Skip to main content
Log in

Cognition and brain health among older adults in Iceland: the AGES-Reykjavik study

  • Original Article
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

The paper aimed to compare how factors previously identified as predictive factors for cognitive decline and dementia related to cognitive performance on the one hand and brain health on the other. To that aim, multiple linear regression was applied to the AGES-Reykjavik study epidemiological data. Additionally, a regression analysis was performed for change in cognition over 5 years, using the same exposure factors. The study ran from 2002 to 2011, and the sample analyzed included 1707 participants between the ages of 66 and 90. The data contains MR imaging, cognitive testing, background data, and physiological measurements. Overall, we conclude that risk factors linked to dementia relate differently to cognition and brain health. Mobility, physical strength, alcohol consumption, coronary artery disease, and hypertension were associated with cognition and brain volume. Smoking, depression, diabetes, and body fat percentage were only associated with brain volume, not cognitive performance. Modifiable factors previously linked to cognitive reserve, such as educational attainment, participation in leisure activities, multilingualism and good self-reported health, were associated with cognitive function but did not relate to brain volume. These findings show that, within the same participant pool, cognitive reserve proxy variables have a relationship with cognitive performance but have no association with relative brain volume measured simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Depp CA, Harmell A, Vahia IV. Successful cognitive aging. In: Behavioral neurobiology of aging. 2011. pp. 35–50. https://doi.org/10.1007/7854_2011_158.

  2. World Health Organization. Risk reduction of cognitive decline and dementia: WHO guidelines. World Health Organization, Geneva, 2019. [Online]. Available: https://apps.who.int/iris/bitstream/handle/10665/312180/9789241550543-eng.pdf?sequence=1&isAllowed=y. Accessed 16 May 2019

  3. Cutler SJ. Worries about getting Alzheimer’s: who’s concerned? Am J Alzheimers Dis Other Demen. 2015;30(6):591–8. https://doi.org/10.1177/1533317514568889.

    Article  Google Scholar 

  4. Hongisto K, et al. Quality of Life in relation to neuropsychiatric symptoms in Alzheimer’s disease: 5-year prospective ALSOVA cohort study. Int J Geriatr Psychiatry. 2018;33(1):47–57. https://doi.org/10.1002/gps.4666.

    Article  Google Scholar 

  5. Alzheimer’s Association. 2015 Alzheimer’s disease facts and figures. Alzheimers Dement. 2015;11(3):332–384. https://doi.org/10.1016/j.jalz.2015.02.003.

  6. Barnett JH, Hachinski V, Blackwell AD. Cognitive health begins at conception: addressing dementia as a lifelong and preventable condition. BMC Med. 2013;11(1):246. https://doi.org/10.1186/1741-7015-11-246.

    Article  Google Scholar 

  7. Livingston G, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. The Lancet. 2020;396(10248):413–46. https://doi.org/10.1016/S0140-6736(20)30367-6.

    Article  Google Scholar 

  8. Smith GE, Bondi MW. Mild cognitive impairment and dementia: definitions, diagnosis, and treatment. Oxford, New York: Oxford University Press; 2013.

    Google Scholar 

  9. Zaninotto P, Batty GD, Allerhand M, Deary IJ. Cognitive function trajectories and their determinants in older people: 8 years of follow-up in the English Longitudinal Study of Ageing. J Epidemiol Community Health. 2018;72(8):685–94. https://doi.org/10.1136/jech-2017-210116.

    Article  Google Scholar 

  10. Chang M, et al. The effect of midlife physical activity on cognitive function among older adults: AGES—Reykjavik study. J Gerontol A Biol Sci Med Sci. 2010;65A(12):1369–74. https://doi.org/10.1093/gerona/glq152.

    Article  Google Scholar 

  11. Cunningham C, O’Sullivan R, Caserotti P, Tully MA. Consequences of physical inactivity in older adults: a systematic review of reviews and meta-analyses. Scand J Med Sci Sports. 2020;30(5):816–27. https://doi.org/10.1111/sms.13616.

    Article  Google Scholar 

  12. Won H, Abdul Manaf Z, Mat Ludin AF, Shahar S. Wide range of body composition measures are associated with cognitive function in community-dwelling older adults. Geriatr Gerontol Int. 2017;17(4):554–60. https://doi.org/10.1111/ggi.12753.

    Article  Google Scholar 

  13. Sindi S, et al. Sleep disturbances and dementia risk: a multicenter study. Alzheimers Dement. 2018;14(10):1235–42. https://doi.org/10.1016/j.jalz.2018.05.012.

