. Finkel D, Sternäng O, Jylhävä J, Bai G, Pedersen NL. Functional aging index complements frailty in prediction of entry into care and mortality. J Gerontol Ser A. 2019;74(12):1980–6. https://doi.org/10.1093/gerona/glz155.

    Article  Google Scholar 

  8. Li X, Ploner A, Wang Y, et al. Longitudinal trajectories, correlations and mortality associations of nine biological ages across 20-years follow-up. eLife. 2020;9. https://elifesciences.org/articles/51507.

  9. Badal VD, Vaccariello ED, Murray ER, et al. The gut microbiome, aging, and longevity: a systematic review. Nutrients. 2020;12(12):3759. https://doi.org/10.3390/nu12123759.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Galkin F, Mamoshina P, Aliper A, et al. Human gut microbiome aging clock based on taxonomic profiling and deep learning. iScience. 2020;23(6):101199. https://doi.org/10.1016/j.isci.2020.101199.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tzemah Shahar R, Koren O, Matarasso S, Shochat T, Magzal F, Agmon M. Attributes of physical activity and gut microbiome in adults: a systematic review. Int J Sports Med. 2020;41(12):801–14. https://doi.org/10.1055/a-1157-9257.

    Article  PubMed  Google Scholar 

  12. Corbin CBP, Robert P, Franks, B. Don. Definitions: health, fitness, and physical activity. President's Council on Physical Fitness and Sports, Washington, DC. 2000;(Series 3 n9).

  13. Tzemah-Shahar R, Hochner H, Iktilat K, Agmon M. What can we learn from physical capacity about biological age? A systematic review. Ageing Res Rev. 2022;77:101609. https://doi.org/10.1016/j.arr.2022.101609.

    Article  CAS  PubMed  Google Scholar 

  14. McGee SL, Hargreaves M. Exercise adaptations: molecular mechanisms and potential targets for therapeutic benefit. Nat Rev Endocrinol. 2020;16(9):495–505. https://doi.org/10.1038/s41574-020-0377-1.

    Article  CAS  PubMed  Google Scholar 

  15. Duggal NA, Niemiro G, Harridge SDR, Simpson RJ, Lord JM. Can physical activity ameliorate immunosenescence and thereby reduce age-related multi-morbidity? Nat Rev Immunol. 2019;19(9):563–72. https://doi.org/10.1038/s41577-019-0177-9.

    Article  CAS  PubMed  Google Scholar 

  16. Tzemah-Shahar R, Shapiro I, Kodesh E, et al. Physical-capacity based evaluation battery for rate of aging at midlife: a preliminary study. Submitted to European Review of Aging and Physical Activity, 2023.

  17. Ramos C, Gibson GR, Walton GE, Magistro D, Kinnear W, Hunter K. Systematic review of the effects of exercise and physical activity on the gut microbiome of older adults. Nutrients. 2022;14(3):674. https://doi.org/10.3390/nu14030674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Baquero F, Nombela C. The microbiome as a human organ. Clin Microbiol Infect. 2012;18:2–4. https://doi.org/10.1111/j.1469-0691.2012.03916.x.

    Article  CAS  PubMed  Google Scholar 

  19. Bana B, Cabreiro F. The microbiome and aging. Annu Rev Genet. 2019;53:239–61. https://doi.org/10.1146/annurev-genet-112618-043650.

    Article  CAS  PubMed  Google Scholar 

  20. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. Hallmarks of aging: an expanding universe. Cell. 2023;186(2):243–78. https://doi.org/10.1016/j.cell.2022.11.001.

    Article  CAS  PubMed  Google Scholar 

  21. Nagpal R, Mainali R, Ahmadi S, et al. Gut microbiome and aging: physiological and mechanistic insights. Nutr Healthy Aging. 2018;4(4):267–85. https://doi.org/10.3233/NHA-170030.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Noce A, Marrone G, Di Daniele F, et al. Impact of gut microbiota composition on onset and progression of chronic non-communicable diseases. Nutrients. 2019;11(5):1073. https://doi.org/10.3390/nu11051073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bennett JE, Stevens GA, Mathers CD, et al. NCD countdown 2030: worldwide trends in non-communicable disease mortality and progress towards sustainable development goal target 3.4. The Lancet. 2018;392(10152):1072–88. https://doi.org/10.1016/s0140-6736(18)31992-5.

    Article  Google Scholar 

  24. Belsky DW, Caspi A, Houts R, et al. Quantification of biological aging in young adults. Proc Natl Acad Sci. 2015;112(30):E4104–10. https://doi.org/10.1073/pnas.1506264112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Huang R, Ju Z, Zhou PK. A gut dysbiotic microbiota-based hypothesis of human-to-human transmission of non-communicable diseases. Sci Total Environ. 2020;745:141030. https://doi.org/10.1016/j.scitotenv.2020.141030.

