Skip to main content

Advertisement

Log in

Banking on a new understanding: translational opportunities from veterinary biobanks

  • REVIEW
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Current advances in geroscience are due in part to the discovery of biomarkers with high predictive ability in short-lived laboratory animals such as flies and mice. These model species, however, do not always adequately reflect human physiology and disease, highlighting the need for a more comprehensive and relevant model of human aging. Domestic dogs offer a solution to this obstacle, as they share many aspects not only of the physiological and pathological trajectories of their human counterpart, but also of their environment. Furthermore, they age at a considerably faster rate. Studying aging in the companion dog provides an opportunity to better understand the biological and environmental determinants of healthy lifespan in our pets, and to translate those findings to human aging. Biobanking, the systematic collection, processing, storage, and distribution of biological material and associated data has contributed to basic, clinical, and translational research by streamlining the management of high-quality biospecimens for biomarker discovery and validation. In this review, we discuss how veterinary biobanks can support research on aging, particularly when integrated into large-scale longitudinal studies. As an example of this concept, we introduce the Dog Aging Project Biobank.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The Dog Aging Project is an open data project. These data are available to the general public at dogagingproject.org/open_data_access.

References

  1. Stuckler D. Population causes and consequences of leading chronic diseases: a comparative analysis of prevailing explanations. Milbank Q. 2008;86:273–326. https://doi.org/10.1111/j.1468-0009.2008.00522.x.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Fontana L, Partridge L, Longo VD. Extending healthy life span—from yeast to humans. Science. 2010;328:321–6. https://doi.org/10.1126/science.1172539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kaeberlein M, Rabinovitch PS, Martin GM. Healthy aging: the ultimate preventative medicine. Science. 2015;350:1191–3. https://doi.org/10.1126/science.aad3267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jacob JA. Researchers turn to canine clinical trials to advance cancer therapies. JAMA. 2016;315:1550. https://doi.org/10.1001/jama.2016.0082.

    Article  PubMed  Google Scholar 

  5. Stensland KD, McBride RB, Latif A, Wisnivesky J, Hendricks R, Roper N, Boffetta P, Hall SJ, Oh WK, Galsky MD. Adult cancer clinical trials that fail to complete: an epidemic? JNCI J Natl Cancer Inst. 2014;106:dju229. https://doi.org/10.1093/jnci/dju229.

    Article  PubMed  Google Scholar 

  6. Hunter P. The paradox of model organisms. The use of model organisms in research will continue despite their shortcomings. EMBO Rep. 2008;9:717–20. https://doi.org/10.1038/embor.2008.142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. van der Worp HB, Howells DW, Sena ES, Porritt MJ, Rewell S, O’Collins V, Macleod MR. Can animal models of disease reliably inform human studies? PLOS Med. 2010;7:e1000245. https://doi.org/10.1371/journal.pmed.1000245.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Van Norman GA. Limitations of animal studies for predicting toxicity in clinical trials: is it time to rethink our current approach? JACC Basic Transl Sci. 2019;4:845–54. https://doi.org/10.1016/j.jacbts.2019.10.008.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sándor S, Kubinyi E. Genetic pathways of aging and their relevance in the dog as a natural model of human aging. Front Genet. 2019;10:948. https://doi.org/10.3389/fgene.2019.00948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhao X, Promislow DEL. Senescence and ageing. In: Brüne M, Schiefenhövel W, editors. Oxford Handbook of Evolutionary Medicine. Oxford University Press; 2019. p. 166–208. ISBN 978-0-19-878966-6.

    Google Scholar 

  11. Hoffman JM, Creevy KE, Franks A, O’Neill DG, Promislow DEL. The companion dog as a model for human aging and mortality. Aging Cell. 2018;17:e12737. https://doi.org/10.1111/acel.12737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kaszak I, Ruszczak A, Kanafa S, Kacprzak K, Król M, Jurka P. Current biomarkers of canine mammary tumors. Acta Vet Scand. 2018;60:66. https://doi.org/10.1186/s13028-018-0417-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Heilmann RM, Steiner JM. Clinical utility of currently available biomarkers in inflammatory enteropathies of dogs. J Vet Intern Med. 2018;32:1495–508. https://doi.org/10.1111/jvim.15247.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Oyama MA, Singletary GE. The use of NT-ProBNP assay in the management of canine patients with heart disease. Vet Clin North Am Small Anim Pract. 2010;40:545–58. https://doi.org/10.1016/j.cvsm.2010.03.004.

    Article  PubMed  Google Scholar 

  15. Phochantachinda S, Chantong B, Reamtong O, Chatchaisak D. Change in the plasma proteome associated with canine cognitive dysfunction syndrome (CCDS) in Thailand. BMC Vet Res. 2021;17:1–14. https://doi.org/10.1186/s12917-021-02744-w.

    Article  CAS  Google Scholar 

  16. Patil S, Majumdar B, Awan KH, Sarode GS, Sarode SC, Gadbail AR, Gondivkar S. Cancer oriented biobanks: a comprehensive review. Oncol Rev. 2018;12. https://doi.org/10.4081/oncol.2018.357.

