Skip to main content

Advertisement

Log in

Concentration of metals and metalloids in livers of birds of various foraging guilds collected during the autumn migration period in Poland

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

During migration, birds explore various habitats at stopover sites that differ in food resources and contamination levels. In this study, hepatic concentrations of 21 elements (metals and metalloids) in 11 species of birds, representing various foraging habitats (such as aquatic, aquatic/terrestrial, and terrestrial) and migration modes (migratory and sedentary) representing various foraging guilds (omnivores, piscivores, and molluscivores), were analyzed. The samples (N = 84) were collected during the autumn migration period in Poland. The concentrations of elements determined in this study exhibited high inter-species variability, reflecting the diversity in contamination levels depending on food resources used by specific bird groups. Many of the investigated individuals from different species showed exceeded levels of subclinical toxicity and moderate clinical poisoning due to Cd and Hg. Higher concentrations of As, Hg, and Ba and lower V concentrations were found in migratory birds as compared to sedentary birds. Species foraging in terrestrial habitat had different concentrations of some elements compared to aquatic and aquatic/terrestrial species. Some specific inter-species differences in hepatic elemental concentrations were found. Differences in elemental concentrations among various groups can primarily be attributed to their foraging guilds, with certain elements, particularly As, V, and Hg, playing a significant role in the dissimilarity of elemental concentrations between foraging habitat groups and migratory mode groups. The data collected confirmed the limited ability of As to enter ecosystem pathways. The results of this study contribute to understanding the year-round exposure of migratory birds to environmental contamination, which can have carry-over effects on their performance in wintering and breeding grounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albers PH, Green DE, Sanderson CJ (1996) Diagnostic criteria for selenium toxicosis in aquatic birds: dietary exposure, tissue concentrations, and macroscopic effects. J Wildl Dis 32:468–485

    Article  CAS  PubMed  Google Scholar 

  • Altizer S, Bartel R, Han BA (2011) Animal migration and infectious disease risk. Science 331(6015):296–302

    Article  CAS  PubMed  Google Scholar 

  • Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46

    Google Scholar 

  • Ansara-Ross TM, Ross MJ, Wepener V (2013) The use of feathers in monitoring bioaccumulation of metals and metalloids in the South African endangered African grass-owl (Tyto capensis). Ecotoxicology 22(6):1072–1083

    Article  CAS  PubMed  Google Scholar 

  • Ashraf MA, Ali Z (2021) Bioaccumulation of trace elements in migratory waterbirds at two wetlands of Indus river. Aquat Ecos Health and Manage 24:111–120

    Article  Google Scholar 

  • ATSDR (2007). Toxicological profle for arsenic. U.S. Department of health and human service. Agency for Toxic Substances and Diseases Registry. Retrieved May 21, 2011, from https://www.atsdr.cdc.gov/toxprofiles/tp2.pdf

  • Aviles JM, Sánchez JM, Parejo D (2002) Food selection of wintering common cranes (Grus grus) in holm oak (Quercus ilex) dehesas in south-west Spain in a rainy season. J Zoology 256:71–79

    Article  Google Scholar 

  • Battaglia A, Ghidini S, Campanini G, Spaggiari R (2005) Heavy metal contamination in little owl (Athene noctua) and common buzzard (Buteo buteo) from northern Italy. Ecotoxicol Environm Safety 60:61–66

    Article  CAS  Google Scholar 

  • Becker PH (2003) Biomonitoring with birds. In: Markert B, Breure T, Zechmeister H (eds) Bioindicators and biomonitors - principles, concepts and applications. Elsevier, Amsterdam, pp 677–737

    Chapter  Google Scholar 

  • Beldowski J, Szubska M, Emelyanov E, Garnaga G, Drzewińska A, Bełdowska M, Vanninen P, Östin A, Fabisiak J (2016) Arsenic concentrations in Baltic Sea sediments close to chemical munitions dumpsites. Deep Sea Res Part II: Top Stud Oceanography 128:114–122

    Article  CAS  Google Scholar 

  • Bende A, Laszlo R (2022) Spectrum of animal and plant in the diet of woodcock (Scolopax rusticola L.) based on literature data. Ornis Hungarica 30:188–194

    Article  Google Scholar 

  • Binkowski LJ (2019) Arsenic, As. In: Kalisińska E (ed) Mammals and birds as bioindicators of trace element contaminations in terrestrial environments: an ecotoxicological assessment of the Northern Hemisphere. Springer, Cham, pp 463–481

    Chapter  Google Scholar 

  • Bjerregaard P, Fjordside S, Hansen MG, Petrova MB (2011) Dietary selenium reduces retention of methyl mercury in freshwater fish. Environm Sci Technol 45(22):9793–9798

    Article  CAS  Google Scholar 

  • Bordjan D, Kljun I (2018) Gull attacks on migrating birds at Ada Island (S Montenegro). Acrocephalus 39:33–37

    Article  Google Scholar 

  • Bosch AC, O’Neill B, Sigge GO, Kerwath SE, Hoffman LC (2016) Mercury accumulation in Yellowfin tuna (Thunnus albacares) with regards to muscle type, muscle position and fish size. Food Chem 190:351–356

    Article  CAS  PubMed  Google Scholar 

  • Bozym M (2017) Heavy metal content in compost and earthworms from home composters. Environ Prot Nat Resour 28(4):1–4

    Google Scholar 

  • Branco V, Canario J, Lu J, Holmgren A, Carvalho C (2012) Mercury and selenium interaction in vivo: effects on thioredox in reductase and glutathione peroxidase. Free Radical Biol Med 52:781–793

    Article  CAS  Google Scholar 

  • Braune BM, Noble DG (2009) Environmental contaminants in Canadian shorebirds. Env Monit Assess 148:185–204

    Article  CAS  Google Scholar 

  • Burger J (2008) Assessment and management of risk to wildlife from cadmium. Sci Total Environ 389:37–45

    Article  CAS  PubMed  Google Scholar 

  • Burger J, Gochfeld M (2021) Biomonitoring selenium, mercury, and selenium:mercury molar ratios in selected species in Northeastern US estuaries: risk to biota and humans. Environ Sci Pollut Res 28:18392–18406. https://doi.org/10.1007/s11356-020-12175-z

