Skip to main content
Log in

Role of Sustained Overexpression of Central Nervous System IGF-I in the Age-Dependent Decline of Mouse Excitation-Contraction Coupling

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

We investigated the effects of exclusive and sustained transgenic overexpression of insulin-like growth factor (IGF)-I in the central nervous system (CNS) on the age-dependent decline in muscle strength, excitation-contraction coupling, muscle innervation and neuromuscular junction postterminal architecture. We found that (1) transgenic IGF-I overexpression in the CNS does not modify the decline in extensor digitorum longus (EDL) and soleus muscle weight with aging and (2) strength significantly decreases in transgenic (Tg) compared to wild-type mice. The latter finding is consistent with (3) the decreased absolute and specific force measured in the EDL muscle in vitro and (4) the decreased charge movement and peak intracellular Ca2+ mobilization in individual muscle fibers from old IGF-I Tg mice compared to young wild-type mice, which also is associated with (5) decreased dihydropyridine receptor α1-subunit expression in old compared to young IGF-I Tg mice. (6) Tg IGF-I prevents a change in muscle fiber type that is associated with (7) improved muscle innervation and postterminal neuromuscular structure. (8) IGF-I is expressed extensively across the spinal cord gray matter and the lateral motor column. Our results raise questions about the timing and cell location of CNS IGF-I overexpression necessary to prevent or to ameliorate age-dependent alterations in the structure and function of skeletal muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

References

  • Barton-Davis E.R., Shoturma D.I., Musaro A., Rosenthal N., Sweeney H.L. 1998. Viral mediated expression of insulin-like growth factor I blocks the aging-related loss of skeletal muslce function. Proc. Natl. Acad. Sci. USA 95:15603–15607

    Article  PubMed  CAS  Google Scholar 

  • Brooks S.V., Faulkner J.A. 1988. Contractile properties of skeletal muscles from young, adult and aged mice. J. Physiol. 404:71–82

    PubMed  CAS  Google Scholar 

  • Buller A.J., Eccles J. C., Eccles R.M. 1960a. Differentiation of fast and slow muscles in the cat hind limb. J. Physiol. 150:399–416

    CAS  Google Scholar 

  • Buller A.J., Eccles J. C., Eccles R.M. 1960b. Interactions between motoneurones and muscles in respect of the characteristic speeds of their responses. J. Physiol. 150:417–439

    CAS  Google Scholar 

  • Caroni P., Grandes P. 1990. Nerve sprouting in innervated adult skeletal muscle induced by exposure to elevated levels of insulin like growth factors. J. Cell Biol. 110:1307–1317

    Article  PubMed  CAS  Google Scholar 

  • Coleman M.E., DeMayo F., Yin K.C., Lee H.M., Geske R., Montgomery C., Schwartz R.J. 1995. Myogenic vector expression of insulin-like growth factor I stimulates muscle cell differentiation and myofiber hypertrophy in transgenic mice. J. Biol. Chem. 270:12109–12116

    Article  PubMed  CAS  Google Scholar 

  • Dai Z., Takahashi S.I., Van Wyk J.J., D’Ercole A.J. 1992. Creation of an autocrine model of insulin-like growth factor-I action in transfected FRTL-5 cells. Endocrinology 130:3175–3183

    Article  PubMed  CAS  Google Scholar 

  • Delbono O. 2003. Neural control of aging skeletal muscle. Aging Cell 2:21–29

    Article  PubMed  CAS  Google Scholar 

  • D’Ercole A.J., Ye P., O’Kusky J.R. 2002. Mutant mouse models of insulin-like growth factor actions in the central nervous system. Neuropeptides 36:209–220

    Article  PubMed  CAS  Google Scholar 

  • Dobrowolny G., Giacinti C., Pelosi L., Nicoletti C., Winn N., Barberi L., Molinaro M., Rosenthal N., Musaro A. 2005. Muscle expression of a local IGF-I isoform protects motor neurons in an ALS mouse model. J. Cell Biol. 168:193–199

    Article  PubMed  CAS  Google Scholar 

  • Eddinger T.J., Cassens R.G., Moss R.L. 1986. Mechanical and histochemical characterization of skeletal muscles from senescent rats. Am. J. Physiol. 251:C421–C430

    PubMed  CAS  Google Scholar 

  • Einsiedel L.J., Luff A.R. 1992. Effect of partial denervation on motor units in the ageing rat medial gastrocnemius. J. Neurol. Sci. 112:178–184

    Article  PubMed  CAS  Google Scholar 

  • Fervenza F.C., Tsao T., Hsu F., Rabkin R. 1999. Intrarenal insulin-like growth factor-1 axis after unilateral nephrectomy in rat. J. Am. Soc. Nephrol. 10:43–50