  17. Blutke A, Renner S, Flenkenthaler F, Backman M, Haesner S, Kemter E, Ländström E, Braun-Reichhart C, Albl B, Streckel E, et al. The Munich MIDY Pig Biobank - a unique resource for studying organ crosstalk in diabetes. Mol Metab. 2017;6:931–40. https://doi.org/10.1016/j.molmet.2017.06.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wadhwa L. Landscape of pediatric biobanking: challenges and current efforts. Biopreserv Biobank. 2021. https://doi.org/10.1089/bio.2020.0110.

    Article  PubMed  Google Scholar 

  19. Dollé L, Bekaert S. High-quality biobanks: pivotal assets for reproducibility of OMICS-data in biomedical translational research. Proteomics. 2019;19:1800485. https://doi.org/10.1002/pmic.201800485.

    Article  CAS  Google Scholar 

  20. Knudtson KL, Carnahan RH, Hegstad-Davies RL, Fisher NC, Hicks B, Lopez PA, Meyn SM, Mische SM, Weis-Garcia F, White LD, et al. Survey on scientific shared resource rigor and reproducibility. J Biomol Tech JBT. 2019;30:36–44. https://doi.org/10.7171/jbt.19-3003-001.

    Article  PubMed  Google Scholar 

  21. Plebani M. The detection and prevention of errors in laboratory medicine. Ann Clin Biochem. 2010;47:101–10. https://doi.org/10.1258/acb.2009.009222.

    Article  PubMed  Google Scholar 

  22. Wichman C, Smith LM, Yu F. A framework for clinical and translational research in the era of rigor and reproducibility. J Clin Transl Sci. 2021;5:e31. https://doi.org/10.1017/cts.2020.523.

    Article  Google Scholar 

  23. National Academies of Sciences, E. Reproducibility and Replicability in Science; 2019; ISBN 978-0-309-48616-3.

  24. Mouttham L, Garrison SJ, Archer DL, Castelhano MG. A biobank’s journey: implementation of a quality management system and accreditation to ISO 20387. Biopreserv Biobank. 2021;19:163–70. https://doi.org/10.1089/bio.2020.0068.

    Article  PubMed  Google Scholar 

  25. Darrigues E, Elberson BW, De Loose A, Lee MP, Green E, Benton AM, Sink LG, Scott H, Gokden M, Day JD, et al. Brain tumor biobank development for precision medicine: role of the neurosurgeon. Front Oncol. 2021;11:662260. https://doi.org/10.3389/fonc.2021.662260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Groeneveld LF, Gregusson S, Guldbrandtsen B, Hiemstra SJ, Hveem K, Kantanen J, Lohi H, Stroemstedt L, Berg P. Domesticated animal biobanking: land of opportunity. PLoS Biol. 2016;14:e1002523. https://doi.org/10.1371/journal.pbio.1002523.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Furman JL, Stern S. Climbing atop the shoulders of giants: the impact of institutions on cumulative research. Am Econ Rev. 2011;101:1933–63. https://doi.org/10.1257/aer.101.5.1933.

    Article  Google Scholar 

  28. Kaeberlein M, Creevy KE, Promislow DEL. The dog aging project: translational geroscience in companion animals. Mamm Genome. 2016;27:279–88. https://doi.org/10.1007/s00335-016-9638-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Creevy KE, Akey JM, Kaeberlein M, Promislow DEL An open science study of ageing in companion dogs. Nature. 2022;1–7. https://doi.org/10.1038/s41586-021-04282-9.

  30. Partridge L, Fuentealba M, Kennedy BK. The quest to slow ageing through drug discovery. Nat Rev Drug Discov. 2020;19:513–32. https://doi.org/10.1038/s41573-020-0067-7.

    Article  CAS  PubMed  Google Scholar 

  31. Brunet A. Old and new models for the study of human ageing. Nat Rev Mol Cell Biol. 2020;21:491–3. https://doi.org/10.1038/s41580-020-0266-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Guarente L, Kenyon C. Genetic pathways that regulate ageing in model organisms. Nature. 2000;408:255–62. https://doi.org/10.1038/35041700.

    Article  CAS  PubMed  Google Scholar 

  33. Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang RAC. Elegans mutant that lives twice as long as wild type. Nature. 1993;366:461–4. https://doi.org/10.1038/366461a0.

    Article  CAS  PubMed  Google Scholar 

  34. Morris JZ, Tissenbaum HA, Ruvkun G. A Phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature. 1996;382:536–9. https://doi.org/10.1038/382536a0.

    Article  CAS  PubMed  Google Scholar 

  35. Bartke A, Brown-Borg H, Mattison J, Kinney B, Hauck S, Wright C. Prolonged longevity of hypopituitary dwarf mice. Exp Gerontol. 2001;36:21–8. https://doi.org/10.1016/S0531-5565(00)00205-9.

    Article  CAS  PubMed  Google Scholar 

  36. Kaeberlein M, Kennedy BK. Large-Scale Identification in Yeast of Conserved Ageing Genes. Mech Ageing Dev. 2005;126:17–21. https://doi.org/10.1016/j.mad.2004.09.013.