    Article  CAS  Google Scholar 

  • Burger J, Gochfeld M, Jeitner C, Donio M, Pittfield T (2012) Selenium: mercury molar ratios in fresh water fish from Tennessee: individual, species, andgeographical variations have implications for management. Ecohealth 9:171–182

    Article  PubMed  PubMed Central  Google Scholar 

  • Burmester T (2002) Origin and evolution of arthropod hemocyanins and related proteins. J Comparative Physiol B 172(2):95–107

    Article  CAS  Google Scholar 

  • Carpene E, Andreani G, Monari M, Castellani G, Isani G (2006) Distribution of Cd, Zn, Cu and Fe among selected tissues of the earthworm (Allolobophora caliginosa) and Eurasian woodcock (Scolopax rusticola). Sci Total Environm 363:126–135

    Article  CAS  Google Scholar 

  • Celik E, Durmus A, Adizel O, Nergiz Uyar H (2021) A bibliometric analysis: what do we know about metals (loids) accumulation in wild birds? Environ Sci Pollut Res 28:10302–10334

    Article  CAS  Google Scholar 

  • Chapman PM, Adams WJ, Brooks M, Delos CG, Luoma SN, Maher WA, Ohlendorf HM, Presser TS, Shaw P (2010) Ecological assessment of selenium in the aquatic environment. CRC Press, Boca Raton, USA

    Book  Google Scholar 

  • Chetelat J, Ackerman JT, Eagles-Smith CA, Hebert CE (2020) Methylmercury exposure in wildlife: a review of the ecological and physiological processes affecting contaminant concentrations and their interpretation. Sci Total Environm 711:135117

    Article  CAS  Google Scholar 

  • Cierpikowski M (2019) Validation of method of manganese determination method in gasoline and diesel oil using HR-CS FAAS technique. In: MSc thesis. Faculty of Civil Engineering, Mechanics and Petrochemistry. Warsaw University of Technology, Plock

    Google Scholar 

  • Clarke KR (1993) Non-parametric multivariate analysis of changes in community structure. Austral J Ecol 18:117–143. https://doi.org/10.1111/j.1442-9993.1993.tb00438.x

    Article  Google Scholar 

  • Cork SC (2000) Iron storage diseases in birds. Avian Pathol 29(1):7–12

    Article  CAS  PubMed  Google Scholar 

  • Cramp S, Simmons KEL (1977) Birds of the Western Palearctic, vol 1. OUP, Oxford

    Google Scholar 

  • Custer CM, Custer TW (2000) Organochlorine and trace element contamination in wintering and migrating diving ducks in the southern Great Lakes, USA, since the zebra mussel invasion. Environ Toxicol Chem 19:2821–2829

    Article  CAS  Google Scholar 

  • Custer CM, Custer TW, Anteau MJ, Afton AD, Wooten DE (2003) Trace elements in lesser scaup (Aythya affinis) from the Mississippi flyway. Ecotoxicology 12:47–54

    Article  CAS  PubMed  Google Scholar 

  • Czarnecka J, Kitowski I (2013) Rook spring seed dispersal in the agricultural landscape –frugivory, granivory or accidental transport? Folia Geobotanica 48(1):55–73

    Article  Google Scholar 

  • Czarnecka J, Kitowski I, Sugier P, Mirski P, Krupiński D, Pitucha G (2013) Seed dispersal in urban green space-does the rook Corvus frugilegus L. contribute to urban flora homogenization? Urban For Urban Green 12(3):359–366

    Article  Google Scholar 

  • Dang F, Wang WX (2012) Why mercury concentration increases with fish size? Biokinetic explanation. Environm Poll 163:192–198

    Article  CAS  Google Scholar 

  • Duijns S, Niles LJ, Dey A, Aubry Y, Friis C, Koch S, Anderson AM, Smith PA (2017) Body condition explains migratory performance of a long-distance migrant. Proc Royal Soc B: Biol Sci 284(1866):20171374

    Article  Google Scholar 

  • Duriez O, Fritz H, Said S, Ferrand Y (2005) Wintering behaviour and spatial ecology of Eurasian Woodcock Scolopax rusticola in western France. Ibis 147:519–532

    Article  Google Scholar 

  • Eisler R (1993) Zinc hazards to fish, wildlife, and invertebrates: a synoptic review. In: Contaminant Hazard Reviews, Biological Report 10. United States Fish and Wildlife Service, Laurel, MD

    Google Scholar 

  • Esselink H, Van der Geld FM, Jager LP, Posthuma-Trumpie GA, Zoun PEF, Baars AJ (1995) Biomonitoring heavy metals using the barn owl (Tyto alba guttata): sources of variation especially relating to body condition. Archi Environm Contamin Toxicol 28(4):471–486

    Article  CAS  Google Scholar 

  • Farina LL, Heard DJ, LeBlanc DM, Hall JO, Stevens G, Wellehan JF, Detrisac CJ (2005) Iron storage disease in captive Egyptian fruit bats (Rousettus aegyptiacus): relationship of blood iron parameters to hepatic iron concentrations and hepatic histopathology. J Zoo Wildlife Medic 36(2):212–221

    Article  Google Scholar 

  • Gall JE, Boyd RS, Rajakaruna N (2015) Transfer of heavy metals through terrestrial food webs:a review. Environ Monit Assess 187:201. https://doi.org/10.1007/s10661-015-4436-3

    Article  CAS  PubMed  Google Scholar 

  • Gasaway WC, Buss IO (1972) Zinc toxicity in the Mallard duck. J Wildlife Manag 36:1107–1117

    Article  CAS  Google Scholar 

  • Gramigni E, Calusi S, Gelli N, Giuntini L, Massi M, Delfino G, Chellazii BD, Frizzi F, Santini G (2013) Ants as bioaccumulators of metals from soils: body content and tissue-specific distribution of metals in the ant Crematogaster scutellaris. Europ J Soil Biol 58:24–31

    Article  CAS  Google Scholar 

  • Green AJ, Selva N (2000) The diet of post-breeding marbled teal Marmorenetta angustirrostris and Mallard Anas platyhrynchos in the Göksu delta, Turkey. Revue d Ecologie (Terre Vie) 55:161–169

    Article  Google Scholar 

  • Grzes IM (2009) Cadmium regulation by Lasius niger: a contribution to understanding high metal levels in ants. Insect Sci 16:89–92

