Skip to main content
Log in

Towards a comprehensive understanding of zinc tolerance in Limonium brasiliense as a useful tool for environmental remediation and monitoring

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Heavy metal pollution is a serious environmental problem worldwide, creating the necessity to find eco-friendly strategies for monitoring and remediating environments. This study aimed to evaluate morphological, physiological, and biochemical responses as indicative of Zn tolerance in Limonium brasiliense and to determine the ability of this halophyte to accumulate different concentrations of Zn (0, 100, and 200 μM) in hydroponic conditions. The leaf shape at high Zn concentration showed enlarged petioles and lanceolate blades, whereas the leaf size was reduced. Water content, chlorophyll fluorescence parameters, and pigment content decreased with Zn addition. Of the antioxidant activities, only APx increased 75% compared to the control by Zn stress. Zn concentration was higher in aerial structures than in roots (BAC> 1 and TF> 1), suggesting that L. brasiliense could function as an accumulator of Zn. Its great ability to resist metal stress and its strong capacity to protect itself against high Zn concentration postulate it as a good phytoremediation of environments enriched with Zn. The study emphasizes using leaf morphology as an early biomonitoring tool for detecting Zn pollution, providing more evidence of their potential use as a biomarker for evaluating and assessing ecosystem health in biomonitoring programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Alam MR, Islam R, Tran TKA, Le Van D, Rahman MM, Griffin AS, Richard MKY, MacFarlane GR (2021) Global patterns of accumulation and partitioning of metals in halophytic saltmarsh taxa: a phylogenetic comparative approach. J Hazard Mater 414:125515

    CAS  Google Scholar 

  • Alam MR, Rahman MM, Yu RMK, MacFarlane GR (2023) Offspring of metal contaminated saltmarsh (Juncus acutus) exhibit tolerance to the essential metal Zn but not the nonessential metal Pb. Environ Pollut 323:121333

    CAS  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91(7):869–881

    CAS  Google Scholar 

  • Andrejić G, Gajić G, Prica M, Dželetović Ž, Rakić T (2018) Zinc accumulation, photosynthetic gas exchange, and chlorophyll a fluorescence in Zn-stressed Miscanthus× giganteus plants. Photosynthetica 56(4):1249–1258

    Google Scholar 

  • Azcon-Bieto J, Talón M (2000) Fundamentos de Fisiología Vegetal. In: Sánchez-Díaz M, Aguirreolea J (eds) El agua en la planta, 1st edn. Mc Graw McGraw-Hill, Madrid, pp 17–30

    Google Scholar 

  • Aziz I, Mujeeb A (2022) Halophytes for phytoremediation of hazardous metal (loid) s: a terse review on metal tolerance, bio-indication and hyperaccumulation. J Hazard Mater 424:127309

    CAS  Google Scholar 

  • Babst-Kostecka A, Schat H, Saumitou-Laprade P, Grodzińska K, Bourceaux A, Pauwels M, Frérot H (2018) Evolutionary dynamics of quantitative variation in an adaptive trait at the regional scale: the case of zinc hyperaccumulation in Arabidopsis halleri. Mol Ecol 27(16):3257–3273

    Google Scholar 

  • Balafrej H, Bogusz D, Triqui ZEA, Guedira A, Bendaou N, Smouni A, Fahr M (2020) Zinc hyperaccumulation in plants: a review. Plants 9(5):562

    CAS  Google Scholar 

  • Barceló J, Poschenrieder C (1990) Plant water relations as affected by heavy metal stress: a review. J Plant Nutr 13:1–37

    Google Scholar 

  • Bergmeyer HU, Gawehn K, Grassl M (1974) Enzymes as biochemical reagents. In: Bergmeyer HU (ed) Methods in enzymatic analysis. Academic Press, New York, pp 425–556

    Google Scholar 

  • Björkman O, Demmig B (1987) Photon yield of O 2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170:489–504

    Google Scholar 

  • Blainski A, Gionco B, Oliveira AG, Andrade G, Scarminio IS, Silva DB, Lopes NP, Mello JC (2017) Antibacterial activity of Limonium brasiliense (Baicuru) against multidrug-resistant bacteria using a statistical mixture design. J Ethnopharmacol 198:313–323

    CAS  Google Scholar 

  • Blaylock MJ (2020) Field demonstrations of phytoremediation of lead-contaminated soils. Phytoremediation of contaminated soil and water. CRC Press, pp 1–12

