Skip to main content
Log in

Inter-chromosomal level of genome organization and longevity-related phenotypes in humans

  • Published:
AGE Aims and scope Submit manuscript

Abstract

Studies focusing on unraveling the genetic origin of health span in humans assume that polygenic, aging-related phenotypes are inherited through Mendelian mechanisms of inheritance of individual genes. We use the Framingham Heart Study (FHS) data to examine whether non-Mendelian mechanisms of inheritance can drive linkage of loci on non-homologous chromosomes and whether such mechanisms can be relevant to longevity-related phenotypes. We report on genome-wide inter-chromosomal linkage disequilibrium (LD) and on chromosome-wide intra-chromosomal LD and show that these are real phenomena in the FHS data. Genetic analysis of inheritance in families based on Mendelian segregation reveals that the alleles of single nucleotide polymorphisms (SNPs) in LD at loci on non-homologous chromosomes are inherited as a complex resembling haplotypes of a genetic unit. This result implies that the inter-chromosomal LD is likely caused by non-random assortment of non-homologous chromosomes during meiosis. The risk allele haplotypes can be subject to dominant-negative selection primary through the mechanisms of non-Mendelian inheritance. They can go to extinction within two human generations. The set of SNPs in inter-chromosomal LD (N = 68) is nearly threefold enriched, with high significance (p = 1.6 × 10−9), on non-synonymous coding variants (N = 28) compared to the entire qualified set of the studied SNPs. Genes for the tightly linked SNPs are involved in fundamental biological processes in an organism. Survival analyses show that the revealed non-genetic linkage is associated with heritable complex phenotype of premature death. Our results suggest the presence of inter-chromosomal level of functional organization in the human genome and highlight a challenging problem of genomics of human health and aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barzilai N, Atzmon G, Schechter C, Schaefer EJ, Cupples AL, Lipton R, Cheng S, Shuldiner AR (2003) Unique lipoprotein phenotype and genotype associated with exceptional longevity. JAMA 290(15):2030–2040

    Article  PubMed  CAS  Google Scholar 

  • Bergman A, Atzmon G, Ye K, MacCarthy T, Barzilai N (2007) Buffering mechanisms in aging: a systems approach toward uncovering the genetic component of aging. PLoS Comput Biol 3(8):e170

    Article  PubMed  Google Scholar 

  • Bobrow M, Heritage J (1980) Nonrandom segregation of nucleolar organizing chromosomes at mitosis? Nature 288(5786):79–81

    Article  PubMed  CAS  Google Scholar 

  • Boyse EA (1977) The Gx system in relation to C-type viruses and heredity. Immunol Rev 33:125–145

    Article  PubMed  CAS  Google Scholar 

  • Camenzind R, Nicklas RB (1968) The non-random chromosome segregation in spermatocytes of Gryllotalpa hexadactyla. A micromanipulation analysis. Chromosoma 24(3):324–335

    Article  PubMed  CAS  Google Scholar 

  • Carothers EE (1913) The Mendelian ratio in relation to certain orthopteran chromosomes. J Morphol 24:487–511

    Article  Google Scholar 

  • Carothers EE (1917) The segregation and recombination of homologous chromosomes as found in two genera of Acridae (Orthoptera). J Morphol 28:445–520

    Article  Google Scholar 

  • Christensen K, Johnson TE, Vaupel JW (2006) The quest for genetic determinants of human longevity: challenges and insights. Nat Rev Genet 7(6):436–448

    Article  PubMed  CAS  Google Scholar 

  • Clegg MT, Allard RW, Kahler AL (1972) Is the gene the unit of selection? Evidence from two experimental plant populations. Proc Natl Acad Sci U S A 69(9):2474–2478

    Article  PubMed  CAS  Google Scholar 

  • Croft DT Jr, Jordan RM, Patney HL, Shriver CD, Vernalis MN, Orchard TJ, Ellsworth DL (2008) Performance of whole-genome amplified DNA isolated from serum and plasma on high-density single nucleotide polymorphism arrays. J Mol Diagn 10(3):249–257. doi:10.2353/jmoldx.2008.070155