    Article  CAS  Google Scholar 

  • Grzes IM (2010) Ants and heavy metal pollution–a review. Eur J Soil Biol 46(6):350–355

    Article  CAS  Google Scholar 

  • Guitart R, To-Figueras J, Mateo R, Bertolero A, Cerradelo S, Martıinez-Vilalta A (1994) Lead poisoning in waterfowl from the Ebro Delta, Spain: calculations of lead exposure thresholds for mallards. Arch Environm Contamin Toxicol 27:289–293

    CAS  Google Scholar 

  • Haest B, Hüppop O, Bairlein F (2018) The influence of weather on avian spring migration phenology: what, where and when? Global Change Biol 24(12):5769–5788

    Article  Google Scholar 

  • Halupka L, Wierucka K, Sztwiertnia H, Klimczuk E (2017) Conditions at autumn stopover sites affect survival of a migratory passerine. J Ornithol 158(4):979–988

    Article  Google Scholar 

  • Hammer O, Harper DAT, Ryan PD (2001) PAST paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9

    Google Scholar 

  • Hernandez LM, Gomara B, Fernandez M, Jimenez B, Gonzalez MJ, Baos R, Hiraldo F, Ferrer M, Benito V, Suner MA, Deves V, Munoz O, Montoro R (1999) Accumulation of heavy metals and As in wetland birds in the area around Donana National Park affected by the Aznalcollar toxic spill. Sci Tot Environm 242:293–308

    Article  CAS  Google Scholar 

  • Herring G, Eagles-Smith C, Buck J (2017) Characterizing golden eagle risk to lead and anticoagulant rodenticide exposure: a review. J Raptor Res 51(3):273–292

    Article  Google Scholar 

  • Hirschfeld A, Heyd A (2005) Mortality of migratory birds caused by hunting in Europe: bag statistics and proposals for the conservation of birds and animal welfare. Berichte zum Vogelschutz 42:47–74

    Google Scholar 

  • Honda K, Marcovecchio JE, Kan S, Tatsukawa R, Ogi H (1990) Metal concentrations in pelagic seabirds from the North Pacific Ocean. Arch Environm Contamin Toxicol 19:704–711

    Article  CAS  Google Scholar 

  • Horai S, Watanabe I, Takada H, Iwamizu Y, Hayashi T, Tanabe S, Kuno K (2007) Trace element accumulations in 13 avian species collected from the Kanto area, Japan. Sci Total Environ 373:512–525

    Article  CAS  PubMed  Google Scholar 

  • Hui A, Takekawa JY, Baranyuk VV, Litvin KV (1998) Trace element concentrations in two subpopulations of lesser snow geese from Wrangel Island, Russia. Arch Environ Contam Toxicol 34:197–203

    Article  CAS  PubMed  Google Scholar 

  • Hundnell HK (1999) Effects from environmental Mn exposures: a review of the evidence from non-occupational exposure studies. Neurotoxicology 20:379–339

    Google Scholar 

  • Imtiaz M, Rizwan MS, Xiong S, Li H, Ashraf M, Shahzad SM, Shahzad M, Rizwan M, Tu S (2015) Vanadium, recent advancements and research prospects: a review. Environ Int 80:79–88

    Article  CAS  PubMed  Google Scholar 

  • Iskova NI (1979) Trematodes of the family Leucochloridiidae from passerine birds of the Ukraine. Vestnik Zoologii 5:46–55

    Google Scholar 

  • Jager LP, Rijnierse FVJ, Esselink H, Baars AJ (1996) Biomonitoring with the buzzard Buteo buteo in the Netherlands: heavy metals and sources of variation. J Ornithology 137:295–318

    Article  Google Scholar 

  • Jakubas D, Mioduszewska A (2005) Diet composition and food consumption of the grey heron (Ardea cinerea) from breeding colonies in northern Poland. Europ J Wildlife Res 51(3):191–198

    Article  Google Scholar 

  • Jedrzejewska B, Jedrzejewski W (1998) Predation in vertebrate communities: the Bialowieza Primeval Forest as a case study, vol 135. Springer Science & Business Media

    Google Scholar 

  • Jerzak L, Kavanagh BP, Tryjanowski P (eds) (2005) Ptaki Krukowate Polski/Corvids of Poland. Bogucki Wydawnictwo Naukowe, Poznań, Poland

    Google Scholar 

  • Jones EL, Leather SR (2013) Invertebrates in urban areas: a review. Eur J Entomol 109:463–478

    Article  Google Scholar 

  • Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants, 3rd edn. CRC press LLC, Boca Raton, USA

    Google Scholar 

  • Kalas JA, Heggberget TG, Bjorn PA, Reitan O (1993) Feeding behaviour and diet of goosanders (Mergus merganser) in relation to salmonid seaward migration. Aquat Living Resour 6:31–38

    Article  Google Scholar 

  • Kalisinska E, Budis H (2019) Manganese, Mn. In: Kalisińska E (ed) Mammals and birds as bioindicators of trace element contaminations in terrestrial environments: an ecotoxicological assessment of the Northern Hemisphere. Springer, Cham, pp 213–246

    Chapter  Google Scholar 

  • Kalisińska E, Budis H, Podlasińska J, Łanocha N, Kavetska KM (2010) Body condition and mercury concentration in apparently healthy goosander (Mergus merganser) wintering in the Odra estuary, Poland. Ecotoxicol 19(8):1382–1399

    Article  Google Scholar 

  • Kalisinska E, Gorecki J, Okonska A, Pilarczyk B, Tomza-Marciniak A, Budis H, Lanocha N, Kosik-Bogacka DI, Kavetska KM, Macherzynski M, Golas JM (2014b) Mercury and selenium in the muscle of piscivorous common mergansers (Mergus merganser) from a selenium-deficient European country. Ecotoxicol Environmental Safe 101:107–115

    Article  CAS  Google Scholar 

  • Kalisinska E, Lanocha N, Kosik-Bogacka D, Kavetska KM, Macherzynski M, Golas J (2014a) Hepatic and nephric mercury and selenium concentrations in common mergansers, Mergus merganser, from Baltic region, Europe. Environm Toxicol Chem 33:421–430