    Google Scholar 

  • Bonnet M, Camares O, Veisseire P (2000) Effects of zinc and influence of Acremonium lolii on growth parameters, chlorophyll a fluorescence and antioxidant enzyme activities of ryegrass (Lolium perenne L. cv Apollo). J Exp Bot 51(346):945–953

    CAS  Google Scholar 

  • Brooks ME, Kristensen K, van Benthem KJ, Magnusson A, Berg CW, Nielsen A, Skaug HJ, Mächler M, Bolker BM (2017) glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R I Dent J 9(2):378–400

    Google Scholar 

  • Brunetti G, Soler-Rovira P, Farrag K, Senesi N (2009) Tolerance and accumulation of heavy metals by wild plant species grown in contaminated soils in Apulia region, Southern Italy. Plant Soil 318:285–298

    CAS  Google Scholar 

  • Castillo-González J, Ojeda-Barrios D, Hernández-Rodríguez A, González-Franco AC, Robles-Hernández L, López-Ochoa GR (2018) Zinc metalloenzymes in plants. Interciencia 43(4):242–248

    Google Scholar 

  • Davis RD, Beckett PHT, Wollan E (1978) Critical levels of twenty potentially toxic elements in young spring barley. Plant Soil 49(2):395–408

    CAS  Google Scholar 

  • Dresler S, Wójciak-Kosior M, Sowa I, Stanisławski G, Bany I, Wójcik M (2017) Effect of short-term Zn/Pb or long-term multi-metal stress on physiological and morphological parameters of metallicolous and nonmetallicolous Echium vulgare L. populations. Plant Physiol Biochem 115:380–389

    CAS  Google Scholar 

  • Dryden I, Mardia K (1998) Statistical shape analysis. John Wiley y Sons, Chichester, UK

    Google Scholar 

  • Farage PK, Blowers D, Long SP, Baker NR (2006) Low growth temperatures modify the efficiency of light use by photosystem II for CO2 assimilation in leaves of two chilling-tolerant C4 species, Cyperus longus L and Miscanthus× giganteus Plant. Cell Environ 29(4):720–728

    CAS  Google Scholar 

  • Foyer CH, Noctor G (2000) Oxygen processing in photosynthesis: regulation and signalling. New Phytol 146(3):359–388

    CAS  Google Scholar 

  • Fritz MA, Rosa S, Sicard A (2018) Mechanisms underlying the environmentally induced plasticity of leaf morphology. Front Genet 9:478

    CAS  Google Scholar 

  • Gancedo NC, Medeiros DCD, Milaneze-Gutierre MA, de Mello JC (2018) Morpho-anatomical characters of Limonium brasiliense leaves. Rev Bras 28:513–519

    Google Scholar 

  • García-Caparrós PG, Ozturk M, Gul A, Batool TS, Pirasteh-Anosheh H, Unal BT, Altay V, Toderich KN (2022) Halophytes have potential as heavy metal phytoremediators: a comprehensive review. Environ Exp Bot 193:104666

    Google Scholar 

  • Ghafouri L, Daryabeigi-Zand A, Mohammadi M (2022) Phytoextraction potential of halophyte plants under industrial multi-metal contaminated sites. Acta Ecol Sin 42(2):49–56

    Google Scholar 

  • Ghori Z, Iftikhar H, Bhatti MF, Sharma I, Kazi AG, Ahmad P (2016) Phytoextraction: the use of plants to remove heavy metals from soil. Plant Metal Interaction, pp 385–409

    Google Scholar 

  • Gibilisco PE, Negrin VL, Idaszkin YL (2022) Assessing the use of two halophytes species and seaweed composting in Cu-pollution remediation strategies. Mar Pollut Bull 176:113413

    CAS  Google Scholar 

  • Giupponi L (2020) Intraspecific variation in functional strategy and leaf shape of Campanula elatinoides reveals adaptation to climate. Flora 268:151605

    Google Scholar 

  • Gunz P, Mitteroecker P, Bookstein FL (2005) Semilandmarks in three dimensions. Modern Morphometrics in Physical Anthropology. Springer, Boston, MA, pp 73–98

    Google Scholar 

  • Hasnaoui SE, Fahr M, Keller C, Levard C, Angeletti B, Chaurand P, Smouni A (2020) Screening of native plants growing on a Pb/Zn mining area in eastern Morocco: perspectives for phytoremediation. Plants 9(11):1458

    Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125(1):189–198

    CAS  Google Scholar 

  • Huang XH, Zhu F, Yan WD, Chen XY, Wang GJ, Wang RJ (2019) Effects of Pb and Zn toxicity on chlorophyll fluorescence and biomass production of Koelreuteria paniculata and Zelkova schneideriana young plants. Photosynthetica 57(2):688–697