    Article  PubMed  CAS  Google Scholar 

  • Fitts R.H., Troup J.P., Witzmann F.A., Holloszy J.O. 1984. The effect of ageing and exercise on skeletal muscle function. Mech. Ageing Dev. 27:161–172

    Article  PubMed  CAS  Google Scholar 

  • Florini J.R., Ewton D.Z., Coolican S.A. 1996. Growth hormone and insulin growth factor system in myogenesis. Endocr. Rev. 17:481–517

    Article  PubMed  CAS  Google Scholar 

  • Giulian G.G., Moss R.L., Greaser M. 1983. Improved methodology for analysis and quantitation of proteins on one dimensional silver-stained slab gels. Anal. Biochem. 129:277–287

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez E., Messi M.L., Delbono O. 2000. The specific force of single intact extensor digitorum longus and soleus mouse muscle fibers declines with aging. J. Membr. Biol. 178:175–183

    Article  PubMed  CAS  Google Scholar 

  • González E., Messi M.L., Zheng Z., Delbono O. 2003. Insulin-like growth factor-1 prevents age-related decrease in specific force and intracellular Ca2+ in single intact muscle fibres from transgenic mice. J. Physiol. 552:833–844

    Article  PubMed  CAS  Google Scholar 

  • Greensmith L., Vrbova G. 1996. Motoneurone survival: A functional approach. Trends Neurosci. 19:450–455

    Article  PubMed  CAS  Google Scholar 

  • Hashizume K., Kanda K., Burke R. 1988. Medial gastrocnemius motor nucleus in the rat: Age-related changes in the number and size of motoneurons. J. Comp. Neurol. 269:425–430

    Article  PubMed  CAS  Google Scholar 

  • Kadhiresan V.A., Hassett C.A., Faulkner J.A. 1996. Properties of single motor units in medial gastrocnemius muscles of adult and old rats. J. Physiol. 493:543–552

    PubMed  CAS  Google Scholar 

  • Kanda K., Hashizume K. 1989. Changes in properties of the medial gastrocnemius motor units in aging rats. J. Neurophysiol. 1989:737–746

    Google Scholar 

  • Kanje M., Skottner A., Sjoberg J., Lundborg G. 1989. Insulin-like growth factor I (IGF-I) stimulates regeneration of the rat sciatic nerve. Brain Res. 486:396–398

    Article  PubMed  CAS  Google Scholar 

  • Knudson C.M., Chaudhari N., Sharp A.H., Powell J.A., Beam K.G., Campbell K.P. 1989. Specific absence of the alpha 1 subunit of the dihydropyridine receptor in mice with muscular dysgenesis. J. Biol. Chem. 264:1345–1348

    PubMed  CAS  Google Scholar 

  • Lang C.H., Frost R.A., Svanberg E., Vary T.C. 2004. IGF-I/IGFBP-3 ameliorates alterations in protein synthesis, eIF4E availability, and myostatin in alcohol-fed rats. Am. J. Physiol. 286:E916–E926

    CAS  Google Scholar 

  • Larsson L., Ansved T. 1995. Effects of ageing on the motor unit. Prog. Neurobiol. 45:397–458

    Article  PubMed  CAS  Google Scholar 

  • Leung A.T., Imagawa T., Campbell K.P. 1987. Structural characterization of the 1,4-dihydropyridine receptor of the voltage-dependent Ca2+ channel from rabbit skeletal muscle. Evidence for two distinct high molecular weight subunits. J Biol Chem. 262:7943–7946

    PubMed  CAS  Google Scholar 

  • Lexell J. 1995. Human aging, muscle mass, and fiber type composition. J. Gerontol. A Biol. Sci. Med. Sci. 50:11–16

    PubMed  Google Scholar 

  • Li D., Sweeney G., Wang Q., Klip A. 1999. Participation of PI3K and atypical PKC in Na+-K+-pump stimulation by IGF-I in VSMC. Am. J. Physiol. 276:H2109–H2116

    PubMed  CAS  Google Scholar 

  • Li J.B., Wang C.Y., Chen J.W., Feng Z.Q., Ma H.T. 2004. Expression of liver insulin-like growth factor 1 gene and its serum level in patients with diabetes. World J. Gastroenterol. 10:255–259

    PubMed  CAS  Google Scholar 

  • Li X., Oppenheim R.W., Lei M., Houenou L.J. 1994. Neurotrophic agents prevent motoneuron death following sciatic nerve section in the neonatal mouse. J. Neurobiol. 25:759–766