    Article  CAS  Google Scholar 

  • Kalisińska E, Łanocha-Arendarczyk N, Kosik-Bogacka D (2019) Mercury, Hg. In: Kalisińska E (ed) Mammals and birds as bioindicators of trace element contaminations in terrestrial environments: an ecotoxicological assessment of the Northern Hemisphere. Springer, Cham, pp 125–161

    Chapter  Google Scholar 

  • Kalisinska E, Lanocha-Arendarczyk N, Kosik-Bogacka D, Budis H, Pilarczyk B, Tomza-Marciniak A, Podlasinska J, Cieslik L, Popiolek M, Pirog A, Jedrzejewska E (2017) Muscle mercury and selenium in fishes and semiaquatic mammals from a selenium-deficient area. Ecotoxicol Environmental Safe 136:24–30

    Article  CAS  Google Scholar 

  • Kalisińska E, Lisowski P, Czernomysy-Furowicz D, Kavetska KM (2008) Serratospiculiasis, mycosis, and haemosiderosis in wild peregrine falcon from Poland. Bull Vet Inst Pulawy 52:75–79

    Google Scholar 

  • Kalisińska E, Salicki W, Jackowski A (2006) Six trace metals in white-tailed eagle from Northwestern Poland. Polish J Environm Studies 15(5):727–737

    Google Scholar 

  • Kalisińska E, Salicki W, Mysek P, Kavetska KM, Jackowski A (2004) Using the Mallard to biomonitor heavy metal contamination of wetlands in northwestern Poland. Sci Total Environ 320:145–161

    Article  PubMed  Google Scholar 

  • Kavetska KM, Rzad I, Kornyushin VV, Korol EN, Sitko J, Szałańska K (2008) Enteric helminths of the mallard Anas platyrhynchos L., 1758 in the north-western part of Poland. Wiad Parazytol 54(1):23–29

    PubMed  Google Scholar 

  • Kim J, Oh JM (2012a) Metal levels in livers of waterfowl from Korea. Ecotoxicol Environm Safe 78:162–169

    Article  CAS  Google Scholar 

  • Kim J, Oh JM (2012b) Biological monitoring of heavy metal contaminations using owls. J Environm Monitoring 14(3):1091–1097

    Article  CAS  Google Scholar 

  • Kim J, Oh JM (2013a) Assessment of trace metals in four bird species from Korea. Environ Monit Assess 185:6847–6854

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Oh JM (2013b) Tissue distribution of metals in white-fronted geese and spot-billed ducks from Korea. Bull Environ Contamin Toxicol 91(1):18–22

    Article  CAS  Google Scholar 

  • Kim J, Oh JM (2016) Assessment of trace element concentrations in birds of prey in Korea. Arch Environ Contam Toxicol 71:26–34

    Article  CAS  PubMed  Google Scholar 

  • Kirby JS, Stattersfield AJ, Butchart SH, Evans MI, Grimmett RF, Jones VR, O’Sullivan J, Tucker GM, Newton I (2008) Key conservation issues for migratory land and waterbird species on the world’s major flyways. Bird Conser Int 18:S49–S73

    Article  Google Scholar 

  • Kitowski I, Jakubas D, Wiącek D, Sujak A (2017b) Inter-colony differences in hepatic element concentrations of European flagship farmland bird, the Rook Corvus frugilegus, breeding in rural habitats in East Poland. Agric Ecosyst Environ 250:123–132

    Article  Google Scholar 

  • Kitowski I, Wiacek D, Sujak A, Komosa A, Świetlicki M (2017a) Factors affecting trace element accumulation in livers of avian species from East Poland. Turk J Zool 41(5):901–913

    Article  CAS  Google Scholar 

  • Klaassen M, Hoye BJ, Nolet BA, Buttemer WA (2012) Ecophysiology of avian migration in the face of current global hazards. Philos Trans R Soc Lond B Biol Sci 367:1719–1732

    Article  PubMed  PubMed Central  Google Scholar 

  • Komosa A, Kitowski I, Komosa Z (2012) Essential trace (Zn, Cu, Mn) and toxic (Cd, Pb, Cr) elements in the liver of birds from Eastern Poland. Acta Veterinaria (Beograd) 62(5-6):579–589

    Article  Google Scholar 

  • Kosik-Bogacka DI, Łanocha-Arendarczyk N (2019) Zinc. In: Kalisińska E (ed) Mammals and birds as bioindicators of trace element contaminations in terrestrial environments: an ecotoxicological assessment of the Northern Hemisphere. Springer, New York, pp 363–411

    Chapter  Google Scholar 

  • Kurek P, Dobrowolska D, Wiatrowska B (2019) Dispersal distance and burial mode of acorns in Eurasian Jays Garrulus glandarius in European temperate forests. Acta Ornithol 53:155–162

    Article  Google Scholar 

  • Łanocha-Arendarczyk N, Kosik-Bogacka DI (2019) Copper, Cu. In: Kalisińska E (ed) Mammals and birds as bioindicators of trace element contaminations in terrestrial environments: an ecotoxicological assessment of the Northern Hemisphere. Springer, New York, pp 125–161

    Chapter  Google Scholar 

  • Latifi F, Musa F, Musa A (2020) Heavy metal content in soil and their bioaccumulation in earthworms (Lumbricus terrestris L.). Agric For 66:57–67

    Google Scholar 

  • Ławicki Ł (2014) The Great White Egret in Europe: population increase and range expansion since 1980. British Birds 107(1):8–25

    Google Scholar 

  • Leblanc ML, Hanson A, Leblon B, LaRocque A, Humphries MM (2023) Hunting and seagrass affect fall stopover Canada goose distribution in eastern Canada. J Wildl Manage 87:e22428

    Article  Google Scholar 

  • Leito A, Truu J, Õunsaar M, Sepp K, Kaasik A, Ojaste I, Mägi E (2008) The impact of agriculture on autumn staging Eurasian Cranes (Grus grus) in Estonia. Agric Food Sci 17:53–62

    Article  Google Scholar 

  • Levengood JM, Sanderson GC, Anderson WL, Foley GL, Skowron LM, Brown PW, Seets JW (1999) Acute toxicity of ingested zinc shot to game-farm mallards. Bull Nat Hist Surv 36:1–36

