Skip to main content
Log in

The government subsidy design considering the reference price effect in a green supply chain

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This paper constructs a green supply chain with a manufacturer and a retailer. Taking into account the reference price effect of consumers based on the mental accounting theory, we investigate the following government incentive policies: R&D (research and development) subsidy, consumption subsidy, and dual subsidy. For manufacturer-led (M-led) and retailer-led (R-led) supply chains, we evaluate the optimal wholesale price, sales price, green degree of product, and the optimal subsidy of the government aiming to improve the environmental benefit or social welfare. We find that the government goal, power structure and reference price effect impact the design of subsidy mechanisms significantly. First, for M-led supply chain, the government concerned with the environmental benefit goal should only provide R&D subsidy for the manufacturer when the reference price effect is low; otherwise, the government would offer subsidy both for the manufacturer and consumers. However, the government will only offer R&D subsidy when the social welfare goal is adopted. Second, for R-led supply chain, the government aiming to improve the environmental benefit prefers dual subsidy when the reference price effect is low; otherwise, consumption subsidy is preferable. Surprisingly, under the social welfare goal, no subsidy for R-led supply chain tends to be the best option. Intriguingly, embracing the social welfare goal can result in more economic and environmental benefits for M-led supply chain, although the subsidy strategy is less effective than the environmental benefit goal. Our research can provide inspirations and references for designing government subsidy mechanisms in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  • Babich V (2010) Independence of capacity ordering and financial subsidies to risky suppliers. Manuf Serv Oper Manag 12(4):583–607

    Article  Google Scholar 

  • Bian J, Zhang G, Zhou G (2020) Manufacturer vs. consumer subsidy with green technology investment and environmental concern. Eur J Oper Res 287(3):832–843

    Article  Google Scholar 

  • Briesch RA, Krishnamurthi L, Mazumdar T, Raj SP (1997) A comparative analysis of reference price models. J Consum Res 24(2):202–214

    Article  Google Scholar 

  • Cao P, Zhao N, Wu J (2019) Dynamic pricing with Bayesian demand learning and reference price effect. Eur J Oper Res 279(2):540–556

    Article  Google Scholar 

  • Chemama J, Cohen MC, Lobel R, Perakis G (2019) Consumer subsidies with a strategic supplier: Commitment vs. flexibility. Manag Sci 65(2):681–713

    Article  Google Scholar 

  • Chen L, Kök AG, Tong JD (2013) The effect of payment schemes on inventory decisions: The role of mental accounting. Manage Sci 59(2):436–451

    Article  Google Scholar 

  • Chen X, Hu P, Shum S, Zhang Y (2016) Dynamic stochastic inventory management with reference price effects. Oper Res 64(6):1529–1536

    Article  Google Scholar 

  • Chen X, Hu P, Hu Z (2017) Efficient algorithms for the dynamic pricing problem with reference price effect. Manage Sci 63(12):4389–4408

    Article  Google Scholar 

  • Chen JY, Dimitrov S, Pun H (2019) The impact of government subsidy on supply chains’ sustainability innovation. Omega 86:42–58

    Article  Google Scholar 

  • Chen Z, Fan ZP, Zhao X (2022) Toward supply side incentive: The impact of government schemes on a vehicle manufacturer’s adoption of electric vehicles. Int Trans Oper Res 29(6):3565–3591

    Article  Google Scholar 

  • Chen Z, Fan ZP (2023) Improvement strategies of battery driving range in an electric vehicle supply chain considering subsidy threshold and cost misreporting. Ann Oper Res 326(1): 9-113

  • Cheng F, Chen T, Shen Y, Jing X (2022) Impact of green technology improvement and store brand introduction on the sales mode selection. Int J Prod Econ 253:108587

    Article  Google Scholar 

  • Choi TM (2020) Innovative “bring-service-near-your-home” operations under Corona-virus (COVID-19/SARS-CoV-2) outbreak: Can logistics become the messiah? Transp Res Part e: Logist Transp Rev 140:101961

    Article  Google Scholar 

  • Cohen MC, Lobel R, Perakis G (2016) The impact of demand uncertainty on consumer subsidies for green technology adoption. Manage Sci 62(5):1235–1258