    Article  PubMed  CAS  Google Scholar 

  • Cupples LA, Heard-Costa N, Lee M, Atwood LD (2009) Genetics analysis workshop 16, problem 2: the Framingham Heart Study data. BMC Proc 3(Suppl 7):S3

    Article  PubMed  Google Scholar 

  • de Bakker PI, Ferreira MA, Jia X, Neale BM, Raychaudhuri S, Voight BF (2008) Practical aspects of imputation-driven meta-analysis of genome-wide association studies. Hum Mol Genet 17(R2):R122–R128. doi:10.1093/hmg/ddn288

    Article  PubMed  Google Scholar 

  • Dickson SP, Wang K, Krantz I, Hakonarson H, Goldstein DB (2010) Rare variants create synthetic genome-wide associations. PLoS Biol 8(1):e1000294. doi:10.1371/journal.pbio.1000294

    Article  PubMed  Google Scholar 

  • Dyer KA, Charlesworth B, Jaenike J (2007) Chromosome-wide linkage disequilibrium as a consequence of meiotic drive. Proc Natl Acad Sci U S A 104(5):1587–1592. doi:10.1073/pnas.0605578104

    Article  PubMed  CAS  Google Scholar 

  • Evert J, Lawler E, Bogan H, Perls T (2003) Morbidity profiles of centenarians: survivors, delayers, and escapers. J Gerontol A Biol Sci Med Sci 58(3):232–237

    Article  PubMed  Google Scholar 

  • Farnir F, Coppieters W, Arranz JJ, Berzi P, Cambisano N, Grisart B, Karim L, Marcq F, Moreau L, Mni M, Nezer C, Simon P, Vanmanshoven P, Wagenaar D, Georges M (2000) Extensive genome-wide linkage disequilibrium in cattle. Genome Res 10(2):220–227

    Article  PubMed  CAS  Google Scholar 

  • Finch CE, Tanzi RE (1997) Genetics of aging. Science 278(5337):407–411

    Article  PubMed  CAS  Google Scholar 

  • Fisher RA (1918) The correlation between relatives on the supposition of Mendelian inheritance. Trans R Soc Edinb 52:399–433

    Article  Google Scholar 

  • Flint-Garcia SA, Thornsberry JM, Buckler ESt (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357–374. doi:10.1146/annurev.arplant.54.031902.134907