    Google Scholar 

  • Lewis CA, Cristol DA, Swaddle JP, Varian-Ramos CW, Zwollo P (2013) Decreased immune response in zebra finches exposed to sublethal doses of mercury. Arch Environ Contam Toxicol 64:327–336

    Article  CAS  PubMed  Google Scholar 

  • Lewis LA, Poppenga RJ, Davidson WR, Fischer JR, Morgan KA (2001) Lead toxicosis and trace element levels in wild birds and mammals at a firearms training facility. Arch Environm Contamin Toxicol 41:208–214

    Article  CAS  Google Scholar 

  • Loss SR, Will T, Marra PP (2014) Refining estimates of bird collision and electrocution mortality at power lines in the United States. PloS One 9(7):e101565

    Article  PubMed  PubMed Central  Google Scholar 

  • Lucia M, Bocher P, Cosson RP, Churlaud C, Robin F, Bustamante P (2012) Insight on trace element detoxification in the Black-tailed Godwit (Limosa limosa) through genetic, enzymatic and metallothionein analyses. Sci Total Environm 423:73–83

    Article  CAS  Google Scholar 

  • Luft K (1960) The helminths of jay (Garrulus glandarius L.) and magpie (Pica pica L.) from Lublin Palatinate. Acta Parasitol Pol 8(21/32):351–356

    Google Scholar 

  • Luniak M, Kozłowski P, Nowicki W, Plit J (2001) Birds of Warsaw 1962–2000. Institute of Geography and Spatial Organization, Warsaw (in Polish)

    Google Scholar 

  • Ma Y, Choi CY, Thomas A, Gibson L (2022) Review of contaminant levels and effects in shorebirds: knowledge gaps and conservation priorities. Ecotoxicol Environ Saf 242:113868

    Article  CAS  PubMed  Google Scholar 

  • MacKenzie EL, Iwasaki K, Tsuji Y (2008) Intracellular iron transport and storage: from molecular mechanisms to health implications. Antioxid Redox Signal 10:997–1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manikowska-Ślepowrońska B, Mokwa T, Jakubas D (2021) Dispersal from the natal colony of the Grey Heron Ardea cinerea Nesting in Poland. Acta Ornithol 56(1):59–68

    Article  Google Scholar 

  • Martin PA, Campbell D, Hughes K, McDaniel T (2008) Lead in the tissues of terrestrial raptors in southern Ontario, Canada, 1995–2001. Sci Total Environm 391:96–103

    Article  CAS  Google Scholar 

  • McWilliams SR, Ramenofsky M, Pierce BJ (2022) Physiological challenges of migration. In: Scanes CG, Dridi S (eds) Sturkie’s Avian Physiology. Academic Press, Cambridge, pp 1331–1372

    Chapter  Google Scholar 

  • Mitrus C, Szabo J (2020) Foraging Eurasian Jays prefer oaks and acorns in central Europe. Ornis Hungarica 28:169–175

    Article  Google Scholar 

  • Mitrus C, Zbyryt A (2015) Influence of hunting on birds and ways of limiting its negative effects. Ornis Polonica 56(4):309–327

    Google Scholar 

  • Moye JK, Perez CR, Pritsos CA (2016) Effects of parental and direct methylmercury exposure on flight activity in young homing pigeons (Columba livia). Environ Pollut 5:23–30

    Article  Google Scholar 

  • Mukherjee A, Pal S, Das P, Mukhopadhyay SK (2022) Heavy metal exposure to a migratory waterfowl, Northern Pintail (Anas acuta), in two peri-urban wetlands. Sci Total Environm 851:158238

    Article  CAS  Google Scholar 

  • Nam DH, Anan Y, Ikemoto T, Okabe Y, Kim EY, Subramanian A, Saeki K, Tanabe S (2005b) Specific accumulation of 20 trace elements in great cormorants (Phalacrocorax carbo) from Japan. Environ Pollut 134:503–514

    Article  CAS  PubMed  Google Scholar 

  • Nam DH, Anan Y, Ikemoto T, Tanabe S (2005a) Multielemental accumulation and its intracellular distribution in tissues of some aquatic birds. Mar Pollut Bull 50:1347–1136

    Article  CAS  PubMed  Google Scholar 

  • Neuschwander-Tetri BA (2007) Trace elements and the liver. In: Rodes J, Benhamou JP, Blei A, Reichen J, Rizzetto M, Dufour JF, Friedman SL et al (eds) Textbook of hepatology: from basic science to clinical practice. Blackwell Publishing, Oxford, UK, pp 233–241

    Google Scholar 

  • Newton I (2007) Weather-related mass-mortality events in migrants. Ibis 149(3):453–467

    Article  Google Scholar 

  • Newton I (2008) The migration ecology of birds. Academic Press, Elsevier, London

    Google Scholar 

  • Newton I (2012) Obligate and facultative migration in birds: ecological aspects. J Ornithology 153(1):171–180

    Article  Google Scholar 

  • Nilsson C, Klaassen RHG, Alerstam T (2013) Differences in speed and duration of bird migration between spring and autumn. Am Nat 181:837–845

    Article  PubMed  Google Scholar 

  • Norevik G, Åkesson S, Andersson A, Bäckman J, Hedenström A (2021) Flight altitude dynamics of migrating European nightjars across regions and seasons. J Exp Biol 224(20):jeb242836

    Article  PubMed  PubMed Central  Google Scholar 

  • Nowak M, Kavetska K, Królaczyk K, Stapf A, Kornas S, Wajdzik M, Basiaga M (2012) Comparative study of cestode and nematode fauna of the gastrointestinal tract of Mallards (Anas platyrhynchos L., 1758) from three different Polish ecosystems. Acta Sci Pol Zootech 11(4):99–106

    Google Scholar 

  • Nummelin M, Lodenius M, Tulisalo E, Hirvonen H, Alanko T (2007) Predatory insects as bioindicators of heavy metal pollution. Environm Poll 145(1):339–347

    Article  CAS  Google Scholar 

  • Ohlendorf HM (1989) Bioaccumulation and effects of selenium inwildlife. In: Jacobs LW (ed) Selenium in agriculture and the environment. Soil Science Society of America, Madison, pp 133–177

