Skip to main content

Advertisement

Log in

Organochlorine, organophosphorus, and carbamate pesticide residues in an Ethiopian Rift Valley Lake Hawassa: occurrences and possible ecological risks

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Currently, pesticide production and use are on the rise globally. This trend is certain to continue in the coming decades with residues posing risks to the environment and human health even at low levels. Although various aspects of pesticides and their possible implications have widely been studied, such studies have mostly been carried out in developed countries leaving the rest of the world with little scientific information. We present here the results of a study on the occurrences, concentrations, and ecological risks of 30 pesticide residues (PRs) in water and sediment samples from a tropical freshwater Lake Hawassa in the Ethiopian Rift Valley. A total of 54 composite samples of water and sediment were collected from three sampling sites on three occasions. The samples were prepared by quick, easy, cheap, effective, rugged, and safe (QuEChERS) technique, and analyzed using GC-MS at Bless Agri Food Laboratory Service located in Addis Ababa, Ethiopia. The study applied the risk quotient (RQ) method to scrutinize the risks posed to aquatic biota by the detected PRs. The results showed occurrences of 18 and 20 PRs in the water and sediment samples, respectively. The majority, 78 and 75% of the detected PRs in water and sediment samples, respectively represent the organochlorine chemical class. Concentrations of heptachlor epoxide were significantly (p ≤ 0.001) higher than those of the remaining pesticides in both matrices. Of the pesticides detected, 77% were present in water and 83% in sediment samples and pose a serious risk (RQ ≥ 1) to the Lake Hawassa biota. This calls for further research to investigate the risks to human health posed by the PRs. The findings of this study can contribute to the development of global protocols, as they support the concerns raised about the ecological and public health impacts of PRs on a global level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets used or analyzed during the current study are available from the corresponding author upon a reasonable request.

References

  • Abbasi Y, Mannaerts CM (2018) Evaluating organochlorine pesticide residues in the aquatic environment of the Lake Naivasha River basin using passive sampling techniques. Environ Monit Assess 190. https://doi.org/10.1007/s10661-018-6713-4

  • Abebe Y, Bitew M, Ayenew T, Alo C, Cherinet A, Dadi M (2018) Morphometric change detection of Lake Hawassa in the Ethiopian Rift Valley. Water 10(5):625. https://doi.org/10.3390/w10050625

    Article  Google Scholar 

  • Abong DA, Wandiga SO, JumbaI O (2018) Occurrence and distribution of organochlorine pesticide residue levels in water, sediment, and aquatic weeds in the Nyando River catchment, Lake Victoria, Kenya. Afr J Aquat Sci 43:255–270

    Article  Google Scholar 

  • Ågerstrand M, Rudén C (2010) Evaluation of the accuracy and consistency of the Swedish environmental classification and information system for pharmaceuticals. Sci Total Environ 408:2327–2339

    Article  Google Scholar 

  • Arellano-Aguilar O, Betancourt-Lozano M, Aguilar-Zárate G, Ponce de Leon-Hill C (2017) Agrochemical loading in drains and rivers and its connection with pollution in coastal lagoons of the Mexican Pacific. Environ Monitor Assess 189. https://doi.org/10.1007/s10661-017-5981-8

  • Aydin S, Aydin ME, Ulvi A, Kilic H (2019) Antibiotics in hospital effluents: occurrence, contribution to urban wastewater, removal in a wastewater treatment plant, and environmental risk assessment. Environ Sci Pollut Res 26:544–558. https://doi.org/10.1007/s11356-018-3563-0

    Article  CAS  Google Scholar 

  • Ayele S, Mamo Y, Deribe E, Eklo OM (2022) Organochlorine pesticides and polychlorinated biphenyls in carnivorous water bird and fish species from Lake Hawassa, Ethiopia. SN Appl Sci 4:285. https://doi.org/10.1007/s42452-022-05177-8

    Article  CAS  Google Scholar 

  • Ayenew T, Becht R, Lieshout AM, Gebreegziabher Y, Legesse D, Onyando JO (2007) Hydrodynamics of topographically closed lakes in the Ethio-Kenyan Rift: the case of lakes Awassa and Naivasha. J Spat Hydrol 7(1)

  • Bai Y, Ruan X, van der Hoek J (2018) Residues of organochlorine pesticides (OCPs) in aquatic environment and risk assessment along Shaying River, China. Environ Geochem Health: Off J Soc Environ Geochem Health 40(6):2525–2538. https://doi.org/10.1007/s10653-018-0117-9