    Article  Google Scholar 

  • Colombo L, Labrecciosa P (2021) Dynamic oligopoly pricing with reference-price effects. Eur J Oper Res 288(3):1006–1016

    Article  Google Scholar 

  • Cui Y, Khan SU, Li Z, Zhao M (2021) Environmental effect, price subsidy and financial performance: Evidence from Chinese new energy enterprises. Energy Policy 149:112050

    Article  Google Scholar 

  • Dong C, Liu Q, Shen B (2019) To be or not to be green? Strategic investment for green product development in a supply chain. Transp Res Part e: Logist Transp Rev 131:193–227

    Article  Google Scholar 

  • Dou G, Choi TM (2021) Does implementing trade-in and green technology together benefit the environment? Eur J Oper Res 295(2):517–533

    Article  Google Scholar 

  • Erat S, Bhaskaran SR (2012) Consumer mental accounts and implications to selling base products and add-ons. Mark Sci 31(5):801–818

    Article  Google Scholar 

  • Fan ZP, Huang S, Wang X (2021) The vertical cooperation and pricing strategies of electric vehicle supply chain under brand competition. Comput Ind Eng 152:106968

    Article  Google Scholar 

  • Fan ZP, Chen Z, Zhao X (2022) Battery outsourcing decision and product choice strategy of an electric vehicle manufacturer. Int Trans Oper Res 29(3):1943–1969

    Article  Google Scholar 

  • Fu K, Li Y, Mao H, Miao Z (2022) Firms’ production and green technology strategies: The role of emission asymmetry and carbon taxes. Eur J Oper Res 305(3):1100–1112

    Article  Google Scholar 

  • Giri RN, Mondal SK, Maiti M (2019) Government intervention on a competing supply chain with two green manufacturers and a retailer. Comput Ind Eng 128:104–121

    Article  Google Scholar 

  • Gong B, Gao Y, Li KW, Liu Z, Huang J (2024) Cooperate or compete? A strategic analysis of formal and informal electric vehicle battery recyclers under government intervention. Int J Logist Res Appl 27(1):149–169

    Article  Google Scholar 

  • Hong Z, Guo X (2019) Green product supply chain contracts considering environmental responsibilities. Omega 83:155–166

    Article  Google Scholar 

  • Hong Z, Wang H, Yu Y (2018) Green product pricing with non-green product reference. Transp Res Part e: Logist Transp Rev 115:1–15

    Article  Google Scholar 

  • Hong IH, Chiu AS, Gandajaya L (2021) Impact of subsidy policies on green products with consideration of consumer behaviors: Subsidy for firms or consumers? Resour Conserv Recycl 173:105669

    Article  Google Scholar 

  • Huang S, Fan ZP, Wang N (2020) Green subsidy modes and pricing strategy in a capital-constrained supply chain. Transp Res Part e: Logist Transp Rev 136:101885

    Article  Google Scholar 

  • Hussain J, Lee CC, Chen Y (2022) Optimal green technology investment and emission reduction in emissions generating companies under the support of green bond and subsidy. Technol Forecast Soc Chang 183:121952

    Article  Google Scholar 

  • Jung SH, Feng T (2020) Government subsidies for green technology development under uncertainty. Eur J Oper Res 286(2):726–739

    Article  Google Scholar 

  • Kalyanaram G, Winer RS (1995) Empirical generalizations from reference price research. Mark Sci 14(3):G161–G169

    Article  Google Scholar 

  • Kopalle PK, Rao AG, Assuncao JL (1996) Asymmetric reference price effects and dynamic pricing policies. Mark Sci 15(1):60–85

    Article  Google Scholar 

  • Krass D, Nedorezov T, Ovchinnikov A (2013) Environmental taxes and the choice of green technology. Prod Oper Manag 22(5):1035–1055

    Article  Google Scholar 

  • Li R, Teng JT (2018) Pricing and lot-sizing decisions for perishable goods when demand depends on selling price, reference price, product freshness, and displayed stocks. Eur J Oper Res 270(3):1099–1108