    CAS  Google Scholar 

  • Hunt R (1982) Plant growth curves. Edward Arnold, London

    Google Scholar 

  • Idaszkin YL, Lancelotti JL, Pollicelli MP, Marcovecchio JE, Bouza PJ (2017) Comparison of phytoremediation potential capacity of Spartina densiflora and Sarcocornia perennis for metal polluted soils. Mar Pollut Bull 118(1–2):297–306

    CAS  Google Scholar 

  • Idaszkin YL, Márquez F, Mateos-Naranjo E, Pollicelli MP, Cisneros HS (2019) Multidimensional approach to evaluate Limonium brasiliense as source of early biomarkers for lead pollution monitoring under different saline conditions. Ecol Indic 104:567–575

    CAS  Google Scholar 

  • Idaszkin YL, Pollicelli MP, Márquez F (2023) Assessment of halophyte plant phenotypic responses under heavy metals pollution. Implications for monitoring and phytoremediation. Environ Pollut 331:121916

    CAS  Google Scholar 

  • Kabata-Pendias A (2011) Trace elements in soils and plants, 4th edn. CRC press, Taylor & Francis Group, LLC, USA, p 534

    Google Scholar 

  • Klingenberg CP (2011) MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Resour 11(2):353–357

    Google Scholar 

  • Klingenberg CP, Barluenga M, Meyer A (2002) Shape analysis of symmetric structures: quantifying variation among individuals and asymmetry. Evolution 56:1909–1920

    Google Scholar 

  • Kupper H, Mijovilovich A, Meyer-Klaucke W, Kroneck PM (2004) Tissue-and age-dependent differences in the complexation of cadmium and zinc in the cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges ecotype) revealed by X-ray absorption spectroscopy. Plant Physiol 134(2):748–757

    Google Scholar 

  • Lambers H, Chapin FS, Pons TL (2008) Plant physiological ecology. New York: Springer 2:11–99

    Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    CAS  Google Scholar 

  • Liu D, Chen J, Mahmood Q, Li S, Wu J, Ye Z, Peng D, Yan W, Lu K (2014) Effect of Zn toxicity on root morphology, ultrastructure, and the ability to accumulate Zn in Moso bamboo (Phyllostachys pubescens). Environ Sci Pollut Res 21:13615–13624

    CAS  Google Scholar 

  • Luo ZB, He XJ, Chen L, Tang L, Gao S, Chen FA (2010) Effects of zinc on growth and antioxidant responses in Jatropha curcas seedlings. Int J Agric Biol 12(1):119–124

    CAS  Google Scholar 

  • Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47(3):469–474

    CAS  Google Scholar 

  • Mateos-Naranjo E, Castellanos EM, Perez-Martin A (2014) Zinc tolerance and accumulation in the halophytic species Juncus acutus. Environ Exp Bot 100:114–121

    CAS  Google Scholar 

  • Mateos-Naranjo E, Pérez-Romero JA, Redondo-Gómez S, Mesa-Marín J, Castellanos EM, Davy AJ (2018) Salinity alleviates zinc toxicity in the saltmarsh zinc-accumulator Juncus acutus. Ecotoxicol Environ Saf 163:478–485

    CAS  Google Scholar 

  • Mateos-Naranjo E, Redondo-Gómez S, Cambrollé J, Luque T, Figueroa ME (2008) Growth and photosynthetic responses to zinc stress of an invasive cordgrass. Spartina densiflora Plant Biol 10(6):754–762

    CAS  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence-a practical guide. J Exp Bot 51(345):659–668

    CAS  Google Scholar 

  • Minervini M, Fischbach A, Scharr H, Tsaftaris SA (2016) Finely-grained annotated datasets for image-based plant phenotyping. Pattern Recogn Lett 81:80–89

    Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7(9):405–410

    CAS  Google Scholar 

  • Monnet F, Vaillant N, Vernay P, Coudret A, Sallanon H, Hitmi A (2001) Relationship between PSII activity, CO2 fixation, and Zn, Mn and Mg contents of Lolium perenne under zinc stress. J Plant Physiol 158(9):1137–1144

    CAS  Google Scholar 

  • Murray AP, Rodriguez S, Frontera MA, Tomas MA, Mulet MC (2004) Antioxidant metabolites from Limonium brasiliense (boiss.) Kuntze. Z Naturforsch 59(7–8):477–480