    Article  CAS  Google Scholar 

  • Baqar M, Sadef Y, Ahmad S, Mahmood A, Li J, Zhang G (2018) Organochlorine pesticides across the tributaries of river Ravi, Pakistan: human health risk assessment through dermal exposure, ecological risks, source fingerprints, and spatiotemporal distribution. Sci Total Environ 618:291–305. https://doi.org/10.1016/j.scitotenv.2017.10.234

    Article  CAS  Google Scholar 

  • Barakat A, Khairy M, Aukaily I (2013) Persistent organochlorine pesticide and PCB residues in surface sediments of Lake Qarun, a protected area of Egypt. Chemosphere 90:2467–2476

    Article  CAS  Google Scholar 

  • Barber DS, McNally AJ, Garcia-Reyero N et al (2007) Exposure to p, p’-DDE or dieldrin during the reproductive season alters hepatic CYP expression in largemouth bass (Micropterussalmoides). Aquat Toxicol 81:27–35

    Article  CAS  Google Scholar 

  • Barbieri M, Peris A, Postigo C, Moya-Garcés A et al (2021) Evaluation of the occurrence and fate of pesticides in a typical Mediterranean delta ecosystem (Ebro River Delta) and risk assessment for aquatic organisms. Environ Pollut 274. https://doi.org/10.1016/j.envpol.2020.115813

  • Beckvar N, Dillion TM, Read LB (2005) Approaches for linking whole-body fish tissue residues of mercury and DDT to biological effects thresholds. Environ ToxicolChem 24:2094–2105

    Article  CAS  Google Scholar 

  • Briz V, Molina-Molina J, Sánchez-Redondo S, Fernández M, Grimalt J, Olea N et al (2011) Differential estrogenic effects of the persistent organochlorine pesticides dieldrin, endosulfan, and lindane in primary neuronal cultures. Toxicol Sci 120(2):413–427. https://doi.org/10.1093/toxsci/kfr019

    Article  CAS  Google Scholar 

  • Bruzzoniti MC, Checchini L, De-Carlo RM, Orlandini S, Rivoira L, Del-Bubba M (2014) QuEChERS sample preparation for the determination of pesticides and other organic residues in environmental matrices: a critical review. Anal Bioanal Chem 406:4089–4116. https://doi.org/10.1007/s00216-014-7798-4

    Article  CAS  Google Scholar 

  • Bu Q, Wang B, Huang J, Deng S, Yu G (2013) Pharmaceuticals and personal care products in the aquatic environment in China: a review. J Hazard Matter 262:189–211

    Article  CAS  Google Scholar 

  • Canadian Environmental Quality Guidelines (CEQG) (1999) Canadian Council of Ministers of the Environment, Winnipeg

  • Chen C, Li T, Zou W, Chen S, Zhang K, Ma L (2020) Spatial distribution and sources of organochlorine pesticides in surface waters of Shanghai, China. SN Appl Sci 2. https://doi.org/10.1007/s42452-020-03507-2

  • Cho E, Khim J, Chung S, Seo D, Son Y (2014) Occurrence of micropollutants in four major rivers in Korea. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2014.03.025

    Article  Google Scholar 

  • Chopra AK, Sharma MK, Chamoli S (2011) Bioaccumulation of organochlorine pesticides in aquatic system—an overview. Environ Monit Assess 173:905–916. https://doi.org/10.1007/s10661-010-1433-4

    Article  CAS  Google Scholar 

  • Cochran RC (2001) Handbook of pesticide toxicology, risk assessment for acute exposure to pesticides. Academic press, 2nd ed. (1): 691–705

  • Debela S, Wu J, Chen X, Zhang Y (2020) Stock status, urban public perception, and health risk assessment of obsolete pesticide in Northern Ethiopia. Environ Sci Pollut Res Int 27:25837–25847. https://doi.org/10.1007/s11356-019-05694-x

    Article  CAS  Google Scholar 

  • Debela S, Sheriff I, Daba C, Tefera YM, Bedada D, Gebrehiwot M (2023a) Status of persistent organic pollutants in Ethiopia. Front Environ Sci 11. https://doi.org/10.3389/fenvs.2023.1182048

  • Debela SA, Sheriff I, Daba C, Tefera YM, Bedada D, Gebrehiwot M (2023b) Status of persistent organic pollutants in Ethiopia. Front Environ Sci 11:1182048. https://doi.org/10.3389/fenvs.2023.1182048

    Article  Google Scholar 

  • Deblonde T, Hartemann P (2013) Environmental impact of medical prescriptions: assessing the risks and hazards of persistence, bioaccumulation and toxicity of pharmaceuticals. Public Health 127(4):312–317