    Article  Google Scholar 

  14. Walker KA, Power MC, Gottesman RF. Defining the relationship between hypertension, cognitive decline, and dementia: a review. Curr Hypertens Rep. 2017;19(3):24. https://doi.org/10.1007/s11906-017-0724-3.

    Article  Google Scholar 

  15. Feinkohl I, Price JF, Strachan MWJ, Frier BM. The impact of diabetes on cognitive decline: potential vascular, metabolic, and psychosocial risk factors. Alzheimers Res Ther. 2015;7(1):46. https://doi.org/10.1186/s13195-015-0130-5.

    Article  CAS  Google Scholar 

  16. Stefansdottir H, et al. Atrial fibrillation is associated with reduced brain volume and cognitive function independent of cerebral infarcts. Stroke. 2013;44(4):1020–5. https://doi.org/10.1161/STROKEAHA.12.679381.

    Article  Google Scholar 

  17. Abete P, et al. Cognitive impairment and cardiovascular diseases in the elderly. A heart–brain continuum hypothesis. Ageing Res Rev. 2014;18:41–52. https://doi.org/10.1016/j.arr.2014.07.003.

    Article  Google Scholar 

  18. Opdebeeck C, Martyr A, Clare L. Cognitive reserve and cognitive function in healthy older people: a meta-analysis. Aging Neuropsychol Cogn. 2016;23(1):40–60. https://doi.org/10.1080/13825585.2015.1041450.

    Article  Google Scholar 

  19. Clare L, et al. Potentially modifiable lifestyle factors, cognitive reserve, and cognitive function in later life: A cross-sectional study. PLoS Med. 2017;14(3): e1002259. https://doi.org/10.1371/journal.pmed.1002259.

    Article  Google Scholar 

  20. Saczynski JS, et al. White matter lesions and cognitive performance: the role of cognitively complex leisure activity. J Gerontol A Biol Sci Med Sci. 2008;63(8):848–54. https://doi.org/10.1093/gerona/63.8.848.

    Article  Google Scholar 

  21. Antoniou M. The advantages of bilingualism debate. Annu Rev Linguist. 2019;5(1):395–415. https://doi.org/10.1146/annurev-linguistics-011718-011820.

    Article  Google Scholar 

  22. Weiss J, Puterman E, Prather AA, Ware EB, Rehkopf DH. A data-driven prospective study of dementia among older adults in the United States. PLoS ONE. 2020;15(10): e0239994. https://doi.org/10.1371/journal.pone.0239994.

    Article  CAS  Google Scholar 

  23. Blankevoort CG, et al. Physical predictors of cognitive performance in healthy older adults: a cross-sectional analysis. PLoS One. 2013;8(7):e70799. https://doi.org/10.1371/journal.pone.0070799.

    Article  CAS  Google Scholar 

  24. Cooper R, et al. Objective measures of physical capability and subsequent health: a systematic review. Age Ageing. 2011;40(1):14–23. https://doi.org/10.1093/ageing/afq117.

    Article  Google Scholar 

  25. Scheltens P, et al. Alzheimer’s disease. The Lancet. 2016;388(10043):505–17. https://doi.org/10.1016/S0140-6736(15)01124-1.

    Article  CAS  Google Scholar 

  26. Bangen KJ, et al. Baseline white matter hyperintensities and hippocampal volume are associated with conversion from normal cognition to mild cognitive impairment in the Framingham offspring study. Alzheimer Dis Assoc Disord. 2018;32(1):50–6. https://doi.org/10.1097/WAD.0000000000000215.

    Article  Google Scholar 

  27. Gaser C, Franke K, Klöppel S, Koutsouleris N, Sauer H. BrainAGE in mild cognitive impaired patients: predicting the conversion to Alzheimer’s disease. PLoS ONE. 2013;8(6): e67346. https://doi.org/10.1371/journal.pone.0067346.

    Article  CAS  Google Scholar 

  28. Sigurdsson S, et al. Incidence of brain infarcts, cognitive change, and risk of dementia in the general population. Stroke. 2017;48(9):2353–60. https://doi.org/10.1161/STROKEAHA.117.017357.

    Article  Google Scholar 

  29. Cummings J, Lee G, Ritter A, Sabbagh M, Zhong K. Alzheimer’s disease drug development pipeline: 2019. Alzheimers Dement: Transl Res Clin Interv. 2019;5:272–93. https://doi.org/10.1016/j.trci.2019.05.008.

    Article  Google Scholar 

  30. Negash S, Bennett DA, Wilson RS, Schneider JA, Arnold SE. Cognition and neuropathology in aging: multidimensional perspectives from the rush religious orders study and rush memory and aging project. Curr Alzheimer Res. 2011;8(4):336–40.