    Article  CAS  PubMed  Google Scholar 

  37. Tatar M, Kopelman A, Epstein D, Tu M-P, Yin C-M, Garofalo RS. A Mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science. 2001;292:107–10. https://doi.org/10.1126/science.1057987.

    Article  CAS  PubMed  Google Scholar 

  38. Mazzatenta A, Carluccio A, Robbe D, Giulio CD, Cellerino A. The companion dog as a unique translational model for aging. Semin Cell Dev Biol. 2017;70:141–53. https://doi.org/10.1016/j.semcdb.2017.08.024.

    Article  PubMed  Google Scholar 

  39. Mitchell SJ, Scheibye-Knudsen M, Longo DL, de Cabo R. Animal models of aging research: implications for human aging and age-related diseases. Annu Rev Anim Biosci. 2015;3:283–303. https://doi.org/10.1146/annurev-animal-022114-110829.

    Article  CAS  PubMed  Google Scholar 

  40. Vanhunsel S, Beckers A, Moons L. Designing neuroreparative strategies using aged regenerating animal models. Ageing Res Rev. 2020;62:101086. https://doi.org/10.1016/j.arr.2020.101086.

    Article  PubMed  Google Scholar 

  41. Edler MK, Mhatre-Winters I, Richardson JR. Microglia in aging and Alzheimer’s disease: a comparative species review. Cells. 2021;10:1138. https://doi.org/10.3390/cells10051138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Johnson SC, Sangesland M, Kaeberlein M, Rabinovitch PS. Modulating MTOR in aging and health. Interdiscip Top Gerontol. 2015;40:107–27. https://doi.org/10.1159/000364974.

    Article  PubMed  Google Scholar 

  43. Lee MB, Hill CM, Bitto A, Kaeberlein M. Antiaging diets: separating fact from fiction. Science. 2021;374:eabe7365. https://doi.org/10.1126/science.abe7365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Green CL, Lamming DW, Fontana L. Molecular mechanisms of dietary restriction promoting health and longevity. Nat Rev Mol Cell Biol. 2022;23:56–73. https://doi.org/10.1038/s41580-021-00411-4.

    Article  CAS  PubMed  Google Scholar 

  45. Zhu S, Han Z, Luo Y, Chen Y, Zeng Q, Wu X, Yuan W. Molecular mechanisms of heart failure: insights from Drosophila. Heart Fail Rev. 2017;22:91–8. https://doi.org/10.1007/s10741-016-9590-3.

    Article  CAS  PubMed  Google Scholar 

  46. Tello JA, Williams HE, Eppler RM, Steinhilb ML, Khanna M. Animal models of neurodegenerative disease: recent advances in fly highlight innovative approaches to drug discovery. Front Mol Neurosci. 2022;15:883358. https://doi.org/10.3389/fnmol.2022.883358.

  47. Brown SDM. Advances in mouse genetics for the study of human disease. Hum Mol Genet. 2021;30:R274–84. https://doi.org/10.1093/hmg/ddab153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. de Souto Barreto P, Guyonnet S, Ader I, Andrieu S, Casteilla L, Davezac N, Dray C, Fazilleau N, Gourdy P, Liblau R, et al. The INSPIRE research initiative: a program for geroscience and healthy aging research going from animal models to humans and the healthcare system. J Frailty Aging. 2021;10:86–93. https://doi.org/10.14283/jfa.2020.18.

    Article  PubMed  Google Scholar 

  49. Zhao Y, Seluanov A, Gorbunova V. Revelations about aging and disease from unconventional vertebrate model organisms. Annu Rev Genet. 2021;55:135–59. https://doi.org/10.1146/annurev-genet-071719-021009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Buffenstein R, Craft W. The idiosyncratic physiological traits of the naked mole-rat; a resilient animal model of aging, longevity, and healthspan. Adv Exp Med Biol. 2021;1319:221–54. https://doi.org/10.1007/978-3-030-65943-1_8.

    Article  CAS  PubMed  Google Scholar 

  51. Vandamme TF. Use of rodents as models of human diseases. J Pharm Bioallied Sci. 2014;6:2–9. https://doi.org/10.4103/0975-7406.124301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wolf E, Braun-Reichhart C, Streckel E, Renner S. Genetically engineered pig models for diabetes research. Transgenic Res. 2014;23:27–38. https://doi.org/10.1007/s11248-013-9755-y.

    Article  CAS  PubMed  Google Scholar 

  53. Robinson NB, Krieger K, Khan FM, Huffman W, Chang M, Naik A, Yongle R, Hameed I, Krieger K, Girardi LN, et al. The current state of animal models in research: a review. Int J Surg. 2019;72:9–13. https://doi.org/10.1016/j.ijsu.2019.10.015.

    Article  PubMed  Google Scholar 

  54. Ladiges W. Geropathology. An inside view of biological aging. Aging Pathobiol Ther. 2022;4:23–4. https://doi.org/10.31491/APT.2022.03.078.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Zomer HD, Trentin AG. Skin wound healing in humans and mice: challenges in translational research. J Dermatol Sci. 2018;90:3–12. https://doi.org/10.1016/j.jdermsci.2017.12.009.