    Article  CAS  Google Scholar 

  • Deribachew B, Amde M, Nigussie-Dechassa R, Taddesse AM (2015) Selected heavy metals in some vegetables produced through wastewater irrigation and their toxicological implication in Eastern Ethiopia. Afr J Food Agri Nutr Dev 15(3):98–112

    Google Scholar 

  • Deribe E, Rosseland BO, Borgstrøm R, Salbu B, Gebremariam Z, Dadebo E, Skipperud L, Eklo OM (2014) Organochlorine pesticides and polychlorinated biphenyls in fish from Lake Awassa in the Ethiopian Rift Valley: human health risks. Bull Environ ContamToxicol 93(2):238–244. https://doi.org/10.1007/s00128-014-1314-6

    Article  CAS  Google Scholar 

  • EFSA (European Food Safety Authority) (2007) Opinion of the scientific panel on contaminants in the food chain on a request from the European Commission related to heptachlor. EFSA J 478:1–48

    Google Scholar 

  • El-Shebly A, El-Kad M (2008) Effects of glyphosate herbicide on serum growth hormone (GH) levels and muscle protein content in Nile tilapia (Oreochromis niloticus L.). Res J Fish Hydrobiol 3:84–88

    Google Scholar 

  • EMEFCC (2006) Federal Democratic Republic of Ethiopia national implementation Plan for the Stockholm convention. https://www.informea.org/en/actionplan/federal-democratic-republic-ethiopia-national-implementation-plan-stockholmconvention. Accessed 12 June 2022

  • Erkmen B, Yerli S, Erkakan F, Kolankaya D (2013) Persistent organochlorine pesticide residues in water and sediment samples from Lake Manyas, Turkey. Jo Environ Biol 34:171–176

    Google Scholar 

  • ESYD G-FYTOPROST (2016) Hellenic Accreditation System. Guidance document on method Validation and Quality Control Procedures for Pesticides residues

  • EU (European Union) (2003) Technical guidance document on risk assessment. EurChem Bureau, Italy

    Google Scholar 

  • EU (European Union) (2008) Commission Directive 2008/105/EC of the European Parliament and of the Council, on environmental quality standards in the field of water policy. Off J Eur Communities L 348/84 (24.12.2008)

  • FAO (2021) World Food and Agriculture - Statistical Yearbook 2021. Rome. https://doi.org/10.4060/cb4477en

  • FAO (2022a) Pesticides use, pesticides trade and pesticides indicators: global, regional and country trends, 1990–2020 FAOSTAT Analytical Brief 46. http://www.fao.org/faostat/en/#data/RT. Accessed 5 Jan 2022

  • FAO (2022b) FAOSTAT: Pesticides use. In: FAO. Rome. Cited July 2022. https://www.fao.org/faostat/en/#data/RP

  • Firouzbakhsh F, Mehrabi Z, Heydari M, Khalesi MK, Tajick MA (2014) Protective effects of a synbiotic against experimental Saprolegniaparasitica infection in rainbow trout (Oncorhynchus mykiss). Aquac Res 45(4):609–618

    Article  Google Scholar 

  • Fry D (1995) Reproductive effects in birds exposed to pesticides and industrial chemicals. Environ Health Perspect 103(7):165–171. https://doi.org/10.1289/ehp.95103s7165

    Article  CAS  Google Scholar 

  • Guo W, Feng Y (2013) Health risk assessment of organochlorine pesticides in a shallow freshwater lake, China. AMR. https://doi.org/10.4028/www.scientific.net/amr.864-867.871

  • Hamilton D, Ambrus Á, Dieterle R, Felsot A et al (2003) Regulatory limits for pesticide residues in water (IUPAC Technical Report). Pure Appl Chem 75(8):1123–1155. https://doi.org/10.1351/pac200375081123

    Article  CAS  Google Scholar 

  • Hellar-Kihampa H (2011) Pesticide residues in four rivers running through an intensive agricultural area, Kilimanjaro, Tanzania. J Appl Sci Environ Manag 15:307–316

    CAS  Google Scholar 

  • Henry L, Kishimba M (2003) Levels of pesticide residues in water, soil, and sediments from Southern Lake Victoria and its basin. Tanzania J Sci 29:77–90

    Google Scholar 

  • Hiller E, Sirotiak M, Tatarkova V, Jurkovic L (2011) Occurrence of selected organochlorine pesticide residues in surface sediments from the VelkeKozmalovce, Ruzin, and ZemplinskaSirava water reservoirs, Slovakia. J Hydrol Hydromech 59(1):51–9