    Article  PubMed  CAS  Google Scholar 

  • Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs RA, Belmont JW, Boudreau A, Hardenbol P, Leal SM, Pasternak S, Wheeler DA, Willis TD, Yu F, Yang H, Zeng C, Gao Y, Hu H, Hu W, Li C, Lin W, Liu S, Pan H, Tang X, Wang J, Wang W, Yu J, Zhang B, Zhang Q, Zhao H, Zhou J, Gabriel SB, Barry R, Blumenstiel B, Camargo A, Defelice M, Faggart M, Goyette M, Gupta S, Moore J, Nguyen H, Onofrio RC, Parkin M, Roy J, Stahl E, Winchester E, Ziaugra L, Altshuler D, Shen Y, Yao Z, Huang W, Chu X, He Y, Jin L, Liu Y, Sun W, Wang H, Wang Y, Xiong X, Xu L, Waye MM, Tsui SK, Xue H, Wong JT, Galver LM, Fan JB, Gunderson K, Murray SS, Oliphant AR, Chee MS, Montpetit A, Chagnon F, Ferretti V, Leboeuf M, Olivier JF, Phillips MS, Roumy S, Sallee C, Verner A, Hudson TJ, Kwok PY, Cai D, Koboldt DC, Miller RD, Pawlikowska L, Taillon-Miller P, Xiao M, Tsui LC, Mak W, Song YQ, Tam PK, Nakamura Y, Kawaguchi T, Kitamoto T, Morizono T, Nagashima A, Ohnishi Y, Sekine A, Tanaka T, Tsunoda T, Deloukas P, Bird CP, Delgado M, Dermitzakis ET, Gwilliam R, Hunt S, Morrison J, Powell D, Stranger BE, Whittaker P, Bentley DR, Daly MJ, de Bakker PI, Barrett J, Chretien YR, Maller J, McCarroll S, Patterson N, Pe'er I, Price A, Purcell S, Richter DJ, Sabeti P, Saxena R, Schaffner SF, Sham PC, Varilly P, Stein LD, Krishnan L, Smith AV, Tello-Ruiz MK, Thorisson GA, Chakravarti A, Chen PE, Cutler DJ, Kashuk CS, Lin S, Abecasis GR, Guan W, Li Y, Munro HM, Qin ZS, Thomas DJ, McVean G, Auton A, Bottolo L, Cardin N, Eyheramendy S, Freeman C, Marchini J, Myers S, Spencer C, Stephens M, Donnelly P, Cardon LR, Clarke G, Evans DM, Morris AP, Weir BS, Mullikin JC, Sherry ST, Feolo M, Skol A, Zhang H, Matsuda I, Fukushima Y, Macer DR, Suda E, Rotimi CN, Adebamowo CA, Ajayi I, Aniagwu T, Marshall PA, Nkwodimmah C, Royal CD, Leppert MF, Dixon M, Peiffer A, Qiu R, Kent A, Kato K, Niikawa N, Adewole IF, Knoppers BM, Foster MW, Clayton EW, Watkin J, Muzny D, Nazareth L, Sodergren E, Weinstock GM, Yakub I, Birren BW, Wilson RK, Fulton LL, Rogers J, Burton J, Carter NP, Clee CM, Griffiths M, Jones MC, McLay K, Plumb RW, Ross MT, Sims SK, Willey DL, Chen Z, Han H, Kang L, Godbout M, Wallenburg JC, L'Archeveque P, Bellemare G, Saeki K, An D, Fu H, Li Q, Wang Z, Wang R, Holden AL, Brooks LD, McEwen JE, Guyer MS, Wang VO, Peterson JL, Shi M, Spiegel J, Sung LM, Zacharia LF, Collins FS, Kennedy K, Jamieson R, Stewart J (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature 449(7164):851–861. doi:10.1038/nature06258

    Article  PubMed  CAS  Google Scholar 

  • Ge D, Zhang K, Need AC, Martin O, Fellay J, Urban TJ, Telenti A, Goldstein DB (2008) WGAViewer: software for genomic annotation of whole genome association studies. Genome Res 18(4):640–643. doi:10.1101/gr.071571.107

    Article  PubMed  CAS  Google Scholar 

  • Gibson G (2009) Decanalization and the origin of complex disease. Nat Rev Genet 10(2):134–140. doi:10.1038/nrg2502

    Article  PubMed  CAS  Google Scholar 

  • Goh KI, Cusick ME, Valle D, Childs B, Vidal M, Barabasi AL (2007) The human disease network. Proc Natl Acad Sci U S A 104(21):8685–8690. doi:10.1073/pnas.0701361104

    Article  PubMed  CAS  Google Scholar 

  • Govindaraju DR, Cupples LA, Kannel WB, O'Donnell CJ, Atwood LD, D'Agostino RB Sr, Fox CS, Larson M, Levy D, Murabito J, Vasan RS, Splansky GL, Wolf PA, Benjamin EJ (2008) Genetics of the Framingham Heart Study population. Adv Genet 62:33–65. doi:10.1016/S0065-2660(08)00602-0

    Article  PubMed  Google Scholar 

  • Graber JH, Churchill GA, Dipetrillo KJ, King BL, Petkov PM, Paigen K (2006) Patterns and mechanisms of genome organization in the mouse. J Exp Zool A Comp Exp Biol 305(9):683–688. doi:10.1002/jez.a.322