    Article  PubMed  Google Scholar 

  56. Mak IW, Evaniew N, Ghert M. Lost in translation: animal models and clinical trials in cancer treatment. Am J Transl Res. 2014;6:114–8.

    PubMed  PubMed Central  Google Scholar 

  57. Beck AP, Meyerholz DK. Evolving challenges to model human diseases for translational research. Cell Tissue Res. 2020;380:305–11. https://doi.org/10.1007/s00441-019-03134-3.

    Article  PubMed  Google Scholar 

  58. Olson B, Li Y, Lin Y, Liu ET, Patnaik A. Mouse models for cancer immunotherapy research. Cancer Discov. 2018;8:1358–65. https://doi.org/10.1158/2159-8290.CD-18-0044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nadon NL. Of mice and monkeys: National Institute on Aging resources supporting the use of animal models in biogerontology research. J Gerontol Ser A. 2006;61:813–5. https://doi.org/10.1093/gerona/61.8.813.

    Article  Google Scholar 

  60. Colman RJ. Non-human primates as a model for aging. Biochim Biophys Acta BBA - Mol Basis Dis. 2018;1864:2733–41. https://doi.org/10.1016/j.bbadis.2017.07.008.

    Article  CAS  Google Scholar 

  61. Mattison JA, Colman RJ, Beasley TM, Allison DB, Kemnitz JW, Roth GS, Ingram DK, Weindruch R, de Cabo R, Anderson RM. Caloric restriction improves health and survival of rhesus monkeys. Nat Commun. 2017;8:14063. https://doi.org/10.1038/ncomms14063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Singh PP, Demmitt BA, Nath RD, Brunet A. The genetics of aging: a vertebrate perspective. Cell. 2019;177:200–20. https://doi.org/10.1016/j.cell.2019.02.038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cohen AA. Aging across the tree of life: the importance of a comparative perspective for the use of animal models in aging. Biochim Biophys Acta BBA - Mol Basis Dis. 2018;1864:2680–9. https://doi.org/10.1016/j.bbadis.2017.05.028.

    Article  CAS  Google Scholar 

  64. Ruple A, MacLean E, Snyder-Mackler N, Creevy KE, Promislow D. Dog models of aging. Annu Rev Anim Biosci. 2022;10:419–39. https://doi.org/10.1146/annurev-animal-051021-080937.

    Article  PubMed  Google Scholar 

  65. Creevy KE, Austad SN, Hoffman JM, O’Neill DG, Promislow DEL. The companion dog as a model for the longevity dividend. Cold Spring Harb Perspect Med. 2016;6:a026633. https://doi.org/10.1101/cshperspect.a026633.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Moshref M, Tangey B, Gilor C, Papas KK, Williamson P, Loomba-Albrecht L, Sheehy P, Kol A. Concise review: canine diabetes mellitus as a translational model for innovative regenerative medicine approaches. Stem Cells Transl Med. 2019;8:450–5. https://doi.org/10.1002/sctm.18-0163.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Miao B, Wang Z, Li Y. Genomic analysis reveals hypoxia adaptation in the Tibetan mastiff by introgression of the gray wolf from the Tibetan Plateau. Mol Biol Evol. 2017;34:734–43. https://doi.org/10.1093/molbev/msw274.

    Article  CAS  PubMed  Google Scholar 

  68. Axelsson E, Ratnakumar A, Arendt M-L, Maqbool K, Webster MT, Perloski M, Liberg O, Arnemo JM, Hedhammar Å, Lindblad-Toh K. The genomic signature of dog domestication reveals adaptation to a starch-rich diet. Nature. 2013;495:360–4. https://doi.org/10.1038/nature11837.

    Article  CAS  PubMed  Google Scholar 

  69. Schneider B, Balbas-Martinez V, Jergens AE, Troconiz IF, Allenspach K, Mochel JP. Model-based reverse translation between veterinary and human medicine: the one health initiative. CPT Pharmacomet Syst Pharmacol. 2018;7:65–8. https://doi.org/10.1002/psp4.12262.

    Article  CAS  Google Scholar 

  70. Haidara MA, Assiri AS, Yassin HZ, Ammar HI, Obradovic MM, Isenovic ER. Heart Failure models: traditional and novel therapy. Curr Vasc Pharmacol. 2015;13:658–69.

    Article  CAS  PubMed  Google Scholar 

  71. Stenmark KR, Krafsur GM, Tuder RM. Pulmonary veno-occlusive disease and pulmonary hypertension in dogs: striking similarities to the human condition. Vet Pathol. 2016;53:707–10. https://doi.org/10.1177/0300985816647454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bartges JW. Chronic kidney disease in dogs and cats. Vet Clin North Am Small Anim Pract. 2012;42:669–92. https://doi.org/10.1016/j.cvsm.2012.04.008.

    Article  PubMed  Google Scholar 

  73. Jergens AE, Simpson KW. Inflammatory bowel disease in veterinary medicine. Front Biosci-Elite. 2012;4:1404–19. https://doi.org/10.2741/470.