    Article  CAS  Google Scholar 

  • Hu Y, Qi S, Zhang J, Tan L, Zhang J, Wang Y, Yuan D (2011) Assessment of organochlorine pesticides contamination in underground rivers in Chongqing, Southwest. Fuel and Energy Abstracts

  • Huang Z, Chen B, Yao S (2007) Simultaneous determination of 102 pesticide residues in Chinese teas by gas chromatography–mass spectrometry. J Chromatogr B 853:154–162

    Article  CAS  Google Scholar 

  • Ibigbami OA, Aiyesanmi AF, Adeyeye EI, Adebayo AO (2015) Persistent organochlorine pesticide residues in water, sediments and fish samples from Ogbese River. Environ Nat Resour Res 5(28)

  • Jansen HC, Harmsen J (2011) Pesticide monitoring in the Central Rift Valley 2009–2010 : ecosystems for water in Ethiopia

  • Jayaraj R, Megha P, Sreedev P (2016) Organochlorine pesticides, their toxic effects on living organisms, and their fate in the environment. Interdiscip Toxicol 9(3–4):90–100. https://doi.org/10.1515/intox-2016-0012

    Article  CAS  Google Scholar 

  • Kassegne A, Okonkwo BT, Daso AP, Olukunle O, Asfaw S (2020) Ecological risk assessment of organochlorine pesticides and polychlorinated biphenyls in water and surface sediment samples from Akaki River catchment, central Ethiopia. Emerg Contam 6:396–404. https://doi.org/10.1016/j.emcon.2020.11.0042405-6650/

    Article  Google Scholar 

  • Kaur R, Mavi GK, Raghav S (2019) Pesticides classification and its impact on environment. Int J Curr Microbiol App Sci 8(3):1889–1897

    Article  CAS  Google Scholar 

  • Kaushik CP, Sharma HR, Jain S, Dawra J, Kaushik A (2008) Pesticide residues in river Yamuna and its canals in Haryana and Delhi, India. Environ Monit Ad Assess 144(1–3):329–340

    Article  CAS  Google Scholar 

  • Kelly BC, Ikonomou MG, Blair JD, Morin AE, Gobas FAPC (2007) Food web-specific biomagnification of persistent organic pollutants. Science 317(5835):236–239

    Article  CAS  Google Scholar 

  • Kuranchie-mensah H, Palm L, Manukure S, Afful S, Adjei G, Arthur J (2011) Assessment of organochlorine pesticides and polychlorinated biphenyls levels in fishes from the Volta Lake, Ghana, and their suitability for human consumption. Elixir Food Sci 41:5982–5990

    Google Scholar 

  • Li Y, Zhang Q, Ji D, Wang T et al (2009) Levels and vertical distributions of PCBs, PBDEs, and OCPs in the atmospheric boundary layer: observation from the Beijing 325-m meteorological tower. Environ Sci Technol 43(4):1030–5

    Article  CAS  Google Scholar 

  • Malik A, Ojha P, Singh K (2008) Levels and distribution of persistent organochlorine pesticide residues in water and sediments of Gomti River (India)—a tributary of the Ganges River. Environ Monit Assess 148(1–4):421–435

    Google Scholar 

  • Manimekalai D, Srinivasan A, Padmavathy P, Jawahar P, George R, Arisekar U (2022) Acute and chronic toxicity effects of the heptachlor pesticide on tilapia (Oreochromismossambicus): impact to behavioral patterns and histopathological responses. J Coast Res 38(5):999–1010 (https://www.jstor.org/stable/48687458)

    Article  CAS  Google Scholar 

  • Mdeni NL, Adeniji AO, Okoh AI, Okoh OO (2022) Analytical evaluation of carbamate and organophosphate pesticides in human and environmental matrices: a review. Molecules 27:618. https://doi.org/10.3390/molecules27030618

    Article  CAS  Google Scholar 

  • Mekonnen K, Ambushe A, Chandravanshi B, Abshiro M, Mc C (2012) Potentially toxic elements in some freshwater bodies in Ethiopia. Toxicol Environ Chem 94(10):1980–1994

    Article  CAS  Google Scholar 

  • Mekuria W, Solomon A (2019) The significance and implications of pesticide residue on fruits and vegetables in Ethiopia: an overview. Int J Ecotoxicol Ecobiol 7(6):71–81. https://doi.org/10.11648/j.bio.20190706.11

    Article  CAS  Google Scholar 

  • Mergia MT, Weldemariam ED, Eklo OM, Yimer GT (2021) Small-scale farmer pesticide knowledge and practice and impacts on the environment and human health in Ethiopia. J Health Pollut 11(30):1–19

