Skip to main content

Predicting Water Quality Indicators from Conventional and Nonconventional Water Resources in Algeria Country: Adaptive Neuro-Fuzzy Inference Systems Versus Artificial Neural Networks

  • Chapter
  • First Online:
Water Resources in Algeria - Part II

Abstract

Monitoring water quality is of great importance and mainly adopted for water pollution control of conventional and nonconventional water resources. Generally, water quality is evaluated using several indicators, including chemical oxygen demand (COD), biochemical oxygen demand (BOD), and dissolved oxygen concentration (DO). In the present investigation, two artificial intelligence techniques, namely, adaptive neuro-fuzzy inference system (ANFIS) and artificial neural networks (ANN), were applied for predicting two water quality indicators: (1) chemical oxygen demand (COD) at Sidi Marouane Wastewater Treatment Plant (WWTP), east of Algeria, and (2) dissolved oxygen concentration (DO) at the drinking water treatment plant of Boudouaou, Algeria. The models were developed and compared based on several water quality variables as inputs. Three ANFIS models, namely, (1) ANFIS with fuzzy c-mean clustering (FCM) algorithm called ANFIS_FC, (2) ANFIS with grid partition (GP) method called ANFIS_GP, and (3) ANFIS with subtractive clustering (SC) called ANFIS_SC, were developed. The ANFIS models were compared to standard multilayer perceptron neural network (MLPNN) and multiple linear regression model (MLR). Results obtained demonstrated that (1) for predicting COD, ANFIS_SC is the best model, and the coefficient of correlation (R), Wilmot’s index (d), root-mean-square error (RMSE), and mean absolute error (MAE) were calculated as 0.805, 0.880, 6.742, and 4.944 mg/L for the validation dataset. The worst results were obtained using the MLR model with R, d, RMSE, and MAE equal to 0.750, 0.840, 0.7658, and 5.916 mg/L for the validation subset, and (2) for predicting DO concentration, the best results were obtained using ANFIS_SC with R, d, RMSE, and MAE equal to 0.856, 0.922, 1.528, and 1.123 mg/L for the validation subset, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kisi O, Ay M (2014) Comparison of Mann-Kendall and innovative trend method for water quality parameters of the Kizilirmak River, Turkey. J Hydrol 513:362–375. https://doi.org/10.1016/j.jhydrol.2014.03.005

    Article  CAS  Google Scholar 

  2. Cong Q, Yu W (2018) Integrated soft sensor with wavelet neural network and adaptive weighted fusion for water quality estimation in wastewater treatment process. Measurement 124:436–446. https://doi.org/10.1016/j.measurement.2018.01.001

    Article  Google Scholar 

  3. Xiao H, Huang D, Pan Y, Liu Y, Song K (2017) Fault diagnosis and prognosis of wastewater processes with incomplete data by the auto-associative neural networks and ARMA model. Chemom Intell Lab Syst 161:96–107

    Article  CAS  Google Scholar 

  4. Ruan J, Zhang C, Li Y, Li P, Yang Z, Chen X, Huang M, Zhang T (2017) Improving the efficiency of dissolved oxygen control using an on-line control system based on a genetic algorithm evolving FWNN software sensor. J Environ Manag 187:550–559. https://doi.org/10.1016/j.jenvman.2016.10.056

    Article  CAS  Google Scholar 

  5. Fernandez de Canete J, Del Saz Orozco P, Baratti R, Mulas M, Ruano A, Garcia-Cerezo A (2016) Soft-sensing estimation of plant effluent concentrations in a biological wastewater treatment plant using an optimal neural network. Expert Syst Appl 63(8):19. https://doi.org/10.1016/j.eswa.2016.06.028

    Article  Google Scholar 

  6. Ay M, Kisi O (2014) Modelling of chemical oxygen demand by using ANNs, ANFIS and k-means clustering techniques. J Hydrol 511:279–289

    Article  CAS  Google Scholar 

  7. Kisi O, Parmar KS (2016) Application of least square support vector machine and multivariate adaptive regression spline models in long term prediction of river water pollution. J Hydrol 534:104–112

    Article  CAS  Google Scholar 

  8. Nadiri AA, Shokri S, Tsai FTC, Moghaddam AA (2018) Prediction of effluent quality parameters of a wastewater treatment plant using a supervised committee fuzzy logic model. J Clean Prod 180:539–549. https://doi.org/10.1016/j.jclepro.2018.01.139

    Article  CAS  Google Scholar 

  9. Moral H, Aksoy A, Gokcay CF (2008) Modeling of the activated sludge process by using artificial neural networks with automated architecture screening. Comput Chem Eng 32:2471–2478. https://doi.org/10.1016/j.compchemeng.2008.01.008

    Article  CAS  Google Scholar 

  10. Yilmaz T, Seckin G, Yuceer A (2010) Modeling of effluent COD in UAF reactor treating cyanide containing wastewater using artificial neural network approaches. Adv Eng Softw 41:1005–1010. https://doi.org/10.1016/j.advengsoft.2010.04.002

    Article  Google Scholar 

  11. Pai TY, Yang PY, Wang SC, Lo MH, Chiang CF, Kuo JL, Chu HH, Su HC, Yu LF, Hu HC, Chang YH (2011) Predicting effluent from the wastewater treatment plant of industrial park based on fuzzy network and influent quality. Appl Math Model 35:3674–3684. https://doi.org/10.1016/j.apm.2011.01.019

