Skip to main content
Log in

Development of AI-based hybrid soft computing models for prediction of critical river water quality indicators

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Prediction of river water quality indicators (RWQIs) using artificial intelligence (AI)–based hybrid soft computing modeling techniques could provide essential predictions required for efficient river health planning and management. The study described the development of a novel AI-based relative weighted ensemble (AIRWE) hybrid model for predicting critical RWQIs, i.e., biochemical oxygen demand (BOD) and total coliform (TC). The study involved comprehensive water quality (WQ) monitoring from 30 locations along the Damodar River to establish the baseline data and delineate the WQ. The representative input features showing a strong association with BOD and TC were identified using Spearman’s rank-coupled orthogonal linear transformation (SOT). The relative weighted ensemble (RWE) method was applied to determine the relative weights for base learners in the AIRWE model. The statistical analysis of the developed model revealed that it was most efficient and accurate for predicting BOD (R2, 0.97; RMSE, 0.06; MAE, 0.04) and TC (R2, 0.98; RMSE, 0.06; MAE, 0.05) over the traditional techniques. The tstat (BOD 0.02 and TC 0.47) was lesser than tcrit (1.672), confirming its unbiased predictions. The SOT technique removed the data noise and multicollinearity, whereas RWE curtailed the individual model’s limitations and predicted more reliable results. The model resulted 97% accuracy with high precision (96%) in classifying the river water quality for various end uses. The study describes a novel approach for researchers, scientists, and decision-makers for modeling and predicting various environmental attributes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

Download references

Acknowledgements

The authors acknowledge the Indian Institute of Technology (Indian School of Mines), Dhanbad, India, and Harcourt Butler Technical University, Kanpur, India, for providing the research facilities.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Suyog Gupta. The first draft of the manuscript was written by Suyog Gupta and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sunil Kumar Gupta.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Marcus Schulz

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 219 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S., Gupta, S.K. Development of AI-based hybrid soft computing models for prediction of critical river water quality indicators. Environ Sci Pollut Res 31, 27829–27845 (2024). https://doi.org/10.1007/s11356-024-32984-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-024-32984-w

Keywords

Navigation