    Article  Google Scholar 

  • Mitra A, Chatterjee C, Mandal FB (2011) Synthetic chemical pesticides and their effects on birds. Res J Environ Toxicol 5:81–96

    Article  CAS  Google Scholar 

  • Molina R, Gilbert-López B, García-Reyes J, Molina-Díaz A (2013) Comparative evaluation of liquid-liquid extraction, solid-phase extraction and solid-phase microextraction for the gas chromatography-mass spectrometry determination of multi-class priority organic contaminants in wastewater, Talanta. https://doi.org/10.1016/j.talanta.2013.09.040

  • Moore MT, Lizotte RE Jr, Knight SS et al (2007) Assessment of pesticide contamination in three Mississippi Delta oxbow lakes using Hyalellaazteca. Chemosphere 67:2184–2191

    Article  CAS  Google Scholar 

  • Navarrete I, Tee K, Unson J, Hallare A (2018) Organochlorine pesticide residues in surface water and groundwater along Pampanga river, Philippines. Environ Monit Assess 190:289. https://doi.org/10.1007/s10661-018-6680-9

    Article  CAS  Google Scholar 

  • Ndunda E, Madadi V, Wandiga S (2018) Organochlorine pesticide residues in sediment and water from Nairobi River, Kenya: levels, distribution, and ecological risk assessment. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-018-3398-8

    Article  Google Scholar 

  • Negatu B, Dugassa S, Mekonnen Y (2021) Environmental and health risks of pesticide use in Ethiopia. J Heal Pollut 11(30):1–12

    Google Scholar 

  • Newton I (2013) Organochlorine pesticides and birds. British Birds 106(4):189–205

    Google Scholar 

  • Nigussie K, Chandravanshi B, Wondimu T (2010) Correlation among trace metals in tilapia (Oreochromisniloticus), sediment, and water samples of Lakes Awassa and Ziway, Ethiopia. Int J Biol Chem Sci 4(5):1641–1656

    Google Scholar 

  • Noyes PD, McElwee MK, Miller HD et al (2009) The toxicology of climate change: environmental contaminants in a warming world. Environ Int 35:971–986

    Article  CAS  Google Scholar 

  • Pesando D, Robert S, Huitorel P, Gutknecht E, Pereira L, Girard JP, Ciapa B (2004) Effects of methoxychlor, dieldrin and lindane on sea urchin fertilization and early development. Aquat Toxicol 66(3):225–239

    Article  CAS  Google Scholar 

  • Peterson ME, Talcot PA (2006) Small Animal Toxicology, 2nd ed.; Elsevier: St. Louis, 2006; pp 526–527, 941–949

  • Pickford KA, Thomas-Jones RE, Wheals B, Tyler CR, Sumpter JP (2003) Route of exposure affects the oestrogenic response of fish to 4-tert-nonylphenol. Aquat Toxicol 65(3):267–279

    Article  CAS  Google Scholar 

  • Pimentel D (1995) Amounts of pesticides reaching target pests: environmental impacts and ethics. J Agric Environ Ethics 8:17–29

    Article  Google Scholar 

  • Pokethitiyook P, Poolpak T (2012) Heptachlor and its metabolite: accumulation and degradation in sediment. pesticides - recent trends in pesticide residue assay. InTech. https://doi.org/10.5772/48741

  • Quinn L, Pieters R, Nieuwoudt C, Borgen AR, Kylin H, Bouwman H (2009) Distribution profiles of selected organic pollutants in soils and sediments of industrial, residential, and agricultural areas of South Africa. J Environ Monit 11:1647–1657

    Article  CAS  Google Scholar 

  • Ravindran J, Pankajshan M, Puthur S (2016) Review article - organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. InterdiscipToxicol 9(3–4):90–100. https://doi.org/10.1515/intox-2016-0012

    Article  CAS  Google Scholar 

  • Saadati N, Abdullah MP, ZakariaZ SSBT, Rezayi M, Hassonizadeh H (2013) Limit of detection and limit of quantification development procedures for organochlorine pesticides analysis in water and sediment matrices. Chem Cent J 2013(7):63. https://doi.org/10.1186/1752-153X-7-63

    Article  CAS  Google Scholar 

  • Sahilu TA (2016) Stewardship towards responsible management of pesticides. The case of Ethiopian agriculture. Doctoral Thesis Swedish University of Agricultural Sciences Uppsala. Available from: https://pub.epsilon.slu.se/13580/1/amera_t_160818.pdf. Accessed 21 Sept 2020

  • Sathishkumar P, Mohan K, Ganesan AR, Govarthanan M, Yusoff ARM, Gu FL (2021) Persistence, toxicological effect and ecological issues of endosulfan–a review. J Hazard Mater 416:125779. https://doi.org/10.1016/j.jhazmat.2021.125779