    Article  PubMed  CAS  Google Scholar 

  • Messi M.L., Delbono O. 2003. Target-derived trophic effect on skeletal muscle innervation in senescent mice. J. Neurosci. 23:1351–1359

    PubMed  CAS  Google Scholar 

  • Meyer O.A., Tilson H.A., Byrd W.C., Riley M.T. 1979. A method for the routine assessment of fore- and hindlimb grip strength of rats and mice. Neurobehav. Toxicol. 1:233–236

    PubMed  CAS  Google Scholar 

  • Mourkioti F., Rosenthal N. 2005. IGF-I, inflammation and stem cells: Interactions during muscle regeneration. Trends Immunol. 26:535–542

    Article  PubMed  CAS  Google Scholar 

  • Murray B.E., Ohlendieck K. 1997. Cross-linking analysis of the ryanodine receptor and alpha1-dihydropyridine receptor in rabbit skeletal muscle triads. Biochem. J. 324:689–696

    PubMed  CAS  Google Scholar 

  • Musaro A., McCullagh K.J., Paul A., Houghton L., Dobrowolny G., Molinaro M., Barton-Davis E.R., Sweeney H.L., Rosenthal N. 2001. Localized IGF-I transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat. Genet. 27:195–200

    Article  PubMed  CAS  Google Scholar 

  • Neff N.T., Prevette D.M., Houenou L.J., Lewis M.E., Glicksman M.A., Yin Q.-W., Oppenheim R.W. 1993. Insulin-like growth factors: Putative muscle-derived trophic agents that promote motoneuron survival. J. Neurobiol. 24:1578–1588

    Article  PubMed  CAS  Google Scholar 

  • O’Kusky J.R., Ye P., D’Ercole J. 2000. Insulin-Like growth factor-1 promotes neurogenesis and synaptogenesis in the hippocampal dentate gyrus during postnatal development. J. Neurosci. 15:8435–8442

    Google Scholar 

  • Ogura H., Aruga J., Mikoshiba K. 2001. Behavioral abnormalities of Zic1 and Zic2 mutant mice: Implications as models for human neurological disorders. Behav. Genet. 31:317–324

    Article  PubMed  CAS  Google Scholar 

  • Oppenheim R.W. 1996. Neurotrophic survival molecules for motoneurons: An embarrassment of riches. Neuron 17:195–197

    Article  PubMed  CAS  Google Scholar 

  • Payne A.M., Delbono O. 2004. Neurogenesis of excitation- contraction uncoupling in aging skeletal musule. Exerc Sport Sci Rev. 32:36–40

    Article  PubMed  Google Scholar 

  • Payne A.M., Zheng Z., Messi M.L., Milligan C.E., Gonzalez E., Delbono O. 2006. Motor neurone targeting of IGF-I prevents specific force decline in ageing mouse muscle. J. Physiol. 570:283–294

    PubMed  CAS  Google Scholar 

  • Pestronk A., Drachman D.B. 1978. A new stain for quantitative measurement of sprouting at neuromuscular junctions. Muscle Nerve 1:70–74

    Article  PubMed  CAS  Google Scholar 

  • Pette D., Staron R.S. 2001. Transitions of muscle fiber phenotypic profiles. Histochem. Cell Biol. 115:359–372

    PubMed  CAS  Google Scholar 

  • Popken G.J., Hodge R.D., Ye P., Zhang J., Ng W., O’Kusky J.R., D’Ercole A.J. 2004. In vivo effects of insulin-like growth factor-I (IGF-I) on prenatal and early postnatal development of the central nervous system. Eur. J. Neurosci. 19:2056–2068

    Article  PubMed  Google Scholar 

  • Rabinovsky E.D., Gelir E., Gelir S., Lui H., Kattash M., DeMayo F.J., Shenaq S.M., Schwartz R.J. 2003. Targeted expression of IGF-I transgene to skeletal muscle accelerates muscle and motor neuron regeneration. FASEB J. 17:53–55

    PubMed  CAS  Google Scholar 

  • Renganathan M., Messi M.L., Delbono O. 1998. Overexpression of IGF-I exclusively in skeletal muscle prevents age-related decline in the number of dihydropyridine receptors. J. Biol. Chem. 273:28845–28851

    Article  PubMed  CAS  Google Scholar 

  • Sacco A., Regis D., LaBarge M.A., Hammer M.M., Kraft P., Blau H.M. 2005. IGF-I increases bone marrow contribution to adult skeletal muscle and enhances the fusion of myelomonocytic precursors. J. Cell Biol. 171:483–492

