Advertisement

GeroScience

, Volume 41, Issue 2, pp 185–208 | Cite as

Central IGF-1 protects against features of cognitive and sensorimotor decline with aging in male mice

  • Gabriela E. Farias Quipildor
  • Kai Mao
  • Zunju Hu
  • Ardijana Novaj
  • Min-Hui Cui
  • Maria Gulinello
  • Craig A. Branch
  • Sriram Gubbi
  • Khushbu Patel
  • Douglas R. Moellering
  • Stefano Tarantini
  • Tamas Kiss
  • Andriy Yabluchanskiy
  • Zoltan Ungvari
  • William E. Sonntag
  • Derek M. HuffmanEmail author
Original Article

Abstract

Disruptions in growth hormone/insulin-like growth factor-1 (GH/IGF-1) signaling have been linked to improved longevity in mice and humans. Nevertheless, while IGF-1 levels are associated with increased cancer risk, they have been paradoxically implicated with protection from other age-related conditions, particularly in the brain, suggesting that strategies aimed at selectively increasing central IGF-1 action may have favorable effects on aging. To test this hypothesis, we generated inducible, brain-specific (TRE-IGF-1 × Camk2a-tTA) IGF-1 (bIGF-1) overexpression mice and studied effects on healthspan. Doxycycline was removed from the diet at 12 weeks old to permit post-development brain IGF-1 overexpression, and animals were monitored up to 24 months. Brain IGF-1 levels were increased approximately twofold in bIGF-1 mice, along with greater brain weights, volume, and myelin density (P < 0.05). Age-related changes in rotarod performance, exercise capacity, depressive-like behavior, and hippocampal gliosis were all attenuated specifically in bIGF-1 male mice (P < 0.05). However, chronic brain IGF-1 failed to prevent declines in cognitive function or neurovascular coupling. Therefore, we performed a short-term intranasal (IN) treatment of either IGF-1 or saline in 24-month-old male C57BL/6 mice and found that IN IGF-1 treatment tended to reduce depressive (P = 0.09) and anxiety-like behavior (P = 0.08) and improve motor coordination (P = 0.07) and unlike transgenic mice improved motor learning (P < 0.05) and visuospatial and working memory (P < 0.05). These data highlight important sex differences in how brain IGF-1 action impacts healthspan and suggest that translational approaches that target IGF-1 centrally can restore cognitive function, a possibility that should be explored as a strategy to combat age-related cognitive decline.

Keywords

IGF-1 Aging Brain Intransasal Healthspan Cognitive function Cognitive and sensorimotor decline 

Notes

Acknowledgements

This work was supported by R00 AG037574, the American Federation for Aging Research (AFAR), and Einstein Startup Funds to D.M.H. This work was also supported by the Einstein Nathan Shock Center (P30 AG038072) and the Einstein-Sinai Diabetes Research Center (P30 DK020541). We would also like to acknowledge support from the NCI supported Einstein Cancer Center (P30 CA013330). This work was also supported by R01 AG055395 and R01 NS100782 to Z.U. and R01 AG 038747 and R01 NS 056218 to W.E.S. Mitochondrial assays were performed with assistance from the UAB Diabetes Research Center BARB Core (P30 DK079626). Einstein Analytical Imaging Core were supported by NIH SIG awards (no. 1S10OD019961-01; 1S10OD023591-01). We would also like to acknowledge Vera DesMarais and Hillary Guzik for expert advice/assistance in microscopy and software analysis. Finally, we would like to thank Drs. Pinchas Cohen and Junxiang Wan in the USC Aging Biomarker Core for technical advice and assistance with IGF-1 assays.

Author contribution

GEFQ, MHC, CAB, ZU, MG, WES, and DMH designed the experiments. GEFQ, KM, ZH, AN, MHC, KP, DRM, ST, TK, and AY performed the experiments. GEFQ, ZH, MHC, CAB, KP, DRM, ZU, and DMH analyzed and interpreted the data. GEFQ, ZU, and DMH wrote the manuscript and SG, WES, ST, TK, AY, and MHC revised the paper.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

11357_2019_65_MOESM1_ESM.pdf (2.8 mb)
ESM 1 (PDF 2885 kb)