    Article  CAS  Google Scholar 

  • Schäfer RB, van den Brink PJ, Liess M (2011) Impacts of pesticides on freshwater ecosystems. In: Ecological Impacts of Toxic Chemicals, pp 111–137

  • Shah ZU, Parveen S (2021) Pesticides pollution and risk assessment of river Ganga: a review. Heliyon 7(8):e07726. https://doi.org/10.1016/j.heliyon.2021.e07726

    Article  CAS  Google Scholar 

  • Shalaby SE, El-Saadany SS, Abo-Eyta AM, Abdel-Satar AM et al (2018) Levels of pesticide residues in water, sediment, and fish samples collected from Nile River in Cairo, Egypt. Environ Forensics 19(4):228–238. https://doi.org/10.1080/15275922.2018.1519735

    Article  CAS  Google Scholar 

  • Silberman J, Taylor A (2020) Carbamate toxicity; Stat Pearls Publishing: Treasure Island, FL, USA

  • Singh S, Bhutia D, Sarkar S, Rai BK, Pal J, Bhattacharjee S, Bahadur M (2015) Analyses of pesticide residues in water, sediment, and fish tissue from river Deomoni flowing through the tea gardens of Terai Region of West Bengal, India. Int J Fish Aquat Stud 3(2):17–23

    Google Scholar 

  • Sishu FK, Tilahun SA, Schmitter P, Assefa G, Steenhuis TS (2022) Pesticide contamination of surface and groundwater in an Ethiopian highlands’ watershed. Water 14:3446. https://doi.org/10.3390/w14213446

    Article  CAS  Google Scholar 

  • Sonne C, Leifsson PS, Dietz R, Born EW, Letcher RJ, Hyldstrup L et al (2006) Xenoendocrine pollutants may reduce the size of sexual organs in East Greenland polar bears (Ursusmaritimus). Environ Sci Technol 40(18):5668–5674. https://doi.org/10.1021/es060836n

    Article  CAS  Google Scholar 

  • Sun F, Wong S, Li S, Chen S (2006) A preliminary assessment of consumer’s exposure to pesticide residues in fisheries products. Chemosphere 62(4):674–680

    Article  CAS  Google Scholar 

  • Tang F, Lenzen M, McBratney A, Maggi F (2021) Risk of pesticide pollution at the global scale. Nat Geosci 2021(14):206–210

    Article  Google Scholar 

  • Tarazona JV, Escher BI, Giltrow E, Sumpter J, Knacker T (2010) Targeting the environmental risk assessment of pharmaceuticals: facts and fantasies. Integr Environ Assess Manage 6:603–613

    Article  CAS  Google Scholar 

  • Tavares TM, Beretta M, Costa MC (1999) Ratio of DDT/DDE in All Saints Bay, Brazil and its use in environmental management. https://doi.org/10.1016/S0045-6535(98)00546-3

  • Teklit GA (2016) Residues analysis of organochlorine pesticides in fish, sediment and water samples from Tekeze Dam, Tigray, Ethiopia. J Environ Anal Toxicol 6:342. https://doi.org/10.4172/2161-0525.1000342

    Article  Google Scholar 

  • Teklu B, Hailu A, Wiegant D, Scholten B, Van den Brink P (2016) Impacts of nutrients and pesticides from small- and large-scale agriculture on the water quality of Lake Ziway, Ethiopia. Environ Sci Pollut Res https://doi.org/10.1007/s11356-016-6714-1

  • Tesgera, Bayou (2021) Assessment of current practices, major challenges, and opportunities of the Fishery of Lake Hawassa, Southern Ethiopia. Int J Adv Res Biol Sci 8(2):26–39

    Google Scholar 

  • Teshome A, Terefe G, Getaw H, Koomen I (2023) Pesticide lifecycle in Ethiopia: challenges, opportunities and leverage points. StichtingWageningen Research Ethiopia, Addis Ababa. SWRE-RAISE-FS-23–010 EMEFCC (2006). Federal democratic Republic of Ethiopia national implementation Plan for the Stockholm convention. Available at: https://www.informea.org/en/actionplan/federal-democratic-republic-ethiopia-national-implementation-plan-stockholmconvention

  • Tilahun G, Ahlgren G (2010) Seasonal variations in phytoplankton biomass and primary production in the Ethiopian Rift Valley lakes Ziway, Awassa and Chamo – the basis for fish production. Limnologica - Ecology and Management of Inland Waters 40(4):330–342. https://doi.org/10.1016/j.limno.2009.10.005