    Article  Google Scholar 

  74. Bexfield N. Canine idiopathic chronic hepatitis. Vet Clin North Am Small Anim Pract. 2017;47:645–63. https://doi.org/10.1016/j.cvsm.2016.11.012.

    Article  PubMed  Google Scholar 

  75. Watson P. Pancreatitis in dogs and cats: definitions and pathophysiology. J Small Anim Pract. 2015;56:3–12. https://doi.org/10.1111/jsap.12293.

    Article  CAS  PubMed  Google Scholar 

  76. O’Kell AL, Garrett TJ, Wasserfall C, Atkinson MA. Untargeted metabolomic analysis in naturally occurring canine diabetes mellitus identifies similarities to human type 1 diabetes. Sci Rep. 2017;7:9467. https://doi.org/10.1038/s41598-017-09908-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hanson JM, Tengvall K, Bonnett BN, Hedhammar Å. Naturally occurring adrenocortical insufficiency – an epidemiological study based on a swedish-insured dog population of 525,028 Dogs. J Vet Intern Med. 2016;30:76–84. https://doi.org/10.1111/jvim.13815.

    Article  CAS  PubMed  Google Scholar 

  78. Galac S. Cortisol-secreting adrenocortical tumours in dogs and their relevance for human medicine. Mol Cell Endocrinol. 2015;421:34–9.

    Article  PubMed  Google Scholar 

  79. Ito D, Frantz AM, Modiano JF. Canine lymphoma as a comparative model for human non-Hodgkin lymphoma: recent progress and applications. Vet Immunol Immunopathol. 2014;159:192–201. https://doi.org/10.1016/j.vetimm.2014.02.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Atherton MJ, Morris JS, McDermott MR, Lichty BD. Cancer immunology and canine malignant melanoma: a comparative review. Vet Immunol Immunopathol. 2016;169:15–26. https://doi.org/10.1016/j.vetimm.2015.11.003.

    Article  CAS  PubMed  Google Scholar 

  81. Roy J, Wycislo KL, Pondenis H, Fan TM, Das A. Comparative proteomic investigation of metastatic and non-metastatic osteosarcoma cells of human and canine origin. PLOS ONE. 2017;12:e0183930. https://doi.org/10.1371/journal.pone.0183930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Shelton GD, Podell M, Poncelet L, Schatzberg S, Patterson E, Powell HC, Mizisin AP. Inherited polyneuropathy in Leonberger dogs: a mixed or intermediate form of Charcot-Marie-Tooth disease? Muscle Nerve. 2003;27:471–7. https://doi.org/10.1002/mus.10350.

    Article  PubMed  Google Scholar 

  83. Patterson EE. Canine epilepsy: an underutilized model. ILAR J. 2014;55:182–6. https://doi.org/10.1093/ilar/ilu021.

    Article  CAS  PubMed  Google Scholar 

  84. Urfer SR, Darvas M, Czeibert K, Sándor S, Promislow DEL, Creevy KE, Kubinyi E, Kaeberlein M. Canine cognitive dysfunction (CCD) scores correlate with amyloid beta 42 levels in dog brain tissue. GeroScience. 2021. https://doi.org/10.1007/s11357-021-00422-1.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Chapagain D, Range F, Huber L, Virányi Z. Cognitive aging in dogs. Gerontology. 2018;64:165–71. https://doi.org/10.1159/000481621.

    Article  PubMed  Google Scholar 

  86. Mestrinho LA, Delgado E, Lourenço M, Niza M. Trends in translational medical research: companion animal models. In: Freitas Duarte A, Lopes da Costa L, editors. Proceedings of the advances in animal health, medicine and production. Springer International Publishing: Cham, 2020. pp. 460–474.

  87. Cotman CW, Head E. The Canine (Dog) Model of human aging and disease: dietary, environmental and immunotherapy approaches. J Alzheimers Dis. 2008;15:685–707. https://doi.org/10.3233/JAD-2008-15413.

    Article  CAS  PubMed  Google Scholar 

  88. Friedmann E, Son H. The human-companion animal bond: how humans benefit. Vet Clin North Am Small Anim Pract. 2009;39:293–326. https://doi.org/10.1016/j.cvsm.2008.10.015.

    Article  PubMed  Google Scholar 

  89. Hewitt R, Watson P. Defining biobank. Biopreserv Biobank. 2013;11:309–15. https://doi.org/10.1089/bio.2013.0042.

    Article  PubMed  Google Scholar 

  90. Asslaber M, Zatloukal K. Biobanks: transnational, European and global networks. Brief Funct Genomic Proteomic. 2007;6:193–201. https://doi.org/10.1093/bfgp/elm023.

    Article  PubMed  Google Scholar 

  91. Coppola L, Cianflone A, Grimaldi AM, Incoronato M, Bevilacqua P, Messina F, Baselice S, Soricelli A, Mirabelli P, Salvatore M. Biobanking in health care: evolution and future directions. J Transl Med. 2019;17:172. https://doi.org/10.1186/s12967-019-1922-3.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Watson PH, Barnes RO. A Proposed schema for classifying human research biobanks. Biopreserv Biobank. 2011;9:327–33. https://doi.org/10.1089/bio.2011.0020.