References

  1. Al-Delaimy WK, von Muhlen D, Barrett-Connor E (2009) Insulinlike growth factor-1, insulinlike growth factor binding protein-1, and cognitive function in older men and women. J Am Geriatr Soc 57:1441–1446.  https://doi.org/10.1111/j.1532-5415.2009.02343.x CrossRefGoogle Scholar
  2. Arwert LI, Deijen JB, Drent ML (2005) The relation between insulin-like growth factor I levels and cognition in healthy elderly: a meta-analysis. Growth Hormon IGF Res 15:416–422.  https://doi.org/10.1016/j.ghir.2005.09.001 CrossRefGoogle Scholar
  3. Ashpole NM, Logan S, Yabluchanskiy A, Mitschelen MC, Yan H, Farley JA, Hodges EL, Ungvari Z, Csiszar A, Chen S, Georgescu C, Hubbard GB, Ikeno Y, Sonntag WE (2017) IGF-1 has sexually dimorphic, pleiotropic, and time-dependent effects on healthspan, pathology, and lifespan. Geroscience 39:129–145.  https://doi.org/10.1007/s11357-017-9971-0 CrossRefGoogle Scholar
  4. Bai J, Trinh TL, Chuang KH, Qiu A (2012) Atlas-based automatic mouse brain image segmentation revisited: model complexity vs. image registration. Magn Reson Imaging 30:789–798.  https://doi.org/10.1016/j.mri.2012.02.010 CrossRefGoogle Scholar
  5. Bartke A, Chandrashekar V, Dominici F, Turyn D, Kinney B, Steger R, Kopchick JJ (2003) Insulin-like growth factor 1 (IGF-1) and aging: controversies and new insights. Biogerontology 4:1–8CrossRefGoogle Scholar
  6. Barzilai N, Huffman DM, Muzumdar RH, Bartke A (2012) The critical role of metabolic pathways in aging. Diabetes 61:1315–1322.  https://doi.org/10.2337/db11-1300 CrossRefGoogle Scholar
  7. Betik AC, Hepple RT (2008) Determinants of VO2 max decline with aging: an integrated perspective. Appl Physiol Nutr Metab 33:130–140.  https://doi.org/10.1139/H07-174 CrossRefGoogle Scholar
  8. Bitto A, Lerner C, Torres C, Roell M, Malaguti M, Perez V, Lorenzini A, Hrelia S, Ikeno Y, Matzko ME, McCarter R, Sell C (2010) Long-term IGF-I exposure decreases autophagy and cell viability. PLoS One 5:e12592.  https://doi.org/10.1371/journal.pone.0012592 CrossRefGoogle Scholar
  9. Bokov AF, Garg N, Ikeno Y, Thakur S, Musi N, DeFronzo RA, Zhang N, Erickson RC, Gelfond J, Hubbard GB, Adamo ML, Richardson A (2011) Does reduced IGF-1R signaling in Igf1r+/− mice alter aging? PLoS One 6:e26891.  https://doi.org/10.1371/journal.pone.0026891 CrossRefGoogle Scholar
  10. Bot M, Milaneschi Y, Penninx BW, Drent ML (2016) Plasma insulin-like growth factor I levels are higher in depressive and anxiety disorders, but lower in antidepressant medication users. Psychoneuroendocrinology 68:148–155.  https://doi.org/10.1016/j.psyneuen.2016.02.028 CrossRefGoogle Scholar
  11. Boveris A, Oshino N, Chance B (1972) The cellular production of hydrogen peroxide. Biochem J 128:617–630CrossRefGoogle Scholar
  12. Cai Z, Fan LW, Lin S, Pang Y, Rhodes PG (2011) Intranasal administration of insulin-like growth factor-1 protects against lipopolysaccharide-induced injury in the developing rat brain. Neuroscience 194:195–207.  https://doi.org/10.1016/j.neuroscience.2011.08.003 CrossRefGoogle Scholar
  13. Cantanelli P, Sperduti S, Ciavardelli D, Stuppia L, Gatta V, Sensi SL (2014) Age-dependent modifications of AMPA receptor subunit expression levels and related cognitive effects in 3xTg-AD mice. Front Aging Neurosci 6:200.  https://doi.org/10.3389/fnagi.2014.00200 CrossRefGoogle Scholar
  14. Carlson SW, Saatman KE (2018) Central infusion of insulin-like growth factor-1 increases hippocampal neurogenesis and improves neurobehavioral function after traumatic brain injury. J Neurotrauma 35:1467–1480.  https://doi.org/10.1089/neu.2017.5374 CrossRefGoogle Scholar
  15. Carro E, Spuch C, Trejo JL, Antequera D, Torres-Aleman I (2005) Choroid plexus megalin is involved in neuroprotection by serum insulin-like growth factor I. J Neurosci 25:10884–10893.  https://doi.org/10.1523/JNEUROSCI.2909-05.2005 CrossRefGoogle Scholar
  16. Chigogora S, Zaninotto P, Kivimaki M, Steptoe A, Batty GD (2016) Insulin-like growth factor 1 and risk of depression in older people: the English Longitudinal Study of Ageing. Transl Psychiatry 6:e898.  https://doi.org/10.1038/tp.2016.167 CrossRefGoogle Scholar
  17. Clancy DJ, Gems D, Harshman LG, Oldham S, Stocker H, Hafen E, Leevers SJ, Partridge L (2001) Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science 292:104–106.  https://doi.org/10.1126/science.1057991 CrossRefGoogle Scholar
  18. Claxton A, Baker LD, Hanson A, Trittschuh EH, Cholerton B, Morgan A, Callaghan M, Arbuckle M, Behl C, Craft S (2015) Long-acting intranasal insulin detemir improves cognition for adults with mild cognitive impairment or early-stage Alzheimer's disease dementia. J Alzheimers Dis 44:897–906.  https://doi.org/10.3233/JAD-141791 CrossRefGoogle Scholar