    PubMed  Google Scholar 

  • Hartl DL, Clark AG (2007) Principles of population genetics, 4th edn. Sinauer Associates, Sunderland, Mass

    Google Scholar 

  • Hurst LD (2009) Fundamental concepts in genetics: genetics and the understanding of selection. Nat Rev Genet 10(2):83–93. doi:10.1038/nrg2506

    Article  PubMed  CAS  Google Scholar 

  • Kirkwood TB (2011) Systems biology of ageing and longevity. Philos Trans R Soc Lond B Biol Sci 366(1561):64–70. doi:10.1098/rstb.2010.0275

    Article  PubMed  Google Scholar 

  • Kirkwood TB, Cordell HJ, Finch CE (2011) Speed-bumps ahead for the genetics of later-life diseases. Trends Genet 27(10):387–388. doi:10.1016/j.tig.2011.07.001

    Article  PubMed  CAS  Google Scholar 

  • Korol AB, Preygel IA, Preygel SI (1994) Recombination variability and evolution: algorithms of estimation and population-genetic models. Chapman & Hall, London

    Google Scholar 

  • Kowles RV (2001) Solving problems in genetics. Springer, New York

    Book  Google Scholar 

  • Kruglyak L (1999) Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nat Genet 22(2):139–144. doi:10.1038/9642

    Article  PubMed  CAS  Google Scholar 

  • Kubai DF, Wise D (1981) Nonrandom chromosome segregation in Neocurtilla (Gryllotalpa) hexadactyla: an ultrastructural study. J Cell Biol 88(2):281–293

    Article  PubMed  CAS  Google Scholar 

  • Kulminski AM (2011) Complex phenotypes and phenomenon of genome-wide inter-chromosomal linkage disequilibrium in the human genome. Exp Gerontol 46(12):979–986. doi:10.1016/j.exger.2011.08.010

    Article  PubMed  CAS  Google Scholar 

  • Kulminski AM, Culminskaya IV (2012) Genomics of human health and aging. Age (Dordr). doi:10.1007/s11357-011-9362-x

  • Kulminski AM, Culminskaya I, Ukraintseva SV, Arbeev KG, Arbeeva L, Wu D, Akushevich I, Land KC, Yashin AI (2011) Trade-off in the effects of the apolipoprotein E polymorphism on the ages at onset of CVD and cancer influences human lifespan. Aging Cell 10(3):533–541. doi:10.1111/j.1474-9726.2011.00689.x

    Article  PubMed  CAS  Google Scholar 

  • Kuningas M, Mooijaart SP, van Heemst D, Zwaan BJ, Slagboom PE, Westendorp RG (2008) Genes encoding longevity: from model organisms to humans. Aging Cell 7(2):270–280. doi:10.1111/j.1474-9726.2008.00366.x

    Article  PubMed  CAS  Google Scholar 

  • Lander ES, Schork NJ (1994) Genetic dissection of complex traits. Science 265(5181):2037–2048

    Article  PubMed  CAS  Google Scholar 

  • Malinowski E (1927) The hypothesis of chromosome affinity and the phenomenon of suppression of characters on crossing. J Genet 18(2):223–231

    Article  Google Scholar 

  • Manolio TA, Brooks LD, Collins FS (2008) A HapMap harvest of insights into the genetics of common disease. J Clin Invest 118(5):1590–1605. doi:10.1172/JCI34772

    Article  PubMed  CAS  Google Scholar 

  • Martin GM (2005) Genetic modulation of senescent phenotypes in Homo sapiens. Cell 120(4):523–532

    Article  PubMed  CAS  Google Scholar 

  • Martin GM, Bergman A, Barzilai N (2007) Genetic determinants of human health span and life span: progress and new opportunities. PLoS Genet 3(7):e125

    Article  PubMed  Google Scholar 

  • Metz CW (1926) Genetic evidence of a selective segregation of chromosomes in Sciara (Diptera). Proc Natl Acad Sci U S A 12(12):690–692