    Article  CAS  Google Scholar 

  31. Ahmed RM, et al. Biomarkers in dementia: clinical utility and new directions. J Neurol Neurosurg Psychiatry. 2014;85(12):1426–34. https://doi.org/10.1136/jnnp-2014-307662.

    Article  CAS  Google Scholar 

  32. Lane CA, Hardy J, Schott JM. Alzheimer’s disease. Eur J Neurol. 2018;25(1):59–70. https://doi.org/10.1111/ene.13439.

    Article  CAS  Google Scholar 

  33. Veitch DP, et al. Understanding disease progression and improving Alzheimer’s disease clinical trials: recent highlights from the Alzheimer’s Disease Neuroimaging Initiative. Alzheimers Dement. 2019;15(1):106–52. https://doi.org/10.1016/j.jalz.2018.08.005.

    Article  Google Scholar 

  34. Cabeza R, et al. Maintenance, reserve and compensation: the cognitive neuroscience of healthy ageing. Nat Rev Neurosci. 2018;19(11):701–10. https://doi.org/10.1038/s41583-018-0068-2.

    Article  CAS  Google Scholar 

  35. Pettigrew C, Soldan A. Defining cognitive reserve and implications for cognitive aging. Curr Neurol Neurosci Rep. 2019;19(1):1–12. https://doi.org/10.1007/s11910-019-0917-z.

    Article  Google Scholar 

  36. Stern Y, et al. Whitepaper: defining and investigating cognitive reserve, brain reserve, and brain maintenance. Alzheimers Dement. 2020;16(9):1305–11. https://doi.org/10.1016/j.jalz.2018.07.219.

    Article  Google Scholar 

  37. Lee DH, et al. Effects of cognitive reserve in Alzheimer’s disease and cognitively unimpaired individuals. Front Aging Neurosci. 2021;13: 784054. https://doi.org/10.3389/fnagi.2021.784054.

    Article  Google Scholar 

  38. Groot C, et al. Differential effects of cognitive reserve and brain reserve on cognition in Alzheimer disease. Neurology. 2018;90(2):e149–56. https://doi.org/10.1212/WNL.0000000000004802.

    Article  Google Scholar 

  39. Harris TB, et al. Age, gene/environment susceptibility–reykjavik study: multidisciplinary applied phenomics. Am J Epidemiol. 2007;165(9):1076–87. https://doi.org/10.1093/aje/kwk115.

    Article  Google Scholar 

  40. Vidal J-S, et al. Coronary artery calcium, brain function and structure: the AGES-Reykjavik study. Stroke. 2010;41(5):891–7. https://doi.org/10.1161/STROKEAHA.110.579581.

    Article  Google Scholar 

  41. Delis DC, Kramer JH, Kaplan E, Ober BA. California Verbal Learning Test Manual - Adult Version (Research Edition). New York: The Psychological Corporation; 1987.

    Google Scholar 

  42. Wechsler DW. WAIS-III: Wechsler adult intelligence scale. Manual. New York: Psychological Corporation; 1955.

    Google Scholar 

  43. Salthouse TA, Babcock RL. Decomposing adult age differences in working memory. Dev Psychol. 1991;27(5):763–76.

    Article  Google Scholar 

  44. Stroop JR. Studies of interference in serial verbal reactions. J Exp Psychol. 1935;18(6):643–62. https://doi.org/10.1037/h0054651.

    Article  Google Scholar 

  45. Johnson W, te Nijenhuis J, Bouchard TJ. Still just 1 g: consistent results from five test batteries. Intelligence. 2008;36(1):81–95. https://doi.org/10.1016/j.intell.2007.06.001.

    Article  Google Scholar 

  46. Saczynski JS, et al. Cognitive impairment: an increasingly important complication of type 2 Diabetes The Age, Gene/Environment Susceptibility-Reykjavik Study. Am J Epidemiol. 2008;168(10):1132–9. https://doi.org/10.1093/aje/kwn228.

    Article  Google Scholar 

  47. Sigurdsson S, et al. Brain tissue volumes in the general population of the elderly The AGES-Reykjavik Study. Neuroimage. 2012;59(4):3862–70. https://doi.org/10.1016/j.neuroimage.2011.11.024.

    Article  Google Scholar 

  48. Grajauskas LA, Siu W, Medvedev G, Guo H, D’Arcy RCN, Song X. MRI-based evaluation of structural degeneration in the ageing brain: pathophysiology and assessment. Ageing Res Rev. 2019;49:67–82. https://doi.org/10.1016/j.arr.2018.11.004.