    Article  Google Scholar 

  12. Perendeci A, Arslan S, Tanyolaç A, Celebi SS (2009) Effects of phase vector and history extension on prediction power of adaptive-network based fuzzy inference system (ANFIS) model for a real scale anaerobic wastewater treatment plant operating under unsteady state. Bioresour Technol 100:4579–4587

    Article  CAS  Google Scholar 

  13. Singh KP, Basant N, Malik A, Jain G (2010) Modeling the performance of “up-flow anaerobic sludge blanket” reactor based wastewater treatment plant using linear and nonlinear approaches-a case study. Anal Chim Acta 658:1–11

    Article  CAS  Google Scholar 

  14. Yang T, Zhang L, Wang A, Gao H (2013) Fuzzy modeling approach to predictions of chemical oxygen demand in activated sludge processes. Inf Sci 235:55–64

    Article  Google Scholar 

  15. Erdirencelebi D, Yalpir S (2011) Adaptive network fuzzy inference system modeling for the input selection and prediction of anaerobic digestion effluent quality. Appl Math Model 35:3821–3832. https://doi.org/10.1016/j.apm.2011.02.015

    Article  Google Scholar 

  16. Heddam S, Lamda H, Filali S (2016) Predicting effluent biochemical oxygen demand in a wastewater treatment plant using generalized regression neural network based approach: a comparative study. Environ Process 3:153–165

    Article  CAS  Google Scholar 

  17. Heddam S, Bermad A, Dechemi N (2011) Applications of radial basis function and generalized regression neural networks for modelling of coagulant dosage in a drinking water treatment: a comparative study. J Environ Eng 137(12):1209–1214

    Article  CAS  Google Scholar 

  18. Heddam S, Bermad A, Dechemi N (2012) ANFIS-based modelling for coagulant dosage in drinking water treatment plant: a case study. Environ Monit Assess 184:1953–1971. https://doi.org/10.1007/s10661-011-2091-x

    Article  CAS  Google Scholar 

  19. Heddam S, Dechemi N (2015) A new approach based on the dynamic evolving neural-fuzzy inference system (DENFIS) for modelling coagulant dosage: case study of water treatment plant of Algeria country. Desalin Water Treat 53(4):1045–1053. https://doi.org/10.1080/19443994.2013.878669

    Article  CAS  Google Scholar 

  20. Olden JD, Jackson DA (2002) Illuminating the “black box”: understanding variable contributions in artificial neural networks. Ecol Model 154:135–150

    Article  Google Scholar 

  21. Houichi L, Dechemi N, Heddam S, Achour B (2013) An evaluation of ANN methods for estimating the lengths of hydraulic jumps in U-shaped channel. J Hydroinf 15(1):147–154

    Article  Google Scholar 

  22. Heddam S (2014) Modelling hourly dissolved oxygen concentration (DO) using two different adaptive neuro-fuzzy inference systems (ANFIS): a comparative study. Environ Monit Assess 186:597–619. https://doi.org/10.1007/s10661-013-3402-1

    Article  CAS  Google Scholar 

  23. Keshtegar B, Heddam S (2018) Modeling daily dissolved oxygen concentration using modified response surface method and artificial neural network: a comparative study. Neural Comput Appl 30(10):2995–3006. https://doi.org/10.1007/s00521-017-2917-8

    Article  Google Scholar 

  24. Haykin S (1999) Neural networks a comprehensive foundation. Prentice Hall, Upper Saddle River

    Google Scholar 

  25. Rumelhart DE, Hinton GE, Williams RJ (1986) Learning internal representations by error propagation. In: Rumelhart DE, McClelland PDP, Research Group (eds) Parallel distributed processing: explorations in the microstructure of cognition. Foundations, vol I. MIT Press, Cambridge, pp 318–362

    Chapter  Google Scholar 

  26. Hornik K (1991) Approximation capabilities of multilayer feedforward networks. Neural Netw 4(2):251–257. https://doi.org/10.1016/0893-6080(91)90009-T

    Article  Google Scholar 

  27. Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal Approximators. Neural Netw 2:359–366. https://doi.org/10.1016/0893-6080(89)90020-8

    Article  Google Scholar 

  28. Jang JS (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23(3):665–685

    Article  Google Scholar 

  29. Zhu S, Heddam S, Nyarko E, Hadzima-Nyarko M, Piccolroaz S, Wu S (2019) Modelling daily water temperature for rivers: adaptive neuro-fuzzy inference systems vs. artificial neural networks models. Environ Sci Pollut Res 26(1):402–420. https://doi.org/10.1007/s11356-018-3650-2

    Article  Google Scholar 

  30. Zhu S, Heddam S, Wu S, Dai J, Jia B (2019) Extreme learning machine based prediction of daily water temperature for rivers. Environ Earth Sci 78:202

    Article  Google Scholar 

  31. Zhu S, Nyarko E, Hadzima-Nyarko M, Heddam S, Wu S (2019) Assessing the performance of a suite of machine learning models for daily river water temperature prediction. PeerJ 7:e7065

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salim Heddam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Heddam, S., Kisi, O., Sebbar, A., Houichi, L., Djemili, L. (2019). Predicting Water Quality Indicators from Conventional and Nonconventional Water Resources in Algeria Country: Adaptive Neuro-Fuzzy Inference Systems Versus Artificial Neural Networks. In: Negm, A.M., Bouderbala, A., Chenchouni, H., Barceló, D. (eds) Water Resources in Algeria - Part II. The Handbook of Environmental Chemistry, vol 98. Springer, Cham. https://doi.org/10.1007/698_2019_399

Download citation

Publish with us

Policies and ethics