    Article  PubMed  CAS  Google Scholar 

  • Metz CW, Moses MS, Hoppe EN (1926) Chromosome behavior and genetic behavior in Sciara (Diptera) I. Chromosome behavior in the spermatocyte divisions. Mol Gen Genet MGG 42(1):237–270. doi:10.1007/BF01741805

    Article  Google Scholar 

  • Michie D (1953) Affinity; a new genetic phenomenon in the house mouse; evidence from distant crosses. Nature 171(4340):26–27

    Article  PubMed  CAS  Google Scholar 

  • Mike V (1977) Theories of quasi-linkage and "affinity": some implications for population structure. Proc Natl Acad Sci U S A 74(8):3513–3517

    Article  PubMed  CAS  Google Scholar 

  • Morgan TH (1911) Random Segregation Versus Coupling in Mendelian Inheritance. Science 34(873):384. doi:10.1126/science.34.873.384

    Article  PubMed  CAS  Google Scholar 

  • Omholt SW, Plahte E, Oyehaug L, Xiang K (2000) Gene regulatory networks generating the phenomena of additivity, dominance and epistasis. Genetics 155(2):969–980

    PubMed  CAS  Google Scholar 

  • Pardo-Manuel de Villena F, Sapienza C (2001) Nonrandom segregation during meiosis: the unfairness of females. Mamm Genome 12(5):331–339. doi:10.1007/s003350040003

    Article  PubMed  CAS  Google Scholar 

  • Payne F (1912) The chromosomes of Gryllotalpa borealis Burm Archiv für Zellforschung. 9:141–148

  • Payne F (1916) A study of the germ cells of Gryllotalpa borealis and Gryllotalpa vulgaris. J Morphol 28:287–327

    Article  Google Scholar 

  • Perls TT, Wilmoth J, Levenson R, Drinkwater M, Cohen M, Bogan H, Joyce E, Brewster S, Kunkel L, Puca A (2002) Life-long sustained mortality advantage of siblings of centenarians. Proc Natl Acad Sci U S A 99(12):8442–8447

    Article  PubMed  CAS  Google Scholar 

  • Petkov PM, Graber JH, Churchill GA, DiPetrillo K, King BL, Paigen K (2005) Evidence of a large-scale functional organization of mammalian chromosomes. PLoS Genet 1(3):e33. doi:10.1371/journal.pgen.0010033

    Article  PubMed  Google Scholar 

  • Petkov PM, Graber JH, Churchill GA, DiPetrillo K, King BL, Paigen K (2007) Evidence of a large-scale functional organization of mammalian chromosomes. PLoS Biol 5(5):e127. doi:10.1371/journal.pbio.0050127, author reply e128

    Article  PubMed  Google Scholar 

  • Phillips PC (2008) Epistasis—the essential role of gene interactions in the structure and evolution of genetic systems. Nat Rev Genet 9(11):855–867. doi:10.1038/nrg2452

    Article  PubMed  CAS  Google Scholar 

  • Pluzhnikov A, Below JE, Konkashbaev A, Tikhomirov A, Kistner-Griffin E, Roe CA, Nicolae DL, Cox NJ (2010) Spoiling the whole bunch: quality control aimed at preserving the integrity of high-throughput genotyping. Am J Hum Genet 87(1):123–128. doi:10.1016/j.ajhg.2010.06.005

    Article  PubMed  CAS  Google Scholar 

  • Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81(3):559–575. doi:10.1086/519795

    Article  PubMed  CAS  Google Scholar 

  • Robinson R (1971) Gene mapping in laboratory mammals. Plenum, London

    Google Scholar 

  • Rockwood K, Fox RA, Stolee P, Robertson D, Beattie BL (1994) Frailty in elderly people: an evolving concept. CMAJ 150(4):489–495