  19. Cohen E, Paulsson JF, Blinder P, Burstyn-Cohen T, du D, Estepa G, Adame A, Pham HM, Holzenberger M, Kelly JW, Masliah E, Dillin A (2009) Reduced IGF-1 signaling delays age-associated proteotoxicity in mice. Cell 139:1157–1169.  https://doi.org/10.1016/j.cell.2009.11.014 CrossRefGoogle Scholar
  20. Craft S, Claxton A, Baker LD, Hanson AJ, Cholerton B, Trittschuh EH, Dahl D, Caulder E, Neth B, Montine TJ, Jung Y, Maldjian J, Whitlow C, Friedman S (2017) Effects of regular and long-acting insulin on cognition and Alzheimer's disease biomarkers: a pilot clinical trial. J Alzheimers Dis 57:1325–1334.  https://doi.org/10.3233/JAD-161256 CrossRefGoogle Scholar
  21. Cui MH, Suzuka SM, Branch NA, Ambadipudi K, Thangaswamy S, Acharya SA, Billett HH, Branch CA (2017) Brain neurochemical and hemodynamic findings in the NY1DD mouse model of mild sickle cell disease. NMR Biomed 30.  https://doi.org/10.1002/nbm.3692
  22. Doi T, Shimada H, Makizako H, Tsutsumimoto K, Hotta R, Nakakubo S, Suzuki T (2015) Association of insulin-like growth factor-1 with mild cognitive impairment and slow gait speed. Neurobiol Aging 36:942–947.  https://doi.org/10.1016/j.neurobiolaging.2014.10.035 CrossRefGoogle Scholar
  23. Duman CH, Schlesinger L, Terwilliger R, Russell DS, Newton SS, Duman RS (2009) Peripheral insulin-like growth factor-I produces antidepressant-like behavior and contributes to the effect of exercise. Behav Brain Res 198:366–371.  https://doi.org/10.1016/j.bbr.2008.11.016 CrossRefGoogle Scholar
  24. Emeny RT, Bidlingmaier M, Lacruz ME, Linkohr B, Peters A, Reincke M, Ladwig KH (2014) Mind over hormones: sex differences in associations of well-being with IGF-I, IGFBP-3 and physical activity in the KORA-Age study. Exp Gerontol 59:58–64.  https://doi.org/10.1016/j.exger.2014.08.001 CrossRefGoogle Scholar
  25. Fernandez AM, Torres-Aleman I (2012) The many faces of insulin-like peptide signalling in the brain. Nat Rev Neurosci 13:225–239.  https://doi.org/10.1038/nrn3209 CrossRefGoogle Scholar
  26. Fetterman JL, Zelickson BR, Johnson LW, Moellering DR, Westbrook DG, Pompilius M, Sammy MJ, Johnson M, Dunham-Snary KJ, Cao X, Bradley WE, Zhang J, Wei CC, Chacko B, Schurr TG, Kesterson RA, Dell’italia LJ, Darley-Usmar VM, Welch DR, Ballinger SW (2013) Mitochondrial genetic background modulates bioenergetics and susceptibility to acute cardiac volume overload. Biochem J 455:157–167.  https://doi.org/10.1042/BJ20130029 CrossRefGoogle Scholar
  27. Frater J, Lie D, Bartlett P, McGrath JJ (2017) Insulin-like growth factor 1 (IGF-1) as a marker of cognitive decline in normal ageing: a review. Ageing Res Rev 42:14–27.  https://doi.org/10.1016/j.arr.2017.12.002 CrossRefGoogle Scholar
  28. Freude S, Hettich MM, Schumann C, Stöhr O, Koch L, Köhler C, Udelhoven M, Leeser U, Müller M, Kubota N, Kadowaki T, Krone W, Schröder H, Brüning JC, Schubert M (2009) Neuronal IGF-1 resistance reduces Abeta accumulation and protects against premature death in a model of Alzheimer's disease. FASEB J 23:3315–3324.  https://doi.org/10.1096/fj.09-132043 CrossRefGoogle Scholar
  29. Garwood M, DelaBarre L (2001) The return of the frequency sweep: designing adiabatic pulses for contemporary NMR. J Magn Reson 153:155–177.  https://doi.org/10.1006/jmre.2001.2340 CrossRefGoogle Scholar
  30. Gontier G, George C, Chaker Z, Holzenberger M, Aid S (2015) Blocking IGF signaling in adult neurons alleviates Alzheimer's disease pathology through amyloid-beta clearance. J Neurosci Off J Soc Neurosci 35:11500–11513.  https://doi.org/10.1523/JNEUROSCI.0343-15.2015 CrossRefGoogle Scholar
  31. Gubbi S, Quipildor GF, Barzilai N, Huffman DM, Milman S (2018) 40 years of IGF1: IGF1: the Jekyll and Hyde of the aging brain. J Mol Endocrinol 61:T171–T185.  https://doi.org/10.1530/JME-18-0093 CrossRefGoogle Scholar
  32. Hanson LR, Fine JM, Svitak AL, Faltesek KA (2013) Intranasal administration of CNS therapeutics to awake mice. J Vis Exp.  https://doi.org/10.3791/4440
  33. Hara Y, Punsoni M, Yuk F, Park CS, Janssen WG, Rapp PR, Morrison JH (2012) Synaptic distributions of GluA2 and PKMzeta in the monkey dentate gyrus and their relationships with aging and memory. J Neurosci 32:7336–7344.  https://doi.org/10.1523/JNEUROSCI.0605-12.2012 CrossRefGoogle Scholar