    Article  Google Scholar 

  • Li G, Wu H, Sethi SP, Zhang X (2021) Contracting green product supply chains considering marketing efforts in the circular economy era. Int J Prod Econ 234:108041

    Article  Google Scholar 

  • Li Z, Huang Z, Su Y (2023) New media environment, environmental regulation and corporate green technology innovation: Evidence from China. Energy Economics 119:106545

    Article  Google Scholar 

  • Lin Z (2016) Price promotion with reference price effects in supply chain. Transp Res Part e: Logist Transp Rev 85:52–68

    Article  Google Scholar 

  • Ling Y, Xu J, Ülkü MA (2022) A game-theoretic analysis of the impact of government subsidy on optimal product greening and pricing decisions in a duopolistic market. J Clean Prod 338:130028

    Article  Google Scholar 

  • Ma P, Gong Y, Mirchandani P (2020) Trade-in for remanufactured products: Pricing with double reference effects. Int J Prod Econ 230:107800

    Article  Google Scholar 

  • Malekian Y, Rasti-Barzoki M (2019) A game theoretic approach to coordinate price promotion and advertising policies with reference price effects in a two-echelon supply chain. J Retail Consum Serv 51:114–128

    Article  Google Scholar 

  • Mehra A, Sajeesh S, Voleti S (2020) Impact of reference prices on product positioning and profits. Prod Oper Manag 29(4):882–892

    Article  Google Scholar 

  • Monroe KB (1973) Buyers’ subjective perceptions of price. J Mark Res 10(1):70–80

    Google Scholar 

  • Ren D, Guo R, Lan Y, Shang C (2021) Shareholding strategies for selling green products on online platforms in a two-echelon supply chain. Transp Res Part e: Logist Transp Rev 149:102261

    Article  Google Scholar 

  • Sinayi M, Rasti-Barzoki M (2018) A game theoretic approach for pricing, greening, and social welfare policies in a supply chain with government intervention. J Clean Prod 196:1443–1458

    Article  Google Scholar 

  • Sun L, Jiao X, Guo X, Yu Y (2022) Pricing policies in dual distribution channels: The reference effect of official prices. Eur J Oper Res 296(1):146–157

    Article  Google Scholar 

  • Thaler R (1985) Mental accounting and consumer choice. Mark Sci 4(3):199–214

    Article  Google Scholar 

  • Wang Q, Zhao N, Wu J, Zhu Q (2021a) Optimal pricing and inventory policies with reference price effect and loss-averse customers. Omega 99:102174

    Article  Google Scholar 

  • Wang Y, Zhao Y, Jin M, Mao J (2021b) Decisions and coordination of retailer-led low-carbon supply chain under altruistic preference. Eur J Oper Res 283(30):910–925

    Article  Google Scholar 

  • Yan X, Zhao W, Yu Y (2022) Optimal product line design with reference price effects. Eur J Oper Res 302(3):1045–10624

    Article  Google Scholar 

  • Yang D, Xiao T (2017) Pricing and green level decisions of a green supply chain with governmental interventions under fuzzy uncertainties. J Clean Prod 149:1174–1187

    Article  Google Scholar 

  • Yu JJ, Tang CS, Shen ZJM (2018) Improving consumer welfare and manufacturer profit via government subsidy programs: subsidizing consumers or manufacturers? Manuf Serv Oper Manag 20(4):752–766

    Article  Google Scholar 

  • Yu JJ, Tang CS, Sodhi MS, Knuckles J (2020) Optimal subsidies for development supply chains. Manuf Serv Oper Manag 22(6):1131–1147

    Article  Google Scholar 

  • Yuan Y, Xiao T (2022) Retailer’s decoy strategy versus consumers’ reference price effect in a retailer-Stackelberg supply chain. J Retail Consum Serv 68:103081

    Article  Google Scholar 

  • Zhang J, Chiang WYK (2020) Durable goods pricing with reference price effects. Omega 91:102018

    Article  Google Scholar 

  • Zhang J, Gou Q, Liang L, Huang Z (2013) Supply chain coordination through cooperative advertising with reference price effect. Omega 41(2):345–353