    PubMed  CAS  Google Scholar 

  • Rohlfs RV, Swanson WJ, Weir BS (2010) Detecting coevolution through allelic association between physically unlinked loci. Am J Hum Genet 86(5):674–685. doi:10.1016/j.ajhg.2010.03.001

    Article  PubMed  CAS  Google Scholar 

  • Rostoks N, Ramsay L, MacKenzie K, Cardle L, Bhat PR, Roose ML, Svensson JT, Stein N, Varshney RK, Marshall DF, Graner A, Close TJ, Waugh R (2006) Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop varieties. Proc Natl Acad Sci U S A 103(49):18656–18661. doi:10.1073/pnas.0606133103

    Article  PubMed  CAS  Google Scholar 

  • Sabeti PC, Varilly P, Fry B, Lohmueller J, Hostetter E, Cotsapas C, Xie X, Byrne EH, McCarroll SA, Gaudet R, Schaffner SF, Lander ES, Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs RA, Belmont JW, Boudreau A, Hardenbol P, Leal SM, Pasternak S, Wheeler DA, Willis TD, Yu F, Yang H, Zeng C, Gao Y, Hu H, Hu W, Li C, Lin W, Liu S, Pan H, Tang X, Wang J, Wang W, Yu J, Zhang B, Zhang Q, Zhao H, Zhou J, Gabriel SB, Barry R, Blumenstiel B, Camargo A, Defelice M, Faggart M, Goyette M, Gupta S, Moore J, Nguyen H, Onofrio RC, Parkin M, Roy J, Stahl E, Winchester E, Ziaugra L, Altshuler D, Shen Y, Yao Z, Huang W, Chu X, He Y, Jin L, Liu Y, Sun W, Wang H, Wang Y, Xiong X, Xu L, Waye MM, Tsui SK, Xue H, Wong JT, Galver LM, Fan JB, Gunderson K, Murray SS, Oliphant AR, Chee MS, Montpetit A, Chagnon F, Ferretti V, Leboeuf M, Olivier JF, Phillips MS, Roumy S, Sallee C, Verner A, Hudson TJ, Kwok PY, Cai D, Koboldt DC, Miller RD, Pawlikowska L, Taillon-Miller P, Xiao M, Tsui LC, Mak W, Song YQ, Tam PK, Nakamura Y, Kawaguchi T, Kitamoto T, Morizono T, Nagashima A, Ohnishi Y, Sekine A, Tanaka T, Tsunoda T, Deloukas P, Bird CP, Delgado M, Dermitzakis ET, Gwilliam R, Hunt S, Morrison J, Powell D, Stranger BE, Whittaker P, Bentley DR, Daly MJ, de Bakker PI, Barrett J, Chretien YR, Maller J, McCarroll S, Patterson N, Pe'er I, Price A, Purcell S, Richter DJ, Sabeti P, Saxena R, Sham PC, Stein LD, Krishnan L, Smith AV, Tello-Ruiz MK, Thorisson GA, Chakravarti A, Chen PE, Cutler DJ, Kashuk CS, Lin S, Abecasis GR, Guan W, Li Y, Munro HM, Qin ZS, Thomas DJ, McVean G, Auton A, Bottolo L, Cardin N, Eyheramendy S, Freeman C, Marchini J, Myers S, Spencer C, Stephens M, Donnelly P, Cardon LR, Clarke G, Evans DM, Morris AP, Weir BS, Johnson TA, Mullikin JC, Sherry ST, Feolo M, Skol A, Zhang H, Matsuda I, Fukushima Y, Macer DR, Suda E, Rotimi CN, Adebamowo CA, Ajayi I, Aniagwu T, Marshall PA, Nkwodimmah C, Royal CD, Leppert MF, Dixon M, Peiffer A, Qiu R, Kent A, Kato K, Niikawa N, Adewole IF, Knoppers BM, Foster MW, Clayton EW, Watkin J, Muzny D, Nazareth L, Sodergren E, Weinstock GM, Yakub I, Birren BW, Wilson RK, Fulton LL, Rogers J, Burton J, Carter NP, Clee CM, Griffiths M, Jones MC, McLay K, Plumb RW, Ross MT, Sims SK, Willey DL, Chen Z, Han H, Kang L, Godbout M, Wallenburg JC, L'Archeveque P, Bellemare G, Saeki K, An D, Fu H, Li Q, Wang Z, Wang R, Holden AL, Brooks LD, McEwen JE, Guyer MS, Wang VO, Peterson JL, Shi M, Spiegel J, Sung LM, Zacharia LF, Collins FS, Kennedy K, Jamieson R, Stewart J (2007) Genome-wide detection and characterization of positive selection in human populations. Nature 449(7164):913–918. doi:10.1038/nature06250