  34. Hinkle PC, Butow RA, Racker E, Chance B (1967) Partial resolution of the enzymes catalyzing oxidative phosphorylation. XV. Reverse electron transfer in the flavin-cytochrome beta region of the respiratory chain of beef heart submitochondrial particles. J Biol Chem 242:5169–5173Google Scholar
  35. Holzenberger M, Dupont J, Ducos B, Leneuve P, Géloën A, Even PC, Cervera P, le Bouc Y (2003) IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 421:182–187.  https://doi.org/10.1038/nature01298 CrossRefGoogle Scholar
  36. Hoppeler H (1986) Exercise-induced ultrastructural changes in skeletal muscle. Int J Sports Med 7:187–204.  https://doi.org/10.1055/s-2008-1025758 CrossRefGoogle Scholar
  37. Hoshaw BA, Malberg JE, Lucki I (2005) Central administration of IGF-I and BDNF leads to long-lasting antidepressant-like effects. Brain Res 1037:204–208.  https://doi.org/10.1016/j.brainres.2005.01.007 CrossRefGoogle Scholar
  38. Huffman DM, Moellering DR, Grizzle WE, Stockard CR, Johnson MS, Nagy TR (2008) Effect of exercise and calorie restriction on biomarkers of aging in mice. Am J Physiol Regul Integr Comp Physiol 294:R1618–R1627.  https://doi.org/10.1152/ajpregu.00890.2007 CrossRefGoogle Scholar
  39. Huffman DM, Farias Quipildor G, Mao K, Zhang X, Wan J, Apontes P, Cohen P, Barzilai N (2016) Central insulin-like growth factor-1 (IGF-1) restores whole-body insulin action in a model of age-related insulin resistance and IGF-1 decline. Aging Cell 15:181–186.  https://doi.org/10.1111/acel.12415 CrossRefGoogle Scholar
  40. Jones DK, Lythgoe D, Horsfield MA, Simmons A, Williams SC, Markus HS (1999) Characterization of white matter damage in ischemic leukoaraiosis with diffusion tensor MRI. Stroke 30:393–397CrossRefGoogle Scholar
  41. Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R (1993) A C. elegans mutant that lives twice as long as wild type. Nature 366:461–464.  https://doi.org/10.1038/366461a0 CrossRefGoogle Scholar
  42. Krzywanski DM, Moellering DR, Westbrook DG, Dunham-Snary KJ, Brown J, Bray AW, Feeley KP, Sammy MJ, Smith MR, Schurr TG, Vita JA, Ambalavanan N, Calhoun D, Dell’Italia L, Ballinger SW (2016) Endothelial cell bioenergetics and mitochondrial DNA damage differ in humans having African or west Eurasian maternal ancestry. Circ Cardiovasc Genet 9:26–36.  https://doi.org/10.1161/CIRCGENETICS.115.001308 CrossRefGoogle Scholar
  43. Lichtenwalner RJ, Forbes ME, Bennett SA, Lynch CD, Sonntag WE, Riddle DR (2001) Intracerebroventricular infusion of insulin-like growth factor-I ameliorates the age-related decline in hippocampal neurogenesis. Neuroscience 107:603–613CrossRefGoogle Scholar
  44. Lindsey JD, Landfield PW, Lynch G (1979) Early onset and topographical distribution of hypertrophied astrocytes in hippocampus of aging rats: a quantitative study. J Gerontol 34:661–671CrossRefGoogle Scholar
  45. Lopes C, Ribeiro M, Duarte AI, Humbert S, Saudou F, Pereira de Almeida L, Hayden M, Rego AC (2014) IGF-1 intranasal administration rescues Huntington's disease phenotypes in YAC128 mice. Mol Neurobiol 49:1126–1142.  https://doi.org/10.1007/s12035-013-8585-5 CrossRefGoogle Scholar
  46. Madathil SK, Carlson SW, Brelsfoard JM, Ye P, D'Ercole AJ, Saatman KE (2013) Astrocyte-specific overexpression of insulin-like growth factor-1 protects hippocampal neurons and reduces behavioral deficits following traumatic brain injury in mice. PLoS One 8:e67204.  https://doi.org/10.1371/journal.pone.0067204 CrossRefGoogle Scholar
  47. Maimaiti S, Anderson KL, DeMoll C, Brewer LD, Rauh BA, Gant JC, Blalock EM, Porter NM, Thibault O (2016) Intranasal insulin improves age-related cognitive deficits and reverses electrophysiological correlates of brain aging. J Gerontol A Biol Sci Med Sci 71:30–39.  https://doi.org/10.1093/gerona/glu314 CrossRefGoogle Scholar
  48. Malberg JE, Platt B, Rizzo SJ, Ring RH, Lucki I, Schechter LE, Rosenzweig-Lipson S (2007) Increasing the levels of insulin-like growth factor-I by an IGF binding protein inhibitor produces anxiolytic and antidepressant-like effects. Neuropsychopharmacology 32:2360–2368.  https://doi.org/10.1038/sj.npp.1301358 CrossRefGoogle Scholar
  49. Mao YF, Guo Z, Zheng T, Jiang Y, Yan Y, Yin X, Chen Y, Zhang B (2016) Intranasal insulin alleviates cognitive deficits and amyloid pathology in young adult APPswe/PS1dE9 mice. Aging Cell 15:893–902.  https://doi.org/10.1111/acel.12498 CrossRefGoogle Scholar
  50. Mao K, Quipildor GF, Tabrizian T, Novaj A, Guan F, Walters RO, Delahaye F, Hubbard GB, Ikeno Y, Ejima K, Li P, Allison DB, Salimi-Moosavi H, Beltran PJ, Cohen P, Barzilai N, Huffman DM (2018) Late-life targeting of the IGF-1 receptor improves healthspan and lifespan in female mice. Nat Commun 9:2394.  https://doi.org/10.1038/s41467-018-04805-5 CrossRefGoogle Scholar