    Article  Google Scholar 

  • Zhang J, Chiang WYK, Liang L (2014) Strategic pricing with reference effects in a competitive supply chain. Omega 44:126–135

    Article  Google Scholar 

  • Zhang L, Wang J, You J (2015) Consumer environmental awareness and channel coordination with two substitutable products. Eur J Oper Res 241(1):63–73

    Article  Google Scholar 

  • Zhu W, He Y (2017) Green product design in supply chains under competition. Eur J Oper Res 258(1):165–180

    Article  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (72102118), Humanities and Social Science Project of Ministry of Education of China (21YJC630043), Natural Science Foundation of Shandong Province of China (ZR2021QG005), and Outstanding Youth Innovation Research Team in University of Shandong Province (2022RW035).

Author information

Authors and Affiliations

Authors

Contributions

Shuai Huang: Methodology, Formal analysis, Writing-original draft, Funding acquisition. Bingzhi Du: Writing-review & editing. Zhongwei Chen: Writing-review & editing, Supervision, Validation. Jian Cheng: Writing-review & editing.

Corresponding author

Correspondence to Zhongwei Chen.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All of the authors have read and approved the paper for publication. We confirmed that it has not been published previously nor is it being considered by any other peer-reviewed journal.

Conflict of interest

No potential conflict of interest was reported by the author(s).

Additional information

Responsible Editor: Philippe Garrigues

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proofs of Table 3

Non-subsidy case, for the M-led supply chain, we can obtain the optimal strategies of the manufacturer and retailer based on the Stackelberg game and optimization theories. We know \(\pi_{m0}^{M} = w_{m0} d_{m0} - \frac{1}{2}g_{m0}^{2}\), \(\pi_{m0}^{R} = e_{m0} d_{m0}\), \(\, d_{m0} = 1 - p_{m0} + g_{m0}\).

  1. (1)

    We can obtain \(\frac{{\partial \pi_{m0}^{R} }}{{\partial e_{m0} }} = 1 - w_{m0} - 2e_{m0} + g_{m0}\) and \(\frac{{\partial^{2} \pi_{m0}^{R} }}{{\partial e_{m0}^{2} }} = - 2 < 0\). Thus \(\pi_{m0}^{R}\) is a strictly concave function of \(e_{m0}\). Let \(\frac{{\partial \pi_{m0}^{R} }}{{\partial e_{m0} }} = 0\), we have \(e_{m0}^{\# } = \frac{{1 - w_{m0} + g_{m0} }}{2}\). It is easy to show that \(\pi_{m0}^{M} = w_{m0} (1 - w_{m0} - \frac{{1 - w_{m0} + g_{m0} }}{2} + g_{m0} + \theta f_{m0} ) - \frac{1}{2}g_{m0}^{2}\).

  2. (2)

    We can obtain \(\frac{{\partial \pi_{m0}^{M} }}{{\partial w_{m0} }} = \frac{{1 - 2w_{m0} + g_{m0} }}{2}\), \(\frac{{\partial \pi_{m0}^{M} }}{{\partial g_{m0} }} = \frac{{w_{m0} - 2g{}_{m0}}}{2}\) and \(H(w_{m0} ,g{}_{m0}) = \left[ {\begin{array}{*{20}c} { - 1} & \frac{1}{2} \\ \frac{1}{2} & 1 \\ \end{array} } \right]\). We can know easily \(\frac{{\partial^{2} \pi_{m0}^{M} }}{{\partial w_{m0}^{2} }} < 0\), \(\frac{{\partial^{2} \pi_{m0}^{M} }}{{\partial g_{m0}^{2} }} < 0\), \(\det H(w_{m0} ,g{}_{m0}) = \frac{3}{4} > 0\). Thus we have \(w_{m0}^{\# } = \frac{2}{3}\) and \(g_{m0}^{\# } = \frac{1}{3}\) by solving \(\frac{{\partial \pi_{m0}^{M} }}{{\partial w_{m0} }} = 0\) and \(\frac{{\partial \pi_{m0}^{M} }}{{\partial g_{m0} }} = 0\). Therefore \(p_{m0}^{*} = 1\), \(e_{m0}^{*} = \frac{1}{3}\), \(d_{m0}^{*} = \frac{1}{3}\), \(\pi_{m0}^{M*} = \frac{1}{6}\), \(\pi_{m0}^{R*} = \frac{1}{9}\).