    Article  CAS  PubMed  Google Scholar 

  26. Zhong H, Ren H, Lu Y, et al. Distinct gut metagenomics and metaproteomics signatures in prediabetics and treatment-naïve type 2 diabetics. EBioMedicine. 2019;47:373–83. https://doi.org/10.1016/j.ebiom.2019.08.048.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Harlap S, Davies AM, Deutsch L, et al. The Jerusalem perinatal study cohort, 1964?2005: methods and a review of the main results. Paediatr Perinat Epidemiol. 2007;21(3):256–73. https://doi.org/10.1111/j.1365-3016.2007.00799.x.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Klemera P, Doubal S. A new approach to the concept and computation of biological age. Mech Ageing Dev. 2006;127(3):240–8. https://doi.org/10.1016/j.mad.2005.10.004.

    Article  PubMed  Google Scholar 

  29. Kwon D, Belsky DW. A toolkit for quantification of biological age from blood chemistry and organ function test data: BioAge. Geroscience. 2021;43(6):2795–808. https://doi.org/10.1007/s11357-021-00480-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Uzan-Yulzari A, Morr M, Tareef-Nabwani H, et al. The intestinal microbiome, weight, and metabolic changes in women treated by adjuvant chemotherapy for breast and gynecological malignancies. BMC Med. 2020;18(1):281. https://doi.org/10.1186/s12916-020-01751-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bolyen E, Rideout JR, Dillon MR, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37(8):852–7. https://doi.org/10.1038/s41587-019-0209-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kim BR, Shin J, Guevarra R, et al. Deciphering diversity indices for a better understanding of microbial communities. J Microbiol Biotechnol. 2017;27(12):2089–93. https://doi.org/10.4014/jmb.1709.09027.

    Article  PubMed  Google Scholar 

  33. Lozupone C, Lladser ME, Knights D, Stombaugh J, Knight R. UniFrac: an effective distance metric for microbial community comparison. ISME J. 2011;5(2):169–72. https://doi.org/10.1038/ismej.2010.133.

    Article  PubMed  Google Scholar 

  34. Santiago A, Pozuelo M, Poca M, et al. Alteration of the serum microbiome composition in cirrhotic patients with ascites. Sci Rep. 2016;6(1):25001. https://doi.org/10.1038/srep25001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Breban M, Tap J, Leboime A, et al. Faecal microbiota study reveals specific dysbiosis in spondyloarthritis. Ann Rheum Dis. 2017;76(9):1614–22. https://doi.org/10.1136/annrheumdis-2016-211064.

    Article  CAS  PubMed  Google Scholar 

  36. Jolivet-Gougeon MB-MA. Roseburia spp.: a marker of health. Future Microbiol. 2017;12(2):157–70. https://doi.org/10.2217/fmb-2016-0130.

    Article  CAS  PubMed  Google Scholar 

  37. Zheng Y, Fang Z, Xue Y, et al. Specific gut microbiome signature predicts the early-stage lung cancer. Gut Microbes. 2020;11(4):1030–42. https://doi.org/10.1080/19490976.2020.1737487.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Boursier J, Mueller O, Barret M, et al. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology. 2016;63(3):764–75. https://doi.org/10.1002/hep.28356.

    Article  CAS  PubMed  Google Scholar 

  39. Da Silva HE, Teterina A, Comelli EM, et al. Nonalcoholic fatty liver disease is associated with dysbiosis independent of body mass index and insulin resistance. Sci Rep. 2018;8(1). https://www.nature.com/articles/s41598-018-19753-9.

  40. Kovács T, Mikó E, Ujlaki G, et al. The involvement of oncobiosis and bacterial metabolite signaling in metastasis formation in breast cancer. Cancer Metastasis Rev. 2021;40(4):1223–49. https://doi.org/10.1007/s10555-021-10013-3.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Emoto T, Yamashita T, Kobayashi T, et al. Characterization of gut microbiota profiles in coronary artery disease patients using data mining analysis of terminal restriction fragment length polymorphism: gut microbiota could be a diagnostic marker of coronary artery disease. Heart Vessels. 2017;32(1):39–46. https://doi.org/10.1007/s00380-016-0841-y.

    Article  PubMed  Google Scholar 

  42. Liu Z, Li J, Liu H, et al. The intestinal microbiota associated with cardiac valve calcification differs from that of coronary artery disease. Atherosclerosis. 2019;284:121–8. https://doi.org/10.1016/j.atherosclerosis.2018.11.038.

    Article  CAS  PubMed  Google Scholar 

  43. Jie Z, Xia H, Zhong S-L, et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun. 2017;8(1). https://www.nature.com/articles/s41467-017-00900-1.