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 2002(418):671–677

    Article  Google Scholar 

  • Tinibu A (2014) Distribution and ecological risk assessment of pesticide residues in surface water, sediment, and fish from Ogbesse River, Edo State, Nigeria. Glob J Food Agric Sci 1(2):001–011

    Google Scholar 

  • Turusov V, Rakitsky V, Tomatis L (2002) Dichlorodiphenyltrichloroethane (DDT): ubiquity, persistence, and risks. Environ Health Perspect 110:125–128

    Article  CAS  Google Scholar 

  • UH-PPDB (University of Hertfordshire Pesticide Properties Database) (2022) ed. Agriculture & Environment Research Unit (AERU) at the University of Hertfordshire: Hatfield, UK

  • UNEP (2022) Preliminary report for the effectiveness evaluation of the Stockholm Convention pursuant to Article 16. Geneva, Switzerland, UNEP/POPS/COP.10/INF/16

  • UNEP-Chemicals (2004) Stockholm convention on persistent organic pollutants, United Nations Environment Programme (UNEP). Available at http://www.pops.int

  • UNEP-Chemicals (2009) Stockholm, Convention on Persistent Organic Pollutants, United Nations Environment Programme (UNEP). Available at http://chm.pops.int/Implementation/NewPOPs/ThenewPOPs/tabid/672/Default.aspx

  • Unyimadu JP, Osibanjo O, Babayemi JO (2019) Concentration and distribution of organochlorine pesticides in sediments of the Niger River, Nigeria. J Health Pollut 9(22):190606. https://doi.org/10.5696/2156-9614-9.22.190606

  • Upadhi F, Wokoma OA (2012) Examination of some pesticide residues in surface water, sediment, and fish tissue of Elechi Creek, Niger Delta, Nigeria. Res J Environ Earth Sci 4(1):939–944

    CAS  Google Scholar 

  • USEPA (US Environmental Protection Agency) (1997) RED Facts. Propoxur. August. EPA 738 F-97-009. https://www.epa.gov/oppsrrd1/REDs/factsheets/2555fact

  • USEPA (1975) DDT- a review of scientific and economic aspects of the decision to ban its use as a pesticide ; EPA 540/1- 75-022; U. S. Environmental Protection Agency, Office of Pesticide Programs, U. S. Government Printing Office: Washington, DC

  • USEPA (2000) National guidance: Guidance for assessing chemical contaminant data for use in fish advisories - volume 2: Risk assessment and fish consumption limits: third edition. (EPA/823/B-00/008). Washington, DC

  • Van-Dyk JS, Pletschke B (2011) Review on the use of enzymes for the detection of organochlorine, organophosphate, and carbamate pesticides in the environment. Chemosphere 82:291–307. https://doi.org/10.1016/j.chemosphere.2010.10.033

    Article  CAS  Google Scholar 

  • Vasíckova J, Hvezdov M, Kosubov P, Hofman J (2019) Ecological risk assessment of pesticide residues in arable soils of the Czech Republic. Chemosphere 216:479e487. https://doi.org/10.1016/j.chemosphere.2018.10.158

    Article  CAS  Google Scholar 

  • Verlicchi P, Al Aukidy M, Zambello E (2012) Occurrence of pharmaceutical compounds in urban wastewater: removal, mass load and environmental risk after a secondary treatment—a review. Sci Total Environ 429:123–155. https://doi.org/10.1016/j.scitotenv.2012.04.028

    Article  CAS  Google Scholar 

  • Vryzas Z, Vassiliou G, Alexoudis C et al (2009) Spatial and temporal distribution of pesticide residues in surface waters in northeastern Greece. Water Res 43:1–10

    Article  CAS  Google Scholar 

  • Wandiga SO, Madadi VO (2009) Water quality issues in East Africa. In: Ahuja S (ed) Handbook of water purity and quality. Academic Press Elsevier, London, pp 39–65

    Chapter  Google Scholar 

  • Wang W, Bai J, Zhang G et al (2017) Depth-distribution, possible sources, and toxic risk assessment of organochlorine pesticides (OCPs) in different river sediment cores affected by urbanization and reclamation in a Chinese delta. Environ Pollut 230:1062–1072

    Article  CAS  Google Scholar 

  • Webster L, Roose P, Bersuder B, Kotterman M, Haarich M, Vorkamp K (2013) Determinations of polychlorinated biphenyls (PCBs) in sediments and biota. ICES Tech Mar Environ 53:1–19

    Google Scholar 

  • Wee SY, Aris AZ (2017) Ecological risk estimation of organophosphorus pesticides in riverine ecosystems. Chemosphere 188:575–581. https://doi.org/10.1016/j.chemosphere.2017.09.035