    Article  PubMed  CAS  Google Scholar 

  • Segal S.S., Faulkner J.A. 1985. Temperature-dependent physiological stability of rat skeletal muscle in vitro. Am. J. Physiol. 248:C265–C270

    PubMed  CAS  Google Scholar 

  • Serrano A.L., Petrie J.L., Rivero J.L.L., Hermanson J.W. 1996. Myosin isoforms and muscle fiber characteristics in equine gluteus medius muscle. Anat. Rec. 244:444–451

    Article  PubMed  CAS  Google Scholar 

  • Sonntag W.E., Ramsey M., Carter C.S. 2005. Growth hormone and insulin-like growth factor-1 (IGF-I) and their influence on cognitive aging. Ageing Res. Rev. 4:195–212

    Article  PubMed  CAS  Google Scholar 

  • Stanfield B.B., Cowan W.M. 1979. The morphology of the hippocampus and dentate gyrus in normal and reeler mice. J. Comp. Neurol. 185:393–422

    Article  PubMed  CAS  Google Scholar 

  • Su J.L., Stimpson S., Edwards C., Van Arnold J., Burgess S., Lin P. 1997. Neutralizing IGF-I monoclonal antibody with cross-species reactivity. Hybridoma 16:513–518

    Article  PubMed  CAS  Google Scholar 

  • Tsien R.W., Pozzan T. 1989. Measurement of cytosolic free Ca2+ with quin2: Practical aspects. Methods Enzymol. 172:230–262

    PubMed  CAS  Google Scholar 

  • Wang Z.-M., Messi M.L., Delbono O. 2000. L-type Ca2+ channel charge movement and intracellular Ca2+ in skeletal muscle fibers from aging mice. Biophys. J. 78:1947–1954

    PubMed  CAS  Google Scholar 

  • Wang Z.-M., Messi M.L., Delbono O. 2002. Sustained overexpression of IGF-I prevents age-dependent decrease in charge movement and intracellular calcium in mouse skeletal muscle. Biophys. J. 82:1338–1344

    Article  PubMed  CAS  Google Scholar 

  • Wang Z.M., Messi M.L., Delbono O. 1999. Patch-clamp recording of charge movement, Ca2+ current and Ca2+ transients in adult skeletal muscle fibers. Biophys. J. 77:2709–2716

    PubMed  CAS  Google Scholar 

  • Ye P., Li L., Richards R.G., DiAugustine R.P., D’Ercole A.J. 2002. Myelination is altered in insulin-like growth factor-I null mutant mice. J. Neurosci. 22:6041–6051

    PubMed  CAS  Google Scholar 

  • Ye P., Xing Y., Dai Z., D’Ercole J. 1996. In vivo actions of insulin-like growth factor-I (IGF-I) on cerebellum development in transgenic mice: Evidence that IGF-I increases proliferation of granule cells progenitors. Dev. Brain Res. 95:44–54

    Article  CAS  Google Scholar 

  • Zhang C., Goto N., Suzuki M., Ke M. 1996. Age-related reductions in number and size of anterior horn cells at C6 level of the human spinal cord. Okajimas Folia Anat. Jpn. 73:171–177

    PubMed  CAS  Google Scholar 

  • Zheng Z., Wang Z.M., Delbono O. 2002. Insulin-like growth factor-1 increases skeletal muscle DHPR alpha1S transcriptional activity by acting on the cAMP-response element-binding protein element of the promoter region. J. Biol. Chem. 277:50535–50542

    Article  PubMed  CAS  Google Scholar 

  • Zheng Z., Wang Z.M., Delbono O. 2004. Ca2+ calmodulin kinase and calcineurin mediate IGF-I-induced skeletal muscle dihydropyridine receptor alpha1S transcription. J. Membr. Biol. 197:101–112

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The present study was supported by grants from the National Institutes of Health-National Institute on Aging (AG13934 and AG15820) and the Muscular Dystrophy Association (to O. D.), the National Institute for Human Development (NIHD) (HD008299, to J. A. D.) and the Wake Forest University Claude D. Pepper Older Americans Independence Center (P30-AG21332). We thank Ms. Julie Edelson for editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osvaldo Delbono.

Additional information

Ramón Jiménez Moreno and María Laura Messi contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moreno, R.J., Messi, M.L., Zheng, Z. et al. Role of Sustained Overexpression of Central Nervous System IGF-I in the Age-Dependent Decline of Mouse Excitation-Contraction Coupling. J Membrane Biol 212, 147–161 (2006). https://doi.org/10.1007/s00232-006-0044-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-006-0044-z

Keywords

Navigation