Similarly, for the R-led supply chain, we can also the results by this method, so we will not repeat it here.

Proofs of Table 4

Under environmental benefit goal, for the M-led supply chain, we have \(\pi_{m1}^{M} = w_{m1} d_{m1} - \frac{1}{2}g_{m1}^{2} + s_{m1} g_{m1}\), \(\pi_{m1}^{R} = e_{m1} d_{m1}\), \(\, d_{m1} = 1 - p_{m1} + g_{m1} + \theta f_{m1}\).

  1. (1)

    We can obtain \(\frac{{\partial \pi_{m1}^{R} }}{{\partial e_{m1} }} = 1 - w_{m1} - 2e_{m1} + g_{m1} + \theta f_{m1}\) and \(\frac{{\partial^{2} \pi_{m1}^{R} }}{{\partial e_{m1}^{2} }} = - 2 < 0\). Thus \(\pi_{m1}^{R}\) is a strictly concave function of \(e_{m1}\). Let \(\frac{{\partial \pi_{m1}^{R} }}{{\partial e_{m1} }} = 0\), we have \(e_{m1}^{\# } = \frac{{1 - w_{m1} + g_{m1} + \theta f_{m1} }}{2}\). It is easy to show that \(\pi_{m1}^{M} = w_{m1} (1 - w_{m1} - \frac{{1 - w_{m1} + g_{m1} + \theta f_{m1} }}{2} + g_{m1} + \theta f_{m1} ) - \frac{1}{2}g_{m1}^{2} + s_{m1} g_{m1}\).

  2. (2)

    We can obtain \(\frac{{\partial \pi_{m1}^{M} }}{{\partial w_{m1} }} = \frac{{1 - 2w_{m1} + g_{m1} + \theta f_{m1} }}{2}\), \(\frac{{\partial \pi_{m1}^{M} }}{{\partial g_{m1} }} = \frac{{w_{m1} - 2g{}_{m1} + 2s_{m1} }}{2}\) and \(H(w_{m1} ,g{}_{m1}) = \left[ {\begin{array}{*{20}c} { - 1} & \frac{1}{2} \\ \frac{1}{2} & 1 \\ \end{array} } \right]\). We can know easily \(\frac{{\partial^{2} \pi_{m1}^{M} }}{{\partial w_{m1}^{2} }} < 0\), \(\frac{{\partial^{2} \pi_{m1}^{M} }}{{\partial g_{m1}^{2} }} < 0\), \(\det H(w_{m1} ,g{}_{m1}) = \frac{3}{4} > 0\). Thus we have \(w_{m1}^{\# } = \frac{{2(1 + s_{m1} + \theta f_{m1} )}}{3}\) and \(g_{m1}^{\# } = \frac{{1 + 4s_{m1} + \theta f_{m1} }}{3}\) by solving \(\frac{{\partial \pi_{m1}^{M} }}{{\partial w_{m1} }} = 0\) and \(\frac{{\partial \pi_{m1}^{M} }}{{\partial g_{m1} }} = 0\).

  3. (3)

    Hence, we have the following model, Next we use KKT conditions to solve the model.

\(\begin{gathered} Max \, U(s_{m1} ,f_{m1} ) = \frac{{(\theta^{2} - 3\theta )f_{m1}^{2} }}{9} + \frac{{[\theta (2s_{m1} + 2) - 3s_{m1} - 3]f_{m1} }}{9} - \frac{{8s_{m1}^{2} }}{9} + \frac{{2s_{m1} }}{9} + \frac{1}{9} \hfill \\ \begin{array}{*{20}c} {} & {} \\ \end{array} s.t.\left\{ \begin{gathered} s_{m1} \ge 0 \, \lambda_{1} \ge 0 \hfill \\ f_{m1} \ge 0 \, \lambda_{2} \ge 0 \hfill \\ \end{gathered} \right. \hfill \\ \end{gathered}\).