    Article  Google Scholar 

  49. Harper L, Barkhof F, Scheltens P, Schott JM, Fox NC. An algorithmic approach to structural imaging in dementia. J Neurol Neurosurg Psychiatry. 2014;85(6):692. https://doi.org/10.1136/jnnp-2013-306285.

    Article  Google Scholar 

  50. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodol). 1995;57(1):289–300.

    Google Scholar 

  51. McCarrey AC, An Y, Kitner-Triolo MH, Ferrucci L, Resnick SM. Sex differences in cognitive trajectories in clinically normal older adults. Psychol Aging. 2016;31(2):166–75. https://doi.org/10.1037/pag0000070.

    Article  Google Scholar 

  52. Singh-Manoux A, et al. Timing of onset of cognitive decline: results from Whitehall II prospective cohort study. BMJ. 2012;344:d7622. https://doi.org/10.1136/bmj.d7622.

    Article  Google Scholar 

  53. Podsiadlo D, Richardson S. The timed ‘Up & Go’: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc. 1991;39(2):142–8. https://doi.org/10.1111/j.1532-5415.1991.tb01616.x.

    Article  CAS  Google Scholar 

  54. Yesavage JA, et al. Development and validation of a geriatric depression screening scale: a preliminary report. J Psychiatr Res. 1982;17(1):37–49. https://doi.org/10.1016/0022-3956(82)90033-4.

    Article  Google Scholar 

  55. Dekhtyar S, Wang H-X, Scott K, Goodman A, Koupil I, Herlitz A. A life-course study of cognitive reserve in dementia—from childhood to old age. Am J Geriatr Psychiatry. 2015;23(9):885–96. https://doi.org/10.1016/j.jagp.2015.02.002.

    Article  Google Scholar 

  56. Muller M, et al. Birth size and brain function 75 years later. Pediatrics. 2014;134(4):761–70. https://doi.org/10.1542/peds.2014-1108.

    Article  Google Scholar 

  57. Kavé G, Eyal N, Shorek A, Cohen-Mansfield J. Multilingualism and cognitive state in the oldest old. Psychol Aging. 2008;23(1):70–8. https://doi.org/10.1037/0882-7974.23.1.70.

    Article  Google Scholar 

  58. Perquin M, et al. Lifelong exposure to multilingualism: new evidence to support cognitive reserve hypothesis. PLoS One. 2013;8(4):e62030. https://doi.org/10.1371/journal.pone.0062030.

    Article  CAS  Google Scholar 

  59. Bialystok E. The bilingual adaptation: how minds accommodate experience. Psychol Bull. 2017;143(3):233–62. https://doi.org/10.1037/bul0000099.

    Article  Google Scholar 

  60. Berggren R, Nilsson J, Brehmer Y, Schmiedek F, Lövdén M. Foreign language learning in older age does not improve memory or intelligence: evidence from a randomized controlled study. Psychol Aging. 2020;35(2):212–9. https://doi.org/10.1037/pag0000439.

    Article  Google Scholar 

  61. Klimova B. Learning a foreign language: a review on recent findings about its effect on the enhancement of cognitive functions among healthy older individuals. Front Hum Neurosci. 2018;12. https://doi.org/10.3389/fnhum.2018.00305.

  62. Wong PCM, et al. Language training leads to global cognitive improvement in older adults: a preliminary study. J Speech Lang Hear Res. 2019;62(7):2411–24. https://doi.org/10.1044/2019_JSLHR-L-18-0321.

    Article  Google Scholar 

  63. Whitley E, Deary IJ, Ritchie SJ, Batty GD, Kumari M, Benzeval M. Variations in cognitive abilities across the life course: cross-sectional evidence from Understanding Society: The UK Household Longitudinal Study. Intelligence. 2016;59:39–50. https://doi.org/10.1016/j.intell.2016.07.001.

    Article  Google Scholar 

  64. Karsazi H, Rezapour T, Kormi-Nouri R, Mottaghi A, Abdekhodaie E, Hatami J. The moderating effect of neuroticism and openness in the relationship between age and memory: implications for cognitive reserve. Personality Individ Differ. 2021;176: 110773. https://doi.org/10.1016/j.paid.2021.110773.

    Article  Google Scholar 

  65. Huang I-C, Lee JL, Ketheeswaran P, Jones CM, Revicki DA, Wu AW. Does personality affect health-related quality of life? A systematic review. PLoS ONE. 2017;12(3): e0173806. https://doi.org/10.1371/journal.pone.0173806.