    Article  PubMed  CAS  Google Scholar 

  • Sapre AB, Deshpande DS (1987) Spontaneous emergence of parents from the F1 interspecific hybrids of Coix-L. J Hered 78(6):357–360

    Google Scholar 

  • Schork NJ, Murray SS, Frazer KA, Topol EJ (2009) Common vs. rare allele hypotheses for complex diseases. Curr Opin Genet Dev 19(3):212–219. doi:10.1016/j.gde.2009.04.010

    Article  PubMed  CAS  Google Scholar 

  • Schrader F (1921) The chromosomes of Pseudococcus nipae. Biol Bull-Us 40(5):259–270

    Article  Google Scholar 

  • Schrader F (1923) A study of the chromosomes in three species of Pseudococcus. Arch Zellforsch 17:45–62

    Google Scholar 

  • Sillers PJ, Wise D, Forer A (1983) Prometaphase forces towards opposite spindle poles are not independent: an on/off control system is identified by ultraviolet microbeam irradiations. J Cell Sci 64:69–88

    PubMed  CAS  Google Scholar 

  • Sivagnanasundaram S, Broman KW, Liu M, Petronis A (2004) Quasi-linkage: a confounding factor in linkage analysis of complex diseases? Hum Genet 114(6):588–593. doi:10.1007/s00439-004-1109-7

    Article  PubMed  Google Scholar 

  • Slatkin M (1972) On treating the chromosome as the unit of selection. Genetics 72(1):157–168

    PubMed  CAS  Google Scholar 

  • Slatkin M (2008) Linkage disequilibrium—understanding the evolutionary past and mapping the medical future. Nat Rev Genet 9(6):477–485. doi:10.1038/nrg2361

    Article  PubMed  CAS  Google Scholar 

  • Spilianakis CG, Flavell RA (2006) Molecular biology. Managing associations between different chromosomes. Science 312(5771):207–208. doi:10.1126/science.1126689

    Article  PubMed  CAS  Google Scholar 

  • Splansky GL, Corey D, Yang Q, Atwood LD, Cupples LA, Benjamin EJ, D'Agostino RB Sr, Fox CS, Larson MG, Murabito JM, O'Donnell CJ, Vasan RS, Wolf PA, Levy D (2007) The Third Generation Cohort of the National Heart, Lung, and Blood Institute's Framingham Heart Study: design, recruitment, and initial examination. Am J Epidemiol 165(11):1328–1335. doi:10.1093/aje/kwm021

    Article  PubMed  Google Scholar 

  • Strickberger MW (2000) Evolution, 3rd edn. Jones and Bartlett, Sudbury

    Google Scholar 

  • Tyler AL, Asselbergs FW, Williams SM, Moore JH (2009) Shadows of complexity: what biological networks reveal about epistasis and pleiotropy. Bioessays 31(2):220–227. doi:10.1002/bies.200800022

    Article  PubMed  Google Scholar 

  • Wang J, Chen PJ, Wang GJ, Keller L (2010) Chromosome size differences may affect meiosis and genome size. Science 329(5989):293. doi:10.1126/science.1190130

    Article  PubMed  Google Scholar 

  • White MJD (1973) Animal cytology and evolution, 3dth edn. University Press, Cambridge