We have \(\nabla U(s_{m1} ,f_{m1} ) = \left( \begin{gathered} \frac{{(2\theta - 3)f_{m1} }}{9} - \frac{{16s_{m1} }}{9} + \frac{2}{9} \hfill \\ \frac{{2\theta (\theta - 3)f_{m1} }}{9} + \frac{{2\theta (s_{m1} + 2)}}{9} - \frac{{s_{m1} }}{3} - \frac{1}{3} \hfill \\ \end{gathered} \right)\). Then the optimization problem is characterized by the KKT conditions as follows:

\(\left\{ \begin{gathered} \frac{{(2\theta - 3)f_{m1} }}{9} - \frac{{16s_{m1} }}{9} + \frac{2}{9} + \lambda_{1} = 0 \hfill \\ \frac{{2\theta (\theta - 3)f_{m1} }}{9} + \frac{{2\theta (s_{m1} + 2)}}{9} - \frac{{s_{m1} }}{3} - \frac{1}{3} + \lambda_{2} = 0 \hfill \\ s_{m1} \ge 0 \, \lambda_{1} \ge 0 \, s_{m1} \lambda_{1} = 0 \hfill \\ f_{m1} \ge 0 \, \lambda_{2} \ge 0 \, f_{m1} \lambda_{2} = 0 \hfill \\ \end{gathered} \right.\).

When \(\lambda_{1} = 0\), \(\lambda_{2} = 0\), it is easy to show that \(s_{m1}^{*} = \frac{ - 1}{{4\theta^{2} - 12\theta + 1}}\), \(f_{m1}^{*} = \frac{2(3 - 2\theta )}{{4\theta^{2} - 12\theta + 1}}\), and \(\frac{3}{2} \le \theta < 2\). Hence, \(w_{m1}^{*} = \frac{ - 4\theta }{{4\theta^{2} - 12\theta + 1}}\), \(g_{m1}^{*} = \frac{ - 2\theta - 1}{{4\theta^{2} - 12\theta + 1}}\), \(e_{m1}^{*} = \frac{ - 2\theta }{{4\theta^{2} - 12\theta + 1}}\), \(d_{m1}^{*} = \frac{ - 2\theta }{{4\theta^{2} - 12\theta + 1}}\), \(p_{m1}^{*} = \frac{ - 6\theta }{{4\theta^{2} - 12\theta + 1}}\), \(\pi_{m1}^{M*} = \frac{{12\theta^{2} + 1}}{{2\left( {4\theta^{2} - 12\theta + 1} \right)^{2} }}\), and \(\pi_{m1}^{R*} = \frac{{4\theta^{2} }}{{\left( {4\theta^{2} - 12\theta + 1} \right)^{2} }}\).

When \(\lambda_{1} = 0\), \(\lambda_{2} > 0\), namely \(f_{m1}^{*} = 0\). It is easy to show that \(s_{m1}^{*} = \frac{1}{8}\), \(1 \le \theta < \frac{3}{2}\). Hence, \(w_{m1}^{*} = \frac{3}{4}\), \({\text{g}}_{m1}^{*} = \frac{1}{2}\), \(e_{m1}^{*} = \frac{3}{8}\), \(d_{m1}^{*} = \frac{3}{8}\), \(p_{m1}^{*} = \frac{9}{8}\), \(\pi_{m1}^{M*} = \frac{7}{32}\), and \(\pi_{m1}^{R*} = \frac{9}{64}\).

When \(\lambda_{1} > 0\), \(\lambda_{2} = 0\), namely \(s_{m1}^{*} = 0\). It is easy to show that \(f_{m1}^{*} = \frac{3 - 2\theta }{{2\theta (\theta - 3)}}\), but \(\lambda_{1} = \frac{1}{2\theta (\theta - 3)} < 0\), thus the result is not the optimal solution.

When \(\lambda_{1} > 0\), \(\lambda_{2} > 0\), namely \(s_{m1}^{*} = 0\), \(f_{m1}^{*} = 0\). It is easy to show that \(\lambda_{1} = - \frac{2}{9} < 0\), \(\lambda_{2} = \frac{3 - 2\theta }{9}\), thus the result is not the optimal solution.