  51. Markowska AL, Mooney M, Sonntag WE (1998) Insulin-like growth factor-1 ameliorates age-related behavioral deficits. Neuroscience 87:559–569CrossRefGoogle Scholar
  52. Milman S, Atzmon G, Huffman DM, Wan J, Crandall JP, Cohen P, Barzilai N (2014) Low insulin-like growth factor-1 level predicts survival in humans with exceptional longevity. Aging Cell 13:769–771.  https://doi.org/10.1111/acel.12213 CrossRefGoogle Scholar
  53. Milman S, Huffman DM, Barzilai N (2016) The somatotropic axis in human aging: framework for the current state of knowledge and future research. Cell Metab 23:980–989.  https://doi.org/10.1016/j.cmet.2016.05.014 CrossRefGoogle Scholar
  54. Moll L, Ben-Gedalya T, Reuveni H, Cohen E (2016) The inhibition of IGF-1 signaling promotes proteostasis by enhancing protein aggregation and deposition. FASEB J 30:1656–1669.  https://doi.org/10.1096/fj.15-281675 CrossRefGoogle Scholar
  55. Moreno RJ, Messi ML, Zheng Z, Wang ZM, Ye P, D'Ercole JA, Delbono O (2006) Role of sustained overexpression of central nervous system IGF-I in the age-dependent decline of mouse excitation-contraction coupling. J Membr Biol 212:147–161.  https://doi.org/10.1007/s00232-006-0044-z CrossRefGoogle Scholar
  56. Muller AP, Fernandez AM, Haas C, Zimmer E, Portela LV, Torres-Aleman I (2012) Reduced brain insulin-like growth factor I function during aging. Mol Cell Neurosci 49:9–12.  https://doi.org/10.1016/j.mcn.2011.07.008 CrossRefGoogle Scholar
  57. Munive V, Santi A, Torres-Aleman I (2016) A concerted action of estradiol and insulin like growth factor I underlies sex differences in mood regulation by exercise. Sci Rep 6:25969.  https://doi.org/10.1038/srep25969 CrossRefGoogle Scholar
  58. Nishijima T, Piriz J, Duflot S, Fernandez AM, Gaitan G, Gomez-Pinedo U, Verdugo JMG, Leroy F, Soya H, Nuñez A, Torres-Aleman I (2010) Neuronal activity drives localized blood-brain-barrier transport of serum insulin-like growth factor-I into the CNS. Neuron 67:834–846.  https://doi.org/10.1016/j.neuron.2010.08.007 CrossRefGoogle Scholar
  59. Ogg RJ, Kingsley PB, Taylor JS (1994) WET, a T1- and B1-insensitive water-suppression method for in vivo localized 1H NMR spectroscopy. J Magn Reson B 104:1–10CrossRefGoogle Scholar
  60. Pardo J, Uriarte M, Console GM, Reggiani PC, Outeiro TF, Morel GR, Goya RG (2016) Insulin-like growth factor-I gene therapy increases hippocampal neurogenesis, astrocyte branching and improves spatial memory in female aging rats. Eur J Neurosci 44:2120–2128.  https://doi.org/10.1111/ejn.13278 CrossRefGoogle Scholar
  61. Pardo J, Abba MC, Lacunza E, Ogundele OM, Paiva I, Morel GR, Outeiro TF, Goya RG (2018) IGF-I gene therapy in aging rats modulates hippocampal genes relevant to memory function. J Gerontol A Biol Sci Med Sci 73:459–467.  https://doi.org/10.1093/gerona/glx125 CrossRefGoogle Scholar
  62. Park SE, Dantzer R, Kelley KW, McCusker RH (2011) Central administration of insulin-like growth factor-I decreases depressive-like behavior and brain cytokine expression in mice. J Neuroinflammation 8:12.  https://doi.org/10.1186/1742-2094-8-12 CrossRefGoogle Scholar
  63. Payne AM, Messi ML, Zheng Z, Delbono O (2007) Motor neuron targeting of IGF-1 attenuates age-related external Ca2+-dependent skeletal muscle contraction in senescent mice. Exp Gerontol 42:309–319.  https://doi.org/10.1016/j.exger.2006.11.003 CrossRefGoogle Scholar
  64. Perez-Martin M, Cifuentes M, Grondona JM, Lopez-Avalos MD, Gomez-Pinedo U, Garcia-Verdugo JM, Fernandez-Llebrez P (2010) IGF-I stimulates neurogenesis in the hypothalamus of adult rats. Eur J Neurosci 31:1533–1548.  https://doi.org/10.1111/j.1460-9568.2010.07220.x Google Scholar
  65. Perice L, Barzilai N, Verghese J, Weiss EF, Holtzer R, Cohen P, Milman S (2016) Lower circulating insulin-like growth factor-I is associated with better cognition in females with exceptional longevity without compromise to muscle mass and function. Aging (Albany NY) 8:2414–2424.  https://doi.org/10.18632/aging.101063 CrossRefGoogle Scholar
  66. Provencher SW (2001) Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR Biomed 14:260–264.  https://doi.org/10.1002/nbm 698 [pii]CrossRefGoogle Scholar
  67. Puig KL, Kulas JA, Franklin W, Rakoczy SG, Taglialatela G, Brown-Borg HM, Combs CK (2016) The Ames dwarf mutation attenuates Alzheimer's disease phenotype of APP/PS1 mice. Neurobiol Aging 40:22–40.  https://doi.org/10.1016/j.neurobiolaging.2015.12.021 CrossRefGoogle Scholar