    Google Scholar 

  • Ohlendorf HM, Heinz G (2011) Selenium in birds. Chapter 21. In: Beyer WN, Meador JP (eds) Environmental contaminants in biota: interpreting tissue concentrations. CRC Press, Boca Raton, USA, pp 769–701

    Google Scholar 

  • Okulewicz A, Kozak B (1987) Nematodes of Corvidae in Lower Silesia. Wiad Parazytol 33:199–207

    CAS  PubMed  Google Scholar 

  • Onodi G, Csorgo T (2014) Habitat preference of Great-spotted Woodpecker (Dendrocopos major Linnaeus, 1758) and Lesser-spotted Woodpecker (Dendrocopos minor Linnaeus, 1758) in the presence of invasive plant species - preliminary study. Ornis Hungarica 22:50–64

    Article  Google Scholar 

  • Outridge PM, Scheuhammer AM, Fox GA, Braune BM, White LM, Gregorich LJ, Keddy C (1999) An assessment of the potential hazards of environmental selenium for Canadian water birds. Environ Rev 7(2):81–96

    Article  CAS  Google Scholar 

  • Pain DJ, Mateo R, Green RE (2019) Effects of lead from ammunition on birds and other wildlife: a review and update. Ambio 48(9):935–953

    Article  PubMed  PubMed Central  Google Scholar 

  • Pain DJ, Meharg AA, Ferrer M, Taggart M, Penteriani V (2005) Lead concentrations in bones and feathers of the globally threatened Spanish Imperial Eagle. Biol Conserv 121:603–610

    Article  Google Scholar 

  • Parslow JLF, Thomas GJ, Williams TD (1982) Heavy metals in the livers of waterfowl from the Ouse Washes, England. Env Poll Series A, Ecol Biol 29(4):317–327

    Article  CAS  Google Scholar 

  • Patterson IJ, Cavallini P, Rolando A (1991) Density, range size and diet of the European Jay Garrulus glandarius in the Maremma Natural Park, Tuscany, Italy, in summer and autumn. Ornis Scand 22:79–87

    Article  Google Scholar 

  • Pilarczyk B, Tomza-Marciniak A, Pilarczyk R, Kavetska K, Rząd I, Hendzel D, Marciniak A (2012) Selenium status in sea ducks (Melanitta fusca, Melanitta nigra and Clangula hyemalis) wintering on the southern Baltic coast, Poland. Mar Biol Res 8(10):1019–1025

    Article  Google Scholar 

  • Pilarczyk B, Tomza-Marciniak A, Pilarczyk R, Marciniak A, Bąkowska M, Nowakowska E (2019) Selenium, Se. In: Kalisińska E (ed) Mammals and birds as bioindicators of trace element contaminations in terrestrial environments: an ecotoxicological assessment of the Northern Hemisphere. Springer, New York, pp 301–362

    Chapter  Google Scholar 

  • Pillatzki AE, Neiger RD, Chipps SR, Higgins KF, Thiex N, Afton AD (2011) Hepatic element concentrations of lesser scaup (Aythya affinis) during spring migration in the upper Midwest. Arch Environ Contam Toxicol 61:144–150

    Article  CAS  PubMed  Google Scholar 

  • Plessl C, Jandrisits P, Krachler R, Keppler BK, Jirsa F (2017) Heavy metals in the mallard Anas platyrhynchos from eastern Austria. Sci Total Environm 580:670–676

    Article  CAS  Google Scholar 

  • Polak-Juszczak L (2017) Toxic metals (Cd, Pb) in flatfish, mollusc Macoma balthica, water and sediments from the southern Baltic Sea. J Elementology 22:487–496

    Google Scholar 

  • Rabitsch WB (1997) Seasonal metal accumulation patterns in the red wood ant Formica pratensis (Hymenoptera) at contaminated and reference sites. J Appl Ecol 34:1455–1461

    Article  CAS  Google Scholar 

  • Radke B, Dembska G, Pazikowska-Sapota G, Galer-Tatarowicz K (2019) Many faces of arsenic. Oceanol Hydrobiol Stud 48(1):90–104

    Article  CAS  Google Scholar 

  • Ramenofsky M (2011) Hormones in migration and reproductive cycles of birds. In: Norris DO, Lopez KH (eds) Hormones and reproduction of vertebrates. Academic Press, Amsterdam, pp 205–236

    Google Scholar 

  • Rattner BA, Jehl JR (1997) Dramatic fluctuations in liver mass and metal content of eared grebes (Podiceps nigricollis) during autumnal migration. Bull Environm Contamin Toxicol 59(3):337–343

    Article  CAS  Google Scholar 

  • Rayman MP (2012) Selenium and human health. Lancet 379:1256–1268

    Article  CAS  PubMed  Google Scholar 

  • Reglero MM, Taggart MA, Monsalve-Gonzalez L, Mateo R (2009) Heavy metal exposure in large game from a lead mining area: effects on oxidative stress and fatty acid composition in liver. Environ Poll 157:1388–1395

    Article  CAS  Google Scholar 

  • Rehman MU, Khan R, Khan A, Qamar W, Arafah A, Ahmad A, Ahmad A, Akhter R, Rinklebe J, Ahmad P (2021) Fate of arsenic in living systems: Implications for sustainable and safe food chains. J Hazard Mater 41:126050. https://doi.org/10.1016/j.jhazmat.2021.126050

    Article  CAS  Google Scholar 

  • Rita C, Silva RC, Saiki M, Moreira EG, Oliveira PT (2018) The great egret (Ardea alba) as a bioindicator of trace element contamination in the Sao Paulo Metropolitan Region, Brazil. J Radioanalytical Nuclear Chem 315(3):447–458

    Article  Google Scholar 

  • Robb JR (1997) Physioecology of staging American Black Ducks and Mallards. Msc PhD thesis. Ohio State University

    Google Scholar 

  • Roberts AJ, Conover MR, Fusaro JL (2014) Factors influencing mortality of eared grebes (Podiceps nigricollis) during a mass downing. The Wilson J Ornithol 126(3):584–591

    Article  Google Scholar 

  • Rosner S, Selva N, Muller T, Pugacewicz E, Laudet F (2005) Raven Corvus corax ecology in a primeval temperate forest. In: Jerzak L, Kavanagh BP, Tryjanowski P (eds) Corvids of Poland. Bogucki Wyd. Nauk, Poznan, Poland, pp 385–405