Similarly, for the R-led supply chain, we can also the results by this method, so we will not repeat it here.

Proofs of Table 5

Under social welfare goal, for the M-led supply chain, we have \(\pi_{m2}^{M} = w_{m2} d_{m2} - \frac{1}{2}g_{m2}^{2} + s_{m2} g_{m2}\), \(\pi_{m2}^{R} = e_{m2} d_{m2}\), \(\, d_{m2} = 1 - p_{m2} + g_{m2} + \theta f_{m2}\).

  1. (4)

    We can obtain \(\frac{{\partial \pi_{m2}^{R} }}{{\partial e_{m2} }} = 1 - w_{m2} - 2e_{m2} + g_{m2} + \theta f_{m2}\) and \(\frac{{\partial^{2} \pi_{m2}^{R} }}{{\partial e_{m2}^{2} }} = - 2 < 0\). Thus \(\pi_{m2}^{R}\) is a strictly concave function of \(e_{m2}\). Let \(\frac{{\partial \pi_{m2}^{R} }}{{\partial e_{m2} }} = 0\), we have \(e_{m2}^{\# } = \frac{{1 - w_{m2} + g_{m2} + \theta f_{m2} }}{2}\). It is easy to show that \(\pi_{m2}^{M} = w_{m2} (1 - w_{m2} - \frac{{1 - w_{m2} + g_{m2} + \theta f_{m2} }}{2} + g_{m2} + \theta f_{m2} ) - \frac{1}{2}g_{m2}^{2} + s_{m2} g_{m2}\).

  2. (5)

    We can obtain \(\frac{{\partial \pi_{m2}^{M} }}{{\partial w_{m2} }} = \frac{{1 - 2w_{m2} + g_{m2} + \theta f_{m2} }}{2}\), \(\frac{{\partial \pi_{m2}^{M} }}{{\partial g_{m2} }} = \frac{{w_{m2} - 2g_{m2} + 2s_{m2} }}{2}\) and \(H(w_{m2} ,g_{m2} ) = \left[ {\begin{array}{*{20}c} { - 1} & \frac{1}{2} \\ \frac{1}{2} & 1 \\ \end{array} } \right]\). We can know easily \(\frac{{\partial^{2} \pi_{m2}^{M} }}{{\partial w_{m2}^{2} }} < 0\), \(\frac{{\partial^{2} \pi_{m2}^{M} }}{{\partial g_{m2}^{2} }} < 0\), \(\det H(w_{m2} ,g{}_{m2}) = \frac{3}{4} > 0\). Thus we have \(w_{m2}^{\# } = \frac{{2(1 + s_{m2} + \theta f_{m2} )}}{3}\) and \(g_{m2}^{\# } = \frac{{1 + 4s_{m2} + \theta f_{m2} }}{3}\) by solving \(\frac{{\partial \pi_{m2}^{M} }}{{\partial w_{m2} }} = 0\) and \(\frac{{\partial \pi_{m2}^{M} }}{{\partial g_{m2} }} = 0\).

  3. (6)

    Hence, we have the following model, Next we use KKT conditions to solve the model.

\(\begin{gathered} Max \, U(s_{m2} ,f_{m2} ) = \frac{{(8\theta^{2} - 6\theta )f_{m2}^{2} }}{18} + \frac{{8(\theta - \frac{3}{8})(s_{m2} + 1)f}}{9} - \frac{{s_{m2}^{2} }}{18} + \frac{{8s_{m2} }}{9} + \frac{4}{9} \hfill \\ \begin{array}{*{20}c} {} & {} \\ \end{array} s.t.\left\{ \begin{gathered} s_{m2} \ge 0 \, \lambda_{1} \ge 0 \hfill \\ f_{m2} \ge 0 \, \lambda_{2} \ge 0 \hfill \\ \end{gathered} \right. \hfill \\ \end{gathered}\).