  44. Nakatsu G, Li X, Zhou H, et al. Gut mucosal microbiome across stages of colorectal carcinogenesis. Nat Commun. 2015;6(1):8727. https://doi.org/10.1038/ncomms9727.

    Article  CAS  PubMed  Google Scholar 

  45. Kim S, Rigatto K, Gazzana MB, et al. Altered gut microbiome profile in patients with pulmonary arterial hypertension. Hypertension. 2020;75(4):1063–71. https://doi.org/10.1161/hypertensionaha.119.14294.

    Article  CAS  PubMed  Google Scholar 

  46. Ettehad Marvasti F, Moshiri A, Taghavi MS, et al. The first report of differences in gut microbiota composition between obese and normal weight Iranian subjects. Iran Biomed J. 2020;24(3):148–54. https://doi.org/10.29252/ibj.24.3.148.

    Article  PubMed  Google Scholar 

  47. Zhu L, Baker SS, Gill C, et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology. 2013;57(2):601–9. https://doi.org/10.1002/hep.26093.

    Article  CAS  PubMed  Google Scholar 

  48. Jiang W, Wu N, Wang X, et al. Dysbiosis gut microbiota associated with inflammation and impaired mucosal immune function in intestine of humans with non-alcoholic fatty liver disease. Sci Rep. 2015;5(1):8096. https://doi.org/10.1038/srep08096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Loke MF, Chua EG, Gan HM, et al. Metabolomics and 16S rRNA sequencing of human colorectal cancers and adjacent mucosa. Plos One. 2018;13(12):e0208584. https://doi.org/10.1371/journal.pone.0208584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kim S, Goel R, Kumar A, et al. Imbalance of gut microbiome and intestinal epithelial barrier dysfunction in patients with high blood pressure. Clin Sci. 2018;132(6):701–18. https://doi.org/10.1042/cs20180087.

    Article  CAS  Google Scholar 

  51. Raman M, Ahmed I, Gillevet PM, et al. Fecal Microbiome and volatile organic compound metabolome in obese humans with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2013;11(7):868-875.e3. https://doi.org/10.1016/j.cgh.2013.02.015.

    Article  CAS  PubMed  Google Scholar 

  52. Li Q, Chang Y, Zhang K, Chen H, Tao S, Zhang Z. Implication of the gut microbiome composition of type 2 diabetic patients from northern China. Sci Rep. 2020;10(1). https://www.nature.com/articles/s41598-020-62224-3.

  53. Ortiz-Alvarez L, Xu H, Martinez-Tellez B. Influence of exercise on the human gut microbiota of healthy adults: a systematic review. Clin Transl Gastroenterol. 2020;11(2):e00126. https://doi.org/10.14309/ctg.0000000000000126.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Larsen OFA, Claassen E. The mechanistic link between health and gut microbiota diversity. Sci Rep. 2018;8(1). https://www.nature.com/articles/s41598-018-20141-6.

  55. Dogra SK, Dore J, Damak S. Gut microbiota resilience: definition, link to health and strategies for intervention. Front Microbiol. 2020;11:572921. https://doi.org/10.3389/fmicb.2020.572921.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Aya V, Flórez A, Perez L, Ramírez JD. Association between physical activity and changes in intestinal microbiota composition: a systematic review. Plos One. 2021;16(2):e0247039. https://doi.org/10.1371/journal.pone.0247039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rinninella E, Raoul P, Cintoni M, et al. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms. 2019;7(1):14. https://doi.org/10.3390/microorganisms7010014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hawley JA, Joyner MJ, Green DJ. Mimicking exercise: what matters most and where to next? J Physiol. 2021;599(3):791–802. https://doi.org/10.1113/jp278761.

    Article  CAS  PubMed  Google Scholar 

  59. Langsetmo L, Johnson A, Demmer RT, et al. The association between objectively measured physical activity and the gut microbiome among older community dwelling men. J Nutr Health Aging. 2019;23(6):538–46. https://doi.org/10.1007/s12603-019-1194-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ma Z, Li L, Gotelli NJ. Diversity-disease relationships and shared species analyses for human microbiome-associated diseases. ISME J. 2019;13(8):1911–9. https://doi.org/10.1038/s41396-019-0395-y.

    Article  CAS  PubMed  Google Scholar 

  61. Dziewiecka H, Buttar HS, Kasperska A, et al. Physical activity induced alterations of gut microbiota in humans: a systematic review. BMC Sports Sci Med Rehabil. 2022;14(1). doi:https://doi.org/10.1186/s13102-022-00513-2.

  62. Divella R, De Palma G, Tufaro A, et al. Diet, probiotics and physical activity: the right allies for a healthy microbiota. Anticancer Res. 2021;41(6):2759–72. https://doi.org/10.21873/anticanres.15057.