    Article  PubMed  Google Scholar 

  93. Müller H, Dagher G, Loibner M, Stumptner C, Kungl P, Zatloukal K. Biobanks for life sciences and personalized medicine: importance of standardization, biosafety, biosecurity, and data management. Curr Opin Biotechnol. 2020;65:45–51. https://doi.org/10.1016/j.copbio.2019.12.004.

    Article  CAS  PubMed  Google Scholar 

  94. Furuta K, Allocca CM, Schacter B, Bledsoe MJ, Ramirez NC. Standardization and innovation in paving a path to a better future: an update of activities in ISO/TC276/WG2 biobanks and bioresources. Biopreserv Biobank. 2018;16:23–7. https://doi.org/10.1089/bio.2017.0117.

    Article  PubMed  Google Scholar 

  95. Asiimwe R, Lam S, Leung S, Wang S, Wan R, Tinker A, McAlpine JN, Woo MMM, Huntsman DG, Talhouk A. From biobank and data silos into a data commons: convergence to support translational medicine. J Transl Med. 2021;19:493. https://doi.org/10.1186/s12967-021-03147-z.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Betsou F, Barnes R, Burke T, Coppola D, DeSouza Y, Eliason J, Glazer B, Horsfall D, Kleeberger C, Lehmann S, et al. Human biospecimen research: experimental protocol and quality control tools. Cancer Epidemiol Prev Biomark. 2009;18:1017–25. https://doi.org/10.1158/1055-9965.EPI-08-1231.

    Article  Google Scholar 

  97. Lehmann S, Guadagni F, Moore H, Ashton G, Barnes M, Benson E, Clements J, Koppandi I, Coppola D, Demiroglu SY, et al. Standard Preanalytical Coding for Biospecimens: Review and Implementation of the Sample PREanalytical Code (SPREC). Biopreserv Biobank. 2012;10:366–74. https://doi.org/10.1089/bio.2012.0012.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Vora T, Thacker N. Impacts of a biobank: bridging the gap in translational cancer medicine. Indian J Med Paediatr Oncol Off J Indian Soc Med Paediatr Oncol. 2015;36:17–23. https://doi.org/10.4103/0971-5851.151773.

    Article  Google Scholar 

  99. Simeon-Dubach D, Watson P. Biobanking 3.0: evidence based and customer focused biobanking. Clin Biochem. 2014;47:300–8. https://doi.org/10.1016/j.clinbiochem.2013.12.018.

    Article  PubMed  Google Scholar 

  100. Hughes SE, Barnes RO, Watson PH. Biospecimen use in cancer research over two decades. Biopreserv Biobank. 2010;8:89–97. https://doi.org/10.1089/bio.2010.0005.

    Article  PubMed  Google Scholar 

  101. Matzke LA, Watson PH. Biobanking for cancer biomarker research: issues and solutions. Biomark Insights. 2020;15:1177271920965522. https://doi.org/10.1177/1177271920965522.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Lewczuk P, Riederer P, O’Bryant SE, Verbeek MM, Dubois B, Visser PJ, Jellinger KA, Engelborghs S, Ramirez A, Parnetti L, et al. Cerebrospinal fluid and blood biomarkers for neurodegenerative dementias: an update of the consensus of the Task Force on Biological Markers in Psychiatry of the World Federation of Societies of Biological Psychiatry. World J Biol Psychiatry Off J World Fed Soc Biol Psychiatry. 2018;19:244–328. https://doi.org/10.1080/15622975.2017.1375556.

    Article  Google Scholar 

  103. Carrick DM, Black A, Gohagan JK, Khan A, Pettit K, Williams C, Yu K, Yurgalevitch S, Huang W-Y, Zhu C. The PLCO biorepository: creating, maintaining, and administering a unique biospecimen resource. Rev Recent Clin Trials. 2015;10:212–22. https://doi.org/10.2174/1574887110666150730121429.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Wells QS, Gupta DK, Smith JG, Collins SP, Storrow AB, Ferguson J, Smith ML, Pulley JM, Collier S, Wang X, et al. Accelerating biomarker discovery through electronic health records, automated biobanking, and proteomics. J Am Coll Cardiol. 2019;73:2195–205. https://doi.org/10.1016/j.jacc.2019.01.074.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Sachs N, de Ligt J, Kopper O, Gogola E, Bounova G, Weeber F, Balgobind AV, Wind K, Gracanin A, Begthel H, et al. A living biobank of breast cancer organoids captures disease heterogeneity. Cell. 2018;172:373-386.e10. https://doi.org/10.1016/j.cell.2017.11.010.

    Article  CAS  PubMed  Google Scholar 

  106. Calandrini C, Schutgens F, Oka R, Margaritis T, Candelli T, Mathijsen L, Ammerlaan C, van Ineveld RL, Derakhshan S, de Haan S, et al. An organoid biobank for childhood kidney cancers that captures disease and tissue heterogeneity. Nat Commun. 2020;11:1310. https://doi.org/10.1038/s41467-020-15155-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ibarrola-Villava M, Cervantes A, Bardelli A. Preclinical models for precision oncology. Biochim Biophys Acta Rev Cancer. 2018;1870:239–46. https://doi.org/10.1016/j.bbcan.2018.06.004.