  68. Raha S, McEachern GE, Myint AT, Robinson BH (2000) Superoxides from mitochondrial complex III: the role of manganese superoxide dismutase. Free Radic Biol Med 29:170–180CrossRefGoogle Scholar
  69. Rasmussen HN, Andersen AJ, Rasmussen UF (1997) Optimization of preparation of mitochondria from 25-100 mg skeletal muscle. Anal Biochem 252:153–159.  https://doi.org/10.1006/abio.1997.2304 CrossRefGoogle Scholar
  70. Saber H, Himali JJ, Beiser AS, Shoamanesh A, Pikula A, Roubenoff R, Romero JR, Kase CS, Vasan RS, Seshadri S (2017) Serum insulin-like growth factor 1 and the risk of ischemic stroke: the Framingham study. Stroke 48:1760–1765.  https://doi.org/10.1161/STROKEAHA.116.016563 CrossRefGoogle Scholar
  71. Schilling C, Blum WF, Heuser I, Paslakis G, Wudy SA, Deuschle M (2011) Treatment with antidepressants increases insulin-like growth factor-I in cerebrospinal fluid. J Clin Psychopharmacol 31:390–392.  https://doi.org/10.1097/JCP.0b013e3182189d86 CrossRefGoogle Scholar
  72. Sievers C, Auer MK, Klotsche J, Athanasoulia AP, Schneider HJ, Nauck M, Völzke H, John U, Schulz A, Freyberger HJ, Friedrich N, Biffar R, Stalla GK, Wallaschofski H, Grabe HJ (2014) IGF-I levels and depressive disorders: results from the Study of Health in Pomerania (SHIP). Eur Neuropsychopharmacol 24:890–896.  https://doi.org/10.1016/j.euroneuro.2014.01.008 CrossRefGoogle Scholar
  73. Sonntag WE, Deak F, Ashpole N, Toth P, Csiszar A, Freeman W, Ungvari Z (2013) Insulin-like growth factor-1 in CNS and cerebrovascular aging. Front Aging Neurosci 5:27.  https://doi.org/10.3389/fnagi.2013.00027 CrossRefGoogle Scholar
  74. Suh Y, Atzmon G, Cho MO, Hwang D, Liu B, Leahy DJ, Barzilai N, Cohen P (2008) Functionally significant insulin-like growth factor I receptor mutations in centenarians. Proc Natl Acad Sci U S A 105:3438–3442.  https://doi.org/10.1073/pnas.0705467105 CrossRefGoogle Scholar
  75. Sun LY, Al-Regaiey K, Masternak MM, Wang J, Bartke A (2005) Local expression of GH and IGF-1 in the hippocampus of GH-deficient long-lived mice. Neurobiol Aging 26:929–937.  https://doi.org/10.1016/j.neurobiolaging.2004.07.010 CrossRefGoogle Scholar
  76. Tabrizian T, Wang D, Guan F, Hu Z, Beck AP, Delahaye F, Huffman DM (2017) Apc inactivation, but not obesity, synergizes with Pten deficiency to drive intestinal stem cell-derived tumorigenesis. Endocr Relat Cancer 24:253–265.  https://doi.org/10.1530/ERC-16-0536 CrossRefGoogle Scholar
  77. Tang JJ, Podratz JL, Lange M, Scrable HJ, Jang MH, Windebank AJ (2017) Mechano growth factor, a splice variant of IGF-1, promotes neurogenesis in the aging mouse brain. Mol Brain 10:23.  https://doi.org/10.1186/s13041-017-0304-0 CrossRefGoogle Scholar
  78. Taniguchi CM, Emanuelli B, Kahn CR (2006) Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol 7:85–96.  https://doi.org/10.1038/nrm1837 CrossRefGoogle Scholar
  79. Tarantini S, Hertelendy P, Tucsek Z, Valcarcel-Ares MN, Smith N, Menyhart A, Farkas E, Hodges EL, Towner R, Deak F, Sonntag WE, Csiszar A, Ungvari Z, Toth P (2015) Pharmacologically-induced neurovascular uncoupling is associated with cognitive impairment in mice. J Cereb Blood Flow Metab 35:1871–1881.  https://doi.org/10.1038/jcbfm.2015.162 CrossRefGoogle Scholar
  80. Tarantini S, Fulop GA, Kiss T, Farkas E, Zölei-Szénási D, Galvan V, Toth P, Csiszar A, Ungvari Z, Yabluchanskiy A (2017a) Demonstration of impaired neurovascular coupling responses in TG2576 mouse model of Alzheimer's disease using functional laser speckle contrast imaging. Geroscience 39:465–473.  https://doi.org/10.1007/s11357-017-9980-z CrossRefGoogle Scholar
  81. Tarantini S, Valcarcel-Ares NM, Yabluchanskiy A, Springo Z, Fulop GA, Ashpole N, Gautam T, Giles CB, Wren JD, Sonntag WE, Csiszar A, Ungvari Z (2017b) Insulin-like growth factor 1 deficiency exacerbates hypertension-induced cerebral microhemorrhages in mice, mimicking the aging phenotype. Aging Cell 16:469–479.  https://doi.org/10.1111/acel.12583 CrossRefGoogle Scholar
  82. Tarantini S, Valcarcel-Ares NM, Yabluchanskiy A, Fulop GA, Hertelendy P, Gautam T, Farkas E, Perz A, Rabinovitch PS, Sonntag WE, Csiszar A, Ungvari Z (2018) Treatment with the mitochondrial-targeted antioxidant peptide SS-31 rescues neurovascular coupling responses and cerebrovascular endothelial function and improves cognition in aged mice. Aging Cell 17:e12731.  https://doi.org/10.1111/acel.12731 CrossRefGoogle Scholar
  83. Thal SC, Wyschkon S, Pieter D, Engelhard K, Werner C (2008) Selection of endogenous control genes for normalization of gene expression analysis after experimental brain trauma in mice. J Neurotrauma 25:785–794.  https://doi.org/10.1089/neu.2007.0497 CrossRefGoogle Scholar