    CAS  Google Scholar 

  • Nicotra AB, Leigh A, Boyce CK, Jones CS, Niklas KJ, Royer DL, Tsukaya H (2011) The evolution and functional significance of leaf shape in the angiosperms. Funct Plant Biol 38(7):535–552

    Google Scholar 

  • Nouet C, Motte P, Hanikenne M (2011) Chloroplastic and mitochondrial metal homeostasis. Trends Plant Sci 16(7):395–404

    CAS  Google Scholar 

  • Noulas C, Tziouvalekas M, Karyotis T (2018) Zinc in soils, water and food crops. J Trace Elem Med Biol 49:252–260

    CAS  Google Scholar 

  • Ouni Y, Mateos-Naranjo E, Abdelly C, Lakhdar A (2016) Interactive effect of salinity and zinc stress on growth and photosynthetic responses of the perennial grass, Polypogon monspeliensis. Ecol Eng 95:171–179

    Google Scholar 

  • Palmer CM, Guerinot ML (2009) Facing the challenges of Cu, Fe and Zn homeostasis in plants. Nat Chem Biol 5(5):333–340

    CAS  Google Scholar 

  • Pinheiro JC, Bates DM (2006) Mixed-effects models in S and S-PLUS. Springer science and business media

    Google Scholar 

  • Pollicelli MP, Idaszkin YL, Gonzalez-José R, Márquez F (2018) Leaf shape variation as a potential biomarker of soil pollution. Ecotoxicol Environ Saf 164:69–74

    CAS  Google Scholar 

  • Prasad AS (2008) Zinc in human health: effect of zinc on immune cells. Mol Med 14(5):353–357

    CAS  Google Scholar 

  • Prasad KVSK, Saradhi PP, Sharmila P (1999) Concerted action of antioxidant enzymes and curtailed growth under zinc toxicity in Brassica juncea. Environ Exp Bot 42(1):1–10

    CAS  Google Scholar 

  • Reboreda R, Caçador I (2007) Halophyte vegetation influences in salt marsh retention capacity for heavy metals. Environ Pollut 146(1):147–154

    CAS  Google Scholar 

  • Roe RA, Yu RMK, Rahman MM, MacFarlane GR (2021) Towards adverse outcome pathways for metals in saltmarsh ecosystems–a review. J Hazard Mater 416:126252

    CAS  Google Scholar 

  • Rohlf FJ (2017) TPSDig2, version 2.3. Department of ecology and evolution. State University of New York, Stony Brook New York

    Google Scholar 

  • Rohlf FJ (2017) TPSUtil, version 1.74. Department of ecology and evolution. State University of New York, Stony Brook New York

    Google Scholar 

  • Rohlf FJ (2017) TPSRelw v.1.67. Department of Ecology and Evolution. State University of New York, Stony Brook, New York

    Google Scholar 

  • Sagardoy R, Morales F, López-Millán AF, Abadía A, Abadía J (2009) Effects of zinc toxicity on sugar beet (Beta vulgaris L.) plants grown in hydroponics. Plant Biol 11(3):339–350

    CAS  Google Scholar 

  • Scoffoni C, Rawls M, McKown A, Cochard H, Sack L (2011) Decline of leaf hydraulic conductance with dehydration: relationship to leaf size and venation architecture. Plant Physiol 156(2):832–843

    CAS  Google Scholar 

  • Slice DE (2001) Landmark coordinates aligned by Procrustes analysis do not lie in Kendall’s shape space. Syst Boil 50(1):141–149

    CAS  Google Scholar 

  • Sturikova H, Krystofova O, Huska D, Adam V (2018) Zinc, zinc nanoparticles and plants. J Hazard Mater 349:101–110

    CAS  Google Scholar 

  • Tambussi EA, Graciano C (2010) Capítulo 9. La fluorescencia modulada de la clorofila: método del pulso saturante. In: Gyenge MEFJ (ed) Técnicas de medición en ecofisiología vegetal: conceptos y procedimientos, Ed. INTA. Buenos Aires, pp 129–140

  • Team RC (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Teranishi Y, Tanaka A, Osumi M, Fukui S (1974) Catalase activities of hydrocarbon-utilizing Candida yeasts. Agric Biol Chem 38(6):1213–1220

    CAS  Google Scholar 

  • Tinker PB (1981) Levels, distribution and chemical forms of trace elements in food plants. Philos Trans R Soc Lond Ser B Biol Sci 294(1071):41–55