    Article  CAS  PubMed  Google Scholar 

  108. Hayes BJ, Lewin HA, Goddard ME. The future of livestock breeding: genomic selection for efficiency, reduced emissions intensity, and adaptation. Trends Genet. 2013;29:206–14. https://doi.org/10.1016/j.tig.2012.11.009.

    Article  CAS  PubMed  Google Scholar 

  109. Blackburn HD. Biobanking genetic material for agricultural animal species. Annu Rev Anim Biosci. 2018;6:69–82. https://doi.org/10.1146/annurev-animal-030117-014603.

    Article  CAS  PubMed  Google Scholar 

  110. Comizzoli P. Biobanking efforts and new advances in male fertility preservation for rare and endangered species. Asian J Androl. 2015;17:640–5. https://doi.org/10.4103/1008-682X.153849.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Grimm D. From Bark to Bedside. Science. 2016;353:638–40. https://doi.org/10.1126/science.353.6300.638.

    Article  CAS  PubMed  Google Scholar 

  112. Harrell HL, Rothstein MA. Biobanking research and privacy laws in the United States. J Law Med Ethics J Am Soc Law Med Ethics. 2016;44:106–27. https://doi.org/10.1177/1073110516644203.

    Article  Google Scholar 

  113. Castelhano MG, Creevy KE, Mullins PF. How veterinary biobanking provides opportunities to accelerate research. J Am Vet Med Assoc. 2018;253:1243–4. https://doi.org/10.2460/javma.253.10.1243.

    Article  PubMed  Google Scholar 

  114. Milley KM, Nimmo JS, Bacci B, Ryan SD, Richardson SJ, Danks JA. DogMATIC–a remote biospecimen collection kit for biobanking. Biopreserv Biobank. 2015;13:247–54. https://doi.org/10.1089/bio.2014.0085.

    Article  CAS  PubMed  Google Scholar 

  115. Lequarré A-S, Andersson L, André C, Fredholm M, Hitte C, Leeb T, Lohi H, Lindblad-Toh K, Georges M. LUPA: a European initiative taking advantage of the canine genome architecture for unravelling complex disorders in both human and dogs. Vet J Lond Engl. 1997;2011(189):155–9. https://doi.org/10.1016/j.tvjl.2011.06.013.

    Article  Google Scholar 

  116. Capps B, Lederman Z. One health and paradigms of public biobanking. J Med Ethics. 2015;41:258–62. https://doi.org/10.1136/medethics-2013-101828.

    Article  PubMed  Google Scholar 

  117. Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB, Kamal M, Clamp M, Chang JL, Kulbokas EJ, Zody MC, et al. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature. 2005;438:803–19. https://doi.org/10.1038/nature04338.

    Article  CAS  PubMed  Google Scholar 

  118. Valenzuela M, Duncan T, Abey A, Johnson A, Boulamatsis C, Dalton MA, Jacobson E, Brunel L, Child G, Simpson D, et al. Autologous skin-derived neural precursor cell therapy reverses canine Alzheimer dementia-like syndrome in a proof of concept veterinary trial. Stem Cell Res Ther. 2022;13:1–20. https://doi.org/10.1186/s13287-022-02933-w.

    Article  CAS  Google Scholar 

  119. Pallotti S, Piras IS, Marchegiani A, Cerquetella M, Napolioni V. Dog-human translational genomics: state of the art and genomic resources. J Appl Genet. 2022. https://doi.org/10.1007/s13353-022-00721-z.

    Article  PubMed  Google Scholar 

  120. Grüntzig K, Graf R, Hässig M, Welle M, Meier D, Lott G, Erni D, Schenker NS, Guscetti F, Boo G, et al. The Swiss Canine Cancer Registry: a retrospective study on the occurrence of tumours in dogs in Switzerland from 1955 to 2008. J Comp Pathol. 2015;152:161–71. https://doi.org/10.1016/j.jcpa.2015.02.005.

    Article  PubMed  Google Scholar 

  121. Sándor S, Czeibert K, Salamon A, Kubinyi E. Man’s best friend in life and death: scientific perspectives and challenges of dog brain banking. GeroScience. 2021. https://doi.org/10.1007/s11357-021-00373-7.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Castelhano MGP, Acland GM, Ciccone PA, Corey EE, Mezey JG, Schimenti JC, Todhunter RJ. Development and use of DNA archives at veterinary teaching hospitals to investigate the genetic basis of disease in dogs. J Am Vet Med Assoc. 2009;234:75–80. https://doi.org/10.2460/javma.234.1.75.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Hayward JJ, Castelhano MG, Oliveira KC, Corey E, Balkman C, Baxter TL, Casal ML, Center SA, Fang M, Garrison SJ, et al. Complex disease and phenotype mapping in the domestic dog. Nat Commun. 2016;7:10460. https://doi.org/10.1038/ncomms10460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Todhunter RJ, Garrison SJ, Jordan J, Hunter L, Castelhano MG, Ash K, Meyers-Wallen V, Krotscheck U, Hayward JJ, Grenier J. Gene expression in hip soft tissues in incipient canine hip dysplasia and osteoarthritis. J Orthop Res. 2019;37:313–24. https://doi.org/10.1002/jor.24178.