  84. Toth P, Tarantini S, Tucsek Z, Ashpole NM, Sosnowska D, Gautam T, Ballabh P, Koller A, Sonntag WE, Csiszar A, Ungvari Z (2014) Resveratrol treatment rescues neurovascular coupling in aged mice: role of improved cerebromicrovascular endothelial function and down-regulation of NADPH oxidase. Am J Physiol Heart Circ Physiol 306:H299–H308.  https://doi.org/10.1152/ajpheart.00744.2013 CrossRefGoogle Scholar
  85. Toth P, Tarantini S, Ashpole NM, Tucsek Z, Milne GL, Valcarcel-Ares NM, Menyhart A, Farkas E, Sonntag WE, Csiszar A, Ungvari Z (2015) IGF-1 deficiency impairs neurovascular coupling in mice: implications for cerebromicrovascular aging. Aging Cell 14:1034–1044.  https://doi.org/10.1111/acel.12372 CrossRefGoogle Scholar
  86. Toth P, Tarantini S, Csiszar A, Ungvari Z (2017) Functional vascular contributions to cognitive impairment and dementia: mechanisms and consequences of cerebral autoregulatory dysfunction, endothelial impairment, and neurovascular uncoupling in aging. Am J Physiol Heart Circ Physiol 312:H1–H20.  https://doi.org/10.1152/ajpheart.00581.2016 CrossRefGoogle Scholar
  87. Trejo JL, Piriz J, Llorens-Martin MV, Fernandez AM, Bolós M, LeRoith D, Nuñez A, Torres-Aleman I (2007) Central actions of liver-derived insulin-like growth factor I underlying its pro-cognitive effects. Mol Psychiatry 12:1118–1128.  https://doi.org/10.1038/sj.mp.4002076 CrossRefGoogle Scholar
  88. Tucsek Z, Toth P, Tarantini S, Sosnowska D, Gautam T, Warrington JP, Giles CB, Wren JD, Koller A, Ballabh P, Sonntag WE, Ungvari Z, Csiszar A (2014) Aging exacerbates obesity-induced cerebromicrovascular rarefaction, neurovascular uncoupling, and cognitive decline in mice. J Gerontol A Biol Sci Med Sci 69:1339–1352.  https://doi.org/10.1093/gerona/glu080 CrossRefGoogle Scholar
  89. Tumati S, Burger H, Martens S, van der Schouw YT, Aleman A (2016) Association between cognition and serum insulin-like growth factor-1 in middle-aged & older men: an 8 year follow-up study. PLoS One 11:e0154450.  https://doi.org/10.1371/journal.pone.0154450 CrossRefGoogle Scholar
  90. Ungvari Z, Tarantini S, Hertelendy P, Valcarcel-Ares MN, Fülöp GA, Logan S, Kiss T, Farkas E, Csiszar A, Yabluchanskiy A (2017) Cerebromicrovascular dysfunction predicts cognitive decline and gait abnormalities in a mouse model of whole brain irradiation-induced accelerated brain senescence. GeroScience 39:33–42CrossRefGoogle Scholar
  91. Vidal JS, Hanon O, Funalot B, Brunel N, Viollet C, Rigaud AS, Seux ML, le-Bouc Y, Epelbaum J, Duron E (2016) Low serum insulin-like growth factor-I predicts cognitive decline in Alzheimer's disease. J Alzheimers Dis 52:641–649.  https://doi.org/10.3233/JAD-151162 CrossRefGoogle Scholar
  92. Vig PJ, Subramony SH, D'Souza DR, Wei J, Lopez ME (2006) Intranasal administration of IGF-I improves behavior and Purkinje cell pathology in SCA1 mice. Brain Res Bull 69:573–579.  https://doi.org/10.1016/j.brainresbull.2006.02.020 CrossRefGoogle Scholar
  93. Walters RO, Arias E, Diaz A, Burgos ES, Guan F, Tiano S, Mao K, Green CL, Qiu Y, Shah H, Wang D, Hudgins AD, Tabrizian T, Tosti V, Shechter D, Fontana L, Kurland IJ, Barzilai N, Cuervo AM, Promislow DEL, Huffman DM (2018) Sarcosine is uniquely modulated by aging and dietary restriction in rodents and humans. Cell Rep 25:663–676 e666.  https://doi.org/10.1016/j.celrep.2018.09.065 CrossRefGoogle Scholar
  94. Xu J, Gontier G, Chaker Z, Lacube P, Dupont J, Holzenberger M (2014) Longevity effect of IGF-1R(+/−) mutation depends on genetic background-specific receptor activation. Aging Cell 13:19–28.  https://doi.org/10.1111/acel.12145 CrossRefGoogle Scholar
  95. Yang F, Chu X, Yin M, Liu X, Yuan H, Niu Y, Fu L (2014) mTOR and autophagy in normal brain aging and caloric restriction ameliorating age-related cognition deficits. Behav Brain Res 264:82–90.  https://doi.org/10.1016/j.bbr.2014.02.005 CrossRefGoogle Scholar
  96. Ye P, Popken GJ, Kemper A, McCarthy K, Popko B, D'Ercole AJ (2004) Astrocyte-specific overexpression of insulin-like growth factor-I promotes brain overgrowth and glial fibrillary acidic protein expression. J Neurosci Res 78:472–484.  https://doi.org/10.1002/jnr.20288 CrossRefGoogle Scholar
  97. Zhang J, Moats-Staats BM, Ye P, D'Ercole AJ (2007) Expression of insulin-like growth factor system genes during the early postnatal neurogenesis in the mouse hippocampus. J Neurosci Res 85:1618–1627.  https://doi.org/10.1002/jnr.21289 CrossRefGoogle Scholar