    Article  CAS  Google Scholar 

  • Wei L, Tadesse AW, Wang J (2018) Organohalogenated contaminants (OHCs) in surface sediments and water of East Dongting Lake and Hong Lake, China. Arch Environ Contam Toxicol. https://doi.org/10.1007/s00244-018-0564-4

    Article  Google Scholar 

  • Wepener V, van Dyk C, Bervoets L, O’Brien G, Covaci A, Cloete Y (2011) An assessment of the influence of multiple stressors on the Vaal River, South Africa. Phys Chem Earth 36:949–962

    Article  Google Scholar 

  • WHO (World Health Organisation) (2008) Pesticides. In: World Health Organisation, ed. Children’s Health and the Environment. WHO

  • Wu C, Luo Y, Gui T, Huang Y (2014) Concentrations and potential health hazards of organochlorine pesticides in shallow groundwater of Taihu Lake region, China. Sci Total Environ 470–471:1047–1055. https://doi.org/10.1016/j.scitotenv.2013.10.056

    Article  CAS  Google Scholar 

  • Xie J, Tamene T, Bereket BW, Christopher AL, Sven S, Lelia C, Sarath G (2022) Bending the pollution curve: an analysis and prioritization of pollution management in Ethiopia. The World Bank, Washington, DC

    Book  Google Scholar 

  • Xue N, Zhang D, Xu X (2006) Organochlorinated pesticide multi residues in surface sediments from Beijing Guanting reservoir. Water Res 40(2):183–194

    Article  CAS  Google Scholar 

  • Yohannes YB, Ikenaka Y, Nakayama SMM, Mizukawa H, Ishizuka M (2014) Organochlorine pesticides in bird species and their prey (fish) from the Ethiopian Rift Valley region, Ethiopia. Environ Pollut 192:121–128. https://doi.org/10.1016/j.envpol.2014.05.007

    Article  CAS  Google Scholar 

  • Zacharia JT (2011) Identity, physical and chemical properties of pesticides. Pestic Mod World-Trends Pestic Anal 1:1–18

    Google Scholar 

  • Zeng H, Fu X, Liang Y, Qin L, Mob L (2018) Risk assessment of an organochlorine pesticide mixture in the surface waters of Qingshitan Reservoir in Southwest China. RSC Adv 8:17797–17805

    Article  CAS  Google Scholar 

  • Zhang L, Ma J, Liu P, Qi A, Jin H, Jia R, Zheng Z, Yan C, Cai M (2023) Contamination characteristics, spatial distribution and ecological-health risk assessment of legacy and current-use pesticides: a case study in the Beibu Gulf. Front Mar Sci 10:1167712. https://doi.org/10.3389/fmars.2023.1167712

    Article  Google Scholar 

  • Zheng S, Chen B, Qiu X, Chen M, Ma Z, Yu X (2016) Distribution and risk assessment of 82 pesticides in Jiulong River and estuary in South China. Chemosphere 144:1177–1192

    Article  CAS  Google Scholar 

  • Zinabu G-M (2002) The effects of wet and dry seasons on concentrations of solutes and phytoplankton biomass in seven Ethiopian Rift-Valley lakes. Limnologica 32(2):169–179

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere gratitude to the International Water Management Institute (IWMI) for their generous financial support in funding the laboratory analysis conducted in this study. Furthermore, we would like to thank the Hawassa College of Teacher Education for granting the first author study leaves to carry out this research.

Funding

The International Water Management Institute (IWMI) covered the costs for the laboratory analyses of this study.

Author information

Authors and Affiliations

Authors

Contributions

Daniel WM-Bekele was responsible for the conceptualization, methodology, review, sample collection, writing of the original draft, lab work, and analysis. Girma Tilahun was responsible for the conceptualization, proposal writing, supervision, and editing. Elias Dadebo was responsible for the sample collection, supervision, and editing. Amare Haileslassie was responsible for the financing of the laboratory payment, manuscript review, and editing. Zinabu Gebremariam was responsible for the comprehensive organization, supervision, reviewing, and editing. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Daniel WM-Bekele.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Hongwen Sun

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

WM-Bekele, D., GirmaTilahun, Dadebo, E. et al. Organochlorine, organophosphorus, and carbamate pesticide residues in an Ethiopian Rift Valley Lake Hawassa: occurrences and possible ecological risks. Environ Sci Pollut Res 31, 27749–27769 (2024). https://doi.org/10.1007/s11356-024-32848-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-024-32848-3

Keywords

Navigation