    Google Scholar 

  • Willcox DC, Willcox BJ, Wang NC, He Q, Rosenbaum M, Suzuki M (2008) Life at the extreme limit: phenotypic characteristics of supercentenarians in Okinawa. J Gerontol A Biol Sci Med Sci 63(11):1201–1208

    Article  PubMed  Google Scholar 

  • Williams A, Spilianakis CG, Flavell RA (2010) Interchromosomal association and gene regulation in trans. Trends Genet 26(4):188–197. doi:10.1016/j.tig.2010.01.007

    Article  PubMed  CAS  Google Scholar 

  • Wise D, Sillers PJ, Forer A (1984) Non-random chromosome segregation in Neocurtilla hexadactyla is controlled by chromosomal spindle fibres: an ultraviolet microbeam analysis. J Cell Sci 69:1–17

    PubMed  CAS  Google Scholar 

  • Xing J, Watkins WS, Zhang Y, Witherspoon DJ, Jorde LB (2008) High fidelity of whole-genome amplified DNA on high-density single nucleotide polymorphism arrays. Genomics 92(6):452–456. doi:10.1016/j.ygeno.2008.08.007

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

AMK contributed to the study conception, design, statistical analysis, interpretation of the results, and writing the manuscript. IC contributed to the study design, conception, genetic analyses of inheritance, analysis of biological role, interpretation of the results, and writing the manuscript. AIY contributed to discussion and interpretation of the results and drafting the manuscript.

The research reported in this paper was supported, in part, by Award Number R01AG030612 from the National Institute on Aging. The FHS and the Framingham SHARe project are conducted and supported by the National Heart, Lung, and Blood Institute (NHLBI) in collaboration with Boston University. The Framingham SHARe data used for the analyses described in this manuscript were obtained through dbGaP (accession numbers phs000007.v7.p4 and phs000007.v14.p5). This manuscript was not prepared in collaboration with investigators of the FHS and does not necessarily reflect the opinions or views of the FHS, Boston University, or the NHLBI. We thank G. Martin for discussion of the results and drawing our attention to yeast-, worm-, and plant-based models of human diseases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander M. Kulminski.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online resource 1

The 69 SNPs pre-selected at the first stage of the analyses according to potential association with prevalent cardiovascular disease (PDF 129 kb)

Online resource 2

Connections of the observed inter-chromosomal LD with phenotypes (PDF 267 kb)

Online resource 3

Detail map of perfect linkage disequilibrium among SNPs on non-homologous chromosomes from the Y and G sets for each sex (blue) (PDF 111 kb)

Online resource 4

Detail map of perfect linkage disequilibrium among SNPs on non-homologous chromosomes from the Y and G sets for the original and the offspring cohorts (PDF 111 kb)

Online resource 5

Genetic analysis of progeny of mating heterozygous and recessive (major allele) homozygous parents with information on live births and pregnancies included (PDF 111 kb)

Online resource 6

Evaluation of all theoretically possible contributions of genotypes with missing information, including those related to pregnancies and live births, to the explicitly observed genotypes for Tables 1 and Online resource 5 (PDF 77.7 kb)

Online resource 7

Linkage disequilibrium shown by each of the nine SNPs from the Y and G multi-locus inter-chromosomal complexes to SNPs within ±/− 1 Mb region on homologous chromosomes (PDF 131 kb)

Online resource 8

Maps showing chromosome-wide LD at the level r 2 ≥ 0.3 for the nine SNPs from the Y and G complexes (PDF 181 kb)

Online resource 9

Genotyping phases (PDF 141 kb)

Online resource 10

Survival of the genotyped and non-genotyped individuals (PDF 112 kb)

About this article

Cite this article

Kulminski, A.M., Culminskaya, I. & Yashin, A.I. Inter-chromosomal level of genome organization and longevity-related phenotypes in humans. AGE 35, 501–518 (2013). https://doi.org/10.1007/s11357-011-9374-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-011-9374-6

Keywords

Navigation