Copyright information

© American Aging Association 2019

Authors and Affiliations

  • Gabriela E. Farias Quipildor
    • 1
    • 2
  • Kai Mao
    • 1
    • 2
  • Zunju Hu
    • 1
    • 2
  • Ardijana Novaj
    • 1
    • 2
  • Min-Hui Cui
    • 3
  • Maria Gulinello
    • 4
  • Craig A. Branch
    • 3
  • Sriram Gubbi
    • 5
    • 6
  • Khushbu Patel
    • 1
  • Douglas R. Moellering
    • 7
  • Stefano Tarantini
    • 8
  • Tamas Kiss
    • 8
  • Andriy Yabluchanskiy
    • 8
  • Zoltan Ungvari
    • 8
  • William E. Sonntag
    • 8
  • Derek M. Huffman
    • 1
    • 2
    • 5
    Email author
  1. 1.Department of Molecular PharmacologyAlbert Einstein College of MedicineBronxUSA
  2. 2.Institute for Aging ResearchAlbert Einstein College of MedicineBronxUSA
  3. 3.Department of RadiologyAlbert Einstein College of MedicineBronxUSA
  4. 4.Behavioral Core Facility, Dominick S. Purpura Department of NeuroscienceAlbert Einstein College of Medicine of Yeshiva UniversityBronxUSA
  5. 5.Department of MedicineAlbert Einstein College of MedicineBronxUSA
  6. 6.Department of Internal MedicineJacobi Medical CenterBronxUSA
  7. 7.Department of Nutrition SciencesUniversity of Alabama at BirminghamBirminghamUSA
  8. 8.Reynolds Oklahoma Center on Aging, Department of Geriatric MedicineUniversity of Oklahoma Health Sciences CenterOklahoma CityUSA

Personalised recommendations