    Google Scholar 

  • Sakshaug E, Johnsen GH, Kovacs KM (2009) Ecosystem Barents Sea. Tapir Academic Press, Trondheim, Norway

    Google Scholar 

  • Saxe JK, Impellitteri CA, Peijnenburg WJGM, Allen HE (2001) Novel model describing trace metal concentrations in the earthworm, Eisenia andrei. Environm Sci Technol 35:4522–4529

    Article  CAS  Google Scholar 

  • Scheuhammer AM (1987) The chronic toxicity aluminum, cadmium, mercury and lead in birds: a review. Environm Poll 46:263–295

    Article  CAS  Google Scholar 

  • Scheuhammer AM, Meyer MW, Sandheinrich MB, Murray MW (2007) Effects of environmental methylmercury on the health of wild birds, mammals, and fish. Ambio 36:12–19

    Article  CAS  PubMed  Google Scholar 

  • Schmaljohann H (2018) Proximate mechanisms affecting seasonal differences in migration speed of avian species. Sci Rep 8:4106

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmidt-Posthaus H, Mattmann P, Hirschi R, Schneider E (2020) On the potential role of Mergus merganser as transport hosts for Tetracapsuloides bryosalmonae. Transbound Emerg Dis 67(6):3056–3060

    Article  CAS  PubMed  Google Scholar 

  • Schummer ML, Badzinski SS, Petrie SA, Chen YW, Belzile N (2010) Selenium accumulation in sea ducks wintering at Lake Ontario. Arch Environ Contamin Toxicol 58(3):854–862

    Article  CAS  Google Scholar 

  • Schummer ML, Petrie SA, Badzinski SS, Deming M, Chen YW, Belzile N (2011) Elemental contaminants in livers of mute swans on Lakes Erie and St. Clair. Arch Environ Contamin Toxicol 61:677–687

    Article  CAS  Google Scholar 

  • Seewagen CL (2020) The threat of global mercury pollution to bird migration: potential mechanisms and current evidence. Ecotoxicol 29(8):1254–1267

    Article  CAS  Google Scholar 

  • Seewagen CL, Cristol DA, Gerson AR (2016) Mobilization of mercury from lean tissues during simulated migratory fasting in a model songbird. Sci Rep 6:25762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shore RF, Pereira MG, Walker LA, Thompson DR (2011) Mercury in nonmarine birds and mammals. In: Beyer WN, Meador JP (eds) Environmental contaminants in biota. CRC Press, Boca Raton, USA, pp 609–642

    Chapter  Google Scholar 

  • Sikora A, Lawicki L, Wylegala P, Lenkiewicz W (2015) Numbers and distribution of Common Cranes Grus grus at autumn roosting sites in Poland in 2009–2013. Ornis Pol 56:1–25

    Google Scholar 

  • Sileo L, Nelson Beyer W, Mateo R (2003) Pancreatitis in wild zinc-poisoned waterfowl. Avian Pathol 32:655–660

    Article  CAS  PubMed  Google Scholar 

  • Silva RC, Saiki M, Moreira EG, Oliveira PT (2018) The great egret (Ardea alba) as a bioindicator of trace element contamination in the São Paulo Metropolitan Region, Brazil. J Radioanal Nuclear Chem 315:447–458

    Article  CAS  Google Scholar 

  • Sjoberg K (1985) Foraging activity patterns in the Goosander (Mergus merganser) and the red-breasted merganser (M. serrator) in relation to patterns of activity in their majorprey species. Oecologia 67:35–39

    Article  PubMed  Google Scholar 

  • Skaldina O, Peräniemi S, Sorvari J (2018) Ants and their nests as indicators for industrial heavy metal contamination. Environm Poll 240:574–581

    Article  CAS  Google Scholar 

  • Smith D, Woodall GM, Jarabek AM, Boyes WK (2018) Manganese testing under a clean air act test rule and the application of resultant data in risk assessments. Neurotoxicology 64:177–184

    Article  CAS  PubMed  Google Scholar 

  • Soliman KM, Mohallal EM, Alqahtani AR (2020) Little egret (Egretta garzetta) as a bioindicator of heavy metal contamination from three different localities in Egypt. Environm Sci Poll Res 27(18):23015–23025

    Article  CAS  Google Scholar 

  • Sonne C, Adams DH, Alstrup AK, Lam SS, Dietz R, Kanstrup N (2022) Denmark passes total ban of leaded ammunition. Science 377:1054–1055

    Article  CAS  PubMed  Google Scholar 

  • Soons MB, Brochet AL, Kleyheeg E, Green AJ (2016) Seed dispersal by dabbling ducks: an overlooked dispersal pathway for a broad spectrum of plant species. J Ecol 104:443–455

    Article  Google Scholar 

  • Stary P, Kubiznakova J (1987) Content and transfer of heavy metal air pollutants in populations of Formica spp. wood ants (Hym., Formicidae). J Appl Entomol 104(1-5):1–10

    Article  CAS  Google Scholar 

  • Statistical Office in Warsaw (2020) Statistical yearbook of Warsaw. Statistical office in Warsaw, Warsaw, Poland

    Google Scholar 

  • StatSoft, Inc. (2014) StatSoft, Inc., Francisco Partners & Elliot Management statistical software, edition 2014. ed.