    Article  CAS  Google Scholar 

  66. Levy BR, Slade MD, Pietrzak RH, Ferrucci L. When culture influences genes: positive age beliefs amplify the cognitive-aging benefit of APOE ε2. J Gerontol B Psychol Sci Soc Sci. 2020;75(8):e198–203. https://doi.org/10.1093/geronb/gbaa126.

    Article  Google Scholar 

  67. Xu H, et al. Association of lifespan cognitive reserve indicator with dementia risk in the presence of brain pathologies. JAMA Neurol. 2019;76(10):1184–91. https://doi.org/10.1001/jamaneurol.2019.2455.

    Article  Google Scholar 

  68. Ritchie SJ, et al. Predictors of ageing-related decline across multiple cognitive functions. Intelligence. 2016;59:115–26. https://doi.org/10.1016/j.intell.2016.08.007.

    Article  Google Scholar 

  69. Salthouse TA. Correlates of cognitive change. J Exp Psychol Gen. 2014;143(3):1026–48. https://doi.org/10.1037/a0034847.

    Article  Google Scholar 

  70. Seblova D, Berggren R, Lövdén M. Education and age-related decline in cognitive performance: systematic review and meta-analysis of longitudinal cohort studies. Ageing Res Rev. 2020;58: 101005. https://doi.org/10.1016/j.arr.2019.101005.

    Article  CAS  Google Scholar 

  71. Oschwald J, et al. Brain structure and cognitive ability in healthy aging: a review on longitudinal correlated change. Rev Neurosci. 2020;31(1):1–57. https://doi.org/10.1515/revneuro-2018-0096.

    Article  Google Scholar 

  72. Freeman SH, et al. Preservation of neuronal number despite age-related cortical brain atrophy in elderly subjects without Alzheimer disease. J Neuropathol Exp Neurol. 2008;67(12):1205–12. https://doi.org/10.1097/NEN.0b013e31818fc72f.

    Article  Google Scholar 

  73. Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E. Alzheimer’s disease. The Lancet. 2011;377(9770):1019–31. https://doi.org/10.1016/S0140-6736(10)61349-9.

    Article  Google Scholar 

  74. Ferencz B, Gerritsen L. Genetics and underlying pathology of dementia. Neuropsychol Rev. 2015;25(1):113–24. https://doi.org/10.1007/s11065-014-9276-3.

    Article  Google Scholar 

  75. Kivipelto M, Mangialasche F, Ngandu T. Lifestyle interventions to prevent cognitive impairment, dementia and Alzheimer disease. Nat Rev Neurol. 2018;14(11):653–66. https://doi.org/10.1038/s41582-018-0070-3.

    Article  Google Scholar 

  76. Angebrandt A, et al. Dose-dependent relationship between social drinking and brain aging. Neurobiol Aging. 2022;111:71–81. https://doi.org/10.1016/j.neurobiolaging.2021.11.008.

    Article  Google Scholar 

  77. Davis BJK, et al. The alcohol paradox: light-to-moderate alcohol consumption, cognitive function, and brain volume. J Gerontol A Biol Sci Med Sci. 2014;69(12):1528–35. https://doi.org/10.1093/gerona/glu092.

    Article  CAS  Google Scholar 

  78. Topiwala A, Ebmeier KP. Effects of drinking on late-life brain and cognition. Evid Based Mental Health. 2018;21(1):12–5. https://doi.org/10.1136/eb-2017-102820.

    Article  Google Scholar 

  79. Yarkoni T, Westfall J. Choosing prediction over explanation in psychology: lessons from machine learning. Perspect Psychol Sci. 2017;12(6):1100–22. https://doi.org/10.1177/1745691617693393.

    Article  Google Scholar 

Download references

Funding

This work was supported by The Foundation of St. Josef’s Hospital in cooperation with The Icelandic Gerontological Research Center, National University Hospital of Iceland. The AGES-Reykjavik study was supported by the National Institutes of Health (Intramural Research Programs of the National Institute of Aging and the National Eye Institute, ZIAEY00401), National Institutes of Health contract number N01-AG-1–2100, the Icelandic Heart Association, and the Icelandic Parliament.

Additional grants were provided by Landspítali – University Hospital Research Fund, the Icelandic Gerontological Society, the Council on Aging in Iceland, Helga Jónsdóttir and Sigurliði Kristjánsson Memorial Fund, and the Sustainability Institute and Forum (SIF) at Reykjavik University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vaka Valsdóttir.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 40 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valsdóttir, V., Magnúsdóttir, B.B., Chang, M. et al. Cognition and brain health among older adults in Iceland: the AGES-Reykjavik study. GeroScience 44, 2785–2800 (2022). https://doi.org/10.1007/s11357-022-00642-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-022-00642-z

Keywords

Navigation