    Article  CAS  PubMed  Google Scholar 

  125. Jiang L, Li Z, Hayward JJ, Hayashi K, Krotscheck U, Todhunter RJ, Tang Y, Huang M. Genomic prediction of two complex orthopedic traits across multiple pure and mixed breed dogs. Front Genet. 2021;12:666740. https://doi.org/10.3389/fgene.2021.666740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Mukai C, Choi E, Sams KL, Klampen EZ, Anguish L, Marks BA, Rice EJ, Wang Z, Choate LA, Chou S-P, et al. Chromatin run-on sequencing analysis finds that ECM Remodeling plays an important role in canine hemangiosarcoma pathogenesis. BMC Vet Res. 2020;16:206. https://doi.org/10.1186/s12917-020-02395-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Peralta S, McCleary-Wheeler AL, Duhamel GE, Heikinheimo K, Grenier JK. Ultra-Frequent HRAS p.Q61R somatic mutation in canine acanthomatous ameloblastoma reveals pathogenic similarities with human ameloblastoma. Vet Comp Oncol. 2019;17:439–45. https://doi.org/10.1111/vco.12487.

    Article  CAS  PubMed  Google Scholar 

  128. Peralta S, Duhamel GE, Katt WP, Heikinheimo K, Miller AD, Ahmed F, McCleary-Wheeler AL, Grenier JK. Comparative transcriptional profiling of canine acanthomatous ameloblastoma and homology with human ameloblastoma. Sci Rep. 2021;11:17792. https://doi.org/10.1038/s41598-021-97430-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The Dog Aging Project is supported by U19 grant AG057377 from the National Institute on Aging, part of the National Institutes of Health, and by private donations. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The Dog Aging Project thanks study participants, their dogs, and community veterinarians for their important contributions.

Dog Aging Project Consortium (as of February 2022)

Joshua M. Akey1, Brooke Benton2, Elhanan Borenstein3,4,5, Marta G. Castelhano6,7, Amanda E. Coleman8, Kate E. Creevy9, Kyle Crowder10,11, Matthew D. Dunbar11, Virginia R. Fajt12, Annette L. Fitzpatrick13,14,15, Unity Jeffery16, Erica C Jonlin2, 17, Matt Kaeberlein2, Elinor K. Karlsson18,19, Kathleen F. Kerr20, Jonathan M. Levine9, Jing Ma21, Robyn L McClelland20, Daniel E.L. Promislow2,22, Audrey Ruple23, Stephen M. Schwartz24,14, Sandi Shrager25, Noah Snyder-Mackler26,27,28, M. Katherine Tolbert9, Silvan R. Urfer2, Benjamin S. Wilfond29,30

1Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA

2Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA

3Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel

4Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel.

5Santa Fe Institute, Santa Fe, NM, USA

6Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA

7Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA

8Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA, USA

9Department of Small Animal Clinical Sciences, Texas A&M University College of Veterinary Medicine & Biomedical Sciences, College Station, TX, USA

10Department of Sociology, University of Washington, Seattle, WA, USA

11Center for Studies in Demography and Ecology, University of Washington, Seattle, WA, USA

12Department of Veterinary Physiology and Pharmacology, Texas A&M University College of Veterinary Medicine & Biomedical Sciences, College Station, TX, USA

13Department of Family Medicine, University of Washington, Seattle, WA, USA

14Department of Epidemiology, University of Washington, Seattle, WA, USA

15Department of Global Health, University of Washington, Seattle, WA, USA

16Department of Veterinary Pathobiology, Texas A&M University College of Veterinary Medicine & Biomedical Sciences, College Station, TX, USA

17Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA

18Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA

19Broad Institute of MIT and Harvard, Cambridge, MA, USA

20Department of Biostatistics, University of Washington, Seattle, WA, USA

21Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA

22Department of Biology, University of Washington, Seattle, WA, USA

23Department of Population Health Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA

24Epidemiology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA

25Collaborative Health Studies Coordinating Center, Department of Biostatistics, University of Washington, Seattle, WA, USA

26School of Life Sciences, Arizona State University, Tempe, AZ, USA

27Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA

28School for Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA

29Treuman Katz Center for Pediatric Bioethics, Seattle Children's Research Institute, Seattle, WA, USA

30Department of Pediatrics, Division of Bioethics and Palliative Care, University of Washington School of Medicine, Seattle, WA, USA

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to M. G. Castelhano.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A list of authors and their affiliations appear at the end of the paper.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

LaLonde-Paul, D., Mouttham, L., Dog Aging Project Consortium. et al. Banking on a new understanding: translational opportunities from veterinary biobanks. GeroScience 45, 1439–1450 (2023). https://doi.org/10.1007/s11357-023-00763-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-023-00763-z

Keywords

Navigation