  • Stempniewicz L (1995) Feeding ecology of the Long-tailed Duck Clangula hyemalis wintering in the Gulf of Gdansk (southern Baltic Sea). Ornis Svecica 5:133–142

    Article  Google Scholar 

  • Strickman RJ, Mitchell CP (2017) Accumulation and translocation of methylmercury and inorganic mercury in Oryza sativa: an enriched isotope tracer study. Sci Total Environ 574:1415–1423

    Article  CAS  PubMed  Google Scholar 

  • Sujak A, Wiącek D, Jakubas D, Komosa A, Kitowski I (2019) Mallards Anas platyrhynchos shot in Eastern Poland: ecological risk evaluated by analysis of trace elements in liver. Human Ecol Risk Assess 25:2116–2132

    Article  CAS  Google Scholar 

  • Szefer P, Szefer K (1990) Metals in molluscs and associated bottom sediments of the southern Baltic. Helgoländer Meeresuntersuchungen 44(3-4):411–424

    Article  Google Scholar 

  • Szymczyk K, Zalewski K (2003) Copper, zinc, lead and cadmium content in liver and muscles of Mallards (Anas platyrhynchos) and other hunting fowl species in Warmia and Mazury in 1999-2000. Pol J Environ Stud 3:381–386

    Google Scholar 

  • Taggart MA, Figuerola J, Green AJ, Mateo R, Deacon C, Osborn D, Meharg AA (2006) After the Aznalcollar mine spill: arsenic, zinc, selenium, lead and copper levels in the livers and bones of five waterfowl species. Environ Res 100:349–361

    Article  CAS  PubMed  Google Scholar 

  • Taggart MA, Green AJ, Mateo R, Svanberg F, Hillström L, Meharg AA (2009) Metal levels in the bones and livers of globally threatened marbled teal and white-headed duck from El Hondo, Spain. Ecotoxicol Environm Safe 72:1–9

    Article  CAS  Google Scholar 

  • Tomza-Marciniak A, Pilarczyk B, Marciniak A, Udała J, Bąkowska M, Pilarczyk R (2019) Cadmium, Cd. In: Kalisińska E (ed) Mammals and birds as bioindicators of trace element contaminations in terrestrial environments: an ecotoxicological assessment of the Northern Hemisphere. Springer, New York, USA, pp 483–532

    Chapter  Google Scholar 

  • Torok J (1990) Resource partitioning among three woodpecker species Dendrocopos spp. during the breeding season. Ecography 13(4):257–264

    Article  Google Scholar 

  • Tryjanowski P, Kuźniak S, Kujawa K, Jerzak L (2009) Ecology of birds in agricultural landscape. Bogucki Wydawnictwo Naukowe, Poznań, Poland

    Google Scholar 

  • Vachirapatama N, Jirakiattikul Y, Dicinoski G, Townsend AT, Haadad PR (2011) Effect of vanadium on plant growth and its accumulation in plant tissues. Songklanakarin J Sci Technol 33:255–261

    CAS  Google Scholar 

  • Varagiya D, Jethva B, Pandya D (2022) Feather heavy metal contamination in various species of waterbirds from Asia: a review. Environm Monit Assess 194(1):1–14

    Google Scholar 

  • Vegvari Z, Hansbauer MM, Schulte B (2010) The Hortobagy National Park-one of the most important stop-over sites for the Eurasian Crane in Europe: changes and threats. In: Cranes, agriculture and climate change. Proceedings of a workshop organized by the International Crane Foundation and Muraviovka Park for Sustainable Land Use, Muraviovka Park, Russia, pp 77–82

    Google Scholar 

  • Voisin C (1991) The herons of Europe. T. & A. D, Poyser, London, U.K.

    Google Scholar 

  • Voslamber B, Platteeuw M, van Eerden MR (2010) Individual differences in feeding habits in a newly established Great Egret Casmerodius albus population: key factors for recolonisation. Ardea 98:355–363

    Article  Google Scholar 

  • Wegrzynowicz A (2018) Occurrence of wetland birds on ephemeral reservoir near Zakroczym (Mazovian Lowland). Kulon 23:144–149

    Google Scholar 

  • Wiener JG, Krabbenhoft DP, Heinz GH, Scheuhammer AM (2003) Ecotoxicology of mercury. In: Hoffman DJ, Rattner BA, Burton GA (eds) Handbook of ecotoxicology. Washington, CRC Press, Cairns, Boca Raton, London, New York, pp 409–463

    Google Scholar 

  • Xia P, Ma L, Yi Y, Lin T (2021) Assessment of heavy metal pollution and exposure risk for migratory birds - a case study of Caohai wetland in Guizhou Plateau (China). Environm Poll 275:116564

    Article  CAS  Google Scholar 

  • Yang H, Peng Y, Tian J, Wang J, Hu J, Wang Z (2016) Spiders as excellent experimental models for investigation of heavy metal impacts on the environment: a review. Environm Earth Sci 75(13):1059

    Article  Google Scholar 

  • Zaborska A, Siedlewicz G, Szymczycha B, Dzierzbicka-Głowacka L, Pazdro K (2019) Legacy and emerging pollutants in the Gulf of Gdańsk (southern Baltic Sea) – loads and distribution revisited. Marine Poll Bull 139:238–255

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the veterinarians from local clinics and rehabilitation centers in Eastern and North Poland for their help in obtaining the research material. The study was performed with permissions (for the first author) from the General Directorate of Environmental Protection (DOPogiz -4200/III-7/107/09/ls) and Regional Directorate of Nature Protection in Lublin (WPN 6401.224.2014.MP). We thank two anonymous reviewers for their constructive and helpful comments.

Author information

Authors and Affiliations

Authors

Contributions

I.K.—conceptualization, sample collection, formal analysis, and writing of manuscript; Ł.R.—statistical analyses and writing of manuscript; W.D.—measurements; P.G.—sample collection and writing of manuscript; A.S.—formal analysis and writing of manuscript; D.J.—conceptualization, statistical analyses, and writing of manuscript

Corresponding author

Correspondence to Agnieszka Sujak.

Ethics declarations

Ethical approval

This study included animal subjects. The study was performed with permissions (for the first author) from the General Directorate of Environmental Protection (DOPogiz-4200/III-7/107/09/ls) and Regional Directorate of Nature Protection in Lublin (WPN 6401.224.2014.MP). None of the birds studied were intentionally shot for research purposes, except for game Mallards, which were delivered to Authors by local hunters.

Consent to participate

All the authors are aware of that publication. Authors have participated in work as stated under Author’s contribution.

Consent for publication

The authors provide consent for the publication of identifiable information, including data or details intended for publication as an article in the Environmental Science and Pollution Research journal. We acknowledge that the published material may be available both in print and online, in connection with which anyone can read it. We understand that readers may include not only specialists in the field and scientific researchers but also the general public.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 83 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kitowski, I., Łopucki, R., Wiącek, D. et al. Concentration of metals and metalloids in livers of birds of various foraging guilds collected during the autumn migration period in Poland. Environ Sci Pollut Res 31, 21913–21934 (2024). https://doi.org/10.1007/s11356-024-32502-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-024-32502-y

Keywords

Navigation