    CAS  Google Scholar 

  • Tiryakioglu M, Eker S, Ozkutlu F, Husted S, Cakmak I (2006) Antioxidant defense system and cadmium uptake in barley genotypes differing in cadmium tolerance. J Trace Elem Med Biol 20(3):181–189

    CAS  Google Scholar 

  • Tsukaya H (2005) Leaf shape: genetic controls and environmental factors. Int J Dev Biol 49(5–6):547–555

    Google Scholar 

  • Tsukaya H (2006) Mechanism of leaf-shape determination. Annu Rev Plant Biol 57:477–496

    CAS  Google Scholar 

  • Vaillant N, Monnet F, Hitmi A, Sallanon H, Coudret A (2005) Comparative study of responses in four Datura species to a zinc stress. Chemosphere 59(7):1005–1013

    CAS  Google Scholar 

  • Van der Ent A, Baker AJ, Reeves RD, Pollard AJ, Schat H (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362(1):319–334

    Google Scholar 

  • Van Osten MJ, Maggio A (2015) Functional biology of halophytes in the phytoremediation of heavy metal contaminated soils. Environ Exp Bot 111:135–146

    Google Scholar 

  • Veličković MV (2010) Reduced developmental stability in Tilia cordata leaves: effects of disturbed environment. Period Biol 112(3):273–281

    Google Scholar 

  • Wang H, Jin JY (2005) Photosynthetic rate, chlorophyll fluorescence parameters, and lipid peroxidation of maize leaves as affected by zinc deficiency. Photosynthetica 43(4):591–596

    CAS  Google Scholar 

  • Weaver WN, Ng J, Laport RG (2020) LeafMachine: using machine learning to automate leaf trait extraction from digitized herbarium specimens. App Plant Sci 8(6):e11367

    Google Scholar 

  • Wilkins DA (1978) The measurement of tolerance to edaphic factors by means of root growth. New Phytol 80(3):623–633

    CAS  Google Scholar 

  • Wójcik M, Sugier P, Siebielec G (2014) Metal accumulation strategies in plants spontaneously inhabiting Zn-Pb waste deposits. Sci Total Environ 487:313–322

    Google Scholar 

  • Yang HM, Zhang XY, Wang GX (2004) Effects of heavy metals on stomatal movements in broad bean leaves. Russ J Plant Physiol 51:464–468

    CAS  Google Scholar 

  • Zar JH (1999) Biostatistical analysis. Prentice-Hall, Upper Sadle River, NJ, USA

    Google Scholar 

  • Zhao FJ, Lombi E, Breedon TMSP (2000) Zinc hyperaccumulation and cellular distribution in Arabidopsis halleri. Plant Cell Environ 23(5):507–514

    CAS  Google Scholar 

  • Zhao M, Zeng S, Liu S, Li Z, Jing L (2020) Metal accumulation by plants growing in China: capacity, synergy, and moderator effects. Ecol Eng 148:105790

    Google Scholar 

  • Zoulias N, Harrison EL, Casson SA, Gray JE (2018) Molecular control of stomatal development. Biochem J 475(2):441–454

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Tomas Bosco and Aldo Marcelo Santo for their assistance in laboratory work and Julio “Bocha” Rua for his collaboration in field activities. We are especially grateful to María Belén Vallejos and Magalí Muñoz for help with the figures and statistical analyses and two anonymous reviewers for their useful comments that greatly helped to improve the final version of the manuscript.

Funding

This research project is part of MPP’s PhD thesis in the University Nacional de la Patagonia San Juan Bosco for which the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina) has granted her a postgraduate fellowship. This work was funded by the Fondo para la Investigación Científica y Tecnológica (PICT N° 2018-03802 and PICT-2021-GRF-TII-00397) and the Neotropical Grassland Conservancy (Derald G. Langham Memorial Research Grant).

Author information

Authors and Affiliations

Authors

Contributions

María de la Paz Pollicelli: writing — original draft, conceptualization, investigation, and formal analysis. Yanina L. Idaszkin: writing — review and editing, conceptualization, investigation, and funding acquisition. Federico Márquez: writing — review and editing, conceptualization, investigation, and funding acquisition.

Corresponding author

Correspondence to Yanina L. Idaszkin.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Elena Maestri

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de la Paz Pollicelli, M., Márquez, F. & Idaszkin, Y.L. Towards a comprehensive understanding of zinc tolerance in Limonium brasiliense as a useful tool for environmental remediation and monitoring. Environ Sci Pollut Res 31, 25299–25311 (2024). https://doi.org/10.1007/s11356-024-32811-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-024-32811-2

Keywords

Navigation