    Article  CAS  PubMed  Google Scholar 

  63. Lv WQ, Lin X, Shen H, et al. Human gut microbiome impacts skeletal muscle mass via gut microbial synthesis of the short-chain fatty acid butyrate among healthy menopausal women. J Cachexia Sarcopenia Muscle. 2021;12(6):1860–70. https://doi.org/10.1002/jcsm.12788.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Barton W, Penney NC, Cronin O, et al. The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level. Gut. 2017:gutjnl-2016–313. https://gut.bmj.com/content/67/4/625.abstract?casa_token=uG5E_mzSPdsAAAAA:IpoRgMfcqa5L6qynNLApYQjQWbj166O_ICGZOi1lhIuDc6PZdZZtlDZRHkNWxVApc7eM0WVNz7U.

  65. Allam-Ndoul B, Castonguay-Paradis S, Veilleux A. Gut microbiota and intestinal trans-epithelial permeability. Int J Mol Sci. 2020;21(17):6402. https://doi.org/10.3390/ijms21176402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Park JH, Moon JH, Kim HJ, Kong MH, Oh YH. Sedentary lifestyle: overview of updated evidence of potential health risks. Korean J Fam Med. 2020;41(6):365–73. https://doi.org/10.4082/kjfm.20.0165.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Tett A, Pasolli E, Masetti G, Ercolini D, Segata N. Prevotella diversity, niches and interactions with the human host. Nat Rev Microbiol. 2021;19(9):585–99. https://doi.org/10.1038/s41579-021-00559-y.

    Article  CAS  PubMed  Google Scholar 

  68. OECD, Organization WH. Step up! Tackling the burden of insufficient physical activity in Europe. 2023.

  69. Bhargava A, Arnold AP, Bangasser DA, et al. Considering sex as a biological variable in basic and clinical studies: an Endocrine Society scientific statement. Endocr Rev. 2021;42(3):219–58. https://doi.org/10.1210/endrev/bnaa034.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Valeri F, Endres K. How biological sex of the host shapes its gut microbiota. Front Neuroendocrinol. 2021;61:100912. https://doi.org/10.1016/j.yfrne.2021.100912.

    Article  CAS  PubMed  Google Scholar 

  71. Shin JH, Park YH, Sim M, Kim SA, Joung H, Shin DM. Serum level of sex steroid hormone is associated with diversity and profiles of human gut microbiome. Res Microbiol Jun-Aug. 2019;170(4–5):192–201. https://doi.org/10.1016/j.resmic.2019.03.003.

    Article  CAS  Google Scholar 

  72. Hall CV, Lord A, Betzel R, et al. Co-existence of network architectures supporting the human gut microbiome. iScience. 2019;22:380–91. https://doi.org/10.1016/j.isci.2019.11.032.

    Article  PubMed  PubMed Central  Google Scholar 

  73. (CDC) CfDCaP. Data from: National Health and Nutrition Examination Survey Data. Hyattsville, MD: U.S. Department of Health and Human Services.

  74. Shapiro I, Belsky DW, Israel S, Youssim I, Friedlander Y, Hochner H. Familial aggregation of the aging process: biological age measured in young adult offspring as a predictor of parental mortality. GeroScience. 2023;45(2):901–13. https://doi.org/10.1007/s11357-022-00687-0.

    Article  PubMed  Google Scholar 

  75. Caporaso JG, Lauber CL, Walters WA, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6(8):1621–4. https://doi.org/10.1038/ismej.2012.8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7):581–3. https://doi.org/10.1038/nmeth.3869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. DeSantis TZ, Hugenholtz P, Larsen N, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006;72(7):5069–72. https://doi.org/10.1128/AEM.03006-05.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8(4):e61217. https://doi.org/10.1371/journal.pone.0061217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12). https://genomebiology.biomedcentral.com/articles/10.1186/s13059-014-0550-8?ref=https://githubhelp.com.

  80. Wickham H. Programming with ggplot2. Springer International Publishing; 2016:241–253. https://link.springer.com/chapter/10.1007/978-3-319-24277-4_12.

  81. Douglas GM, Maffei VJ, Zaneveld JR, et al. PICRUSt2 for prediction of metagenome functions. Nat Biotechnol. 2020;38(6):685–8. https://doi.org/10.1038/s41587-020-0548-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Caspi R, Billington R, Keseler IM, et al. The MetaCyc database of metabolic pathways and enzymes - a 2019 update. Nucleic Acids Res. 2019;48(D1):D445–53. https://doi.org/10.1093/nar/gkz862.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are thankful to all the participants for their willingness to contribute to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maayan Agmon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 311 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tzemah-Shahar, R., Turjeman, S., Sharon, E. et al. Signs of aging in midlife: physical function and sex differences in microbiota. GeroScience 46, 1477–1488 (2024). https://doi.org/10.1007/s11357-023-00905-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-023-00905-3

Keywords

Navigation