We have \(\nabla U(s_{m2} ,f_{m2} ) = \left( \begin{gathered} \frac{{(8\theta - 3)f_{m2} }}{9} - \frac{{s_{m2} }}{9} + \frac{8}{9} \hfill \\ \frac{{8f_{m2} \theta^{2} }}{9} + \frac{{( - 6f_{m2} + 8s_{m2} + 8)\theta }}{9} - \frac{{s_{m2} }}{3} - \frac{1}{3} \hfill \\ \end{gathered} \right)\). Then the optimization problem is characterized by the KKT conditions as follows:

\(\left\{ \begin{gathered} \frac{{(8\theta - 3)f_{m2} }}{9} - \frac{{s_{m2} }}{9} + \frac{8}{9} + \lambda_{1} = 0 \hfill \\ \frac{{8f_{m2} \theta^{2} }}{9} + \frac{{( - 6f_{m2} + 8s_{m2} + 8)\theta }}{9} - \frac{{s_{m2} }}{3} - \frac{1}{3} + \lambda_{2} = 0 \hfill \\ s_{m2} \ge 0 \, \lambda_{1} \ge 0 \, s_{m2} \lambda_{1} = 0 \hfill \\ f_{m2} \ge 0 \, \lambda_{2} \ge 0 \, f_{m2} \lambda_{2} = 0 \hfill \\ \end{gathered} \right.\).

When \(\lambda_{1} = 0\), \(\lambda_{2} = 0\), it is easy to show that \(s_{m2}^{*} = \frac{ - 1}{{8\theta^{2} - 6\theta + 1}} < 0\), \(f_{m2}^{*} = \frac{ - 8\theta + 3}{{8\theta^{2} - 6\theta + 1}} < 0\), thus the result is not the optimal solution.

When \(\lambda_{1} = 0\), \(\lambda_{2} > 0\), namely \(f_{m2}^{*} = 0\). It is easy to show that \(s_{m2}^{*} = 8\), \(f_{m2}^{*} = 0\). Hence, \(w_{m2}^{*} = 6\), \({\text{g}}_{m2}^{*} = 11\), \(e_{m2}^{*} = 3\), \(d_{m2}^{*} = 3\), \(p_{m2}^{*} = 9\), \(\pi_{m2}^{M*} = \frac{91}{2}\), \(\pi_{m2}^{R*} = 9\).

When \(\lambda_{1} > 0\), \(\lambda_{2} = 0\), namely \(s_{m2}^{*} = 0\). It is easy to show that \(f_{m2}^{*} = \frac{ - 8\theta + 3}{{2\theta (4\theta - 3)}} < 0\), thus the result is not the optimal solution.

When \(\lambda_{1} > 0\), \(\lambda_{2} > 0\), namely \(s_{m2}^{*} = 0\), \(f_{m2}^{*} = 0\). It is easy to show that \(\lambda_{1} = - \frac{8}{9} < 0\), \(\lambda_{2} = = \frac{3 - 8\theta }{9} < 0\), thus the result is not the optimal solution.

Similarly, for the R-led supply chain, we can also the results by this method, so we will not repeat it here.

Proofs of propositions 1 and 2

According to Tables 4 and 5, we can easily know that Propositions 1 and 2 hold, thus we will not repeat them here.

Proofs of Proposition 3

For M-led supply chain, when \(1 \le \theta \le \frac{3}{2}\), it is easy to know that \(g_{m0}^{*} < g_{m1}^{*} < g_{m2}^{*}\); when \(\frac{3}{2} < \theta < 2\), \(g_{m2}^{*} - g_{m1}^{*} = \frac{{2(22\theta^{2} - 65\theta + 6)}}{{(2\theta - 3)^{2} - 8}} > 0\), \(g_{m1}^{*} - g_{m0}^{*} = - \frac{{2(2\theta^{2} - 3\theta + 2)}}{{3[(2\theta - 3)^{2} - 8]}} > 0\). Hence, \(g_{m0}^{*} < g_{m1}^{*} < g_{m2}^{*}\) holds. Similarity, when \(1 \le \theta \le \frac{3}{2}\), it is easy to know that \(d_{m0}^{*} < d_{m1}^{*} < d_{m2}^{*}\), when \(\frac{3}{2} < \theta < 2\), \(d_{m2}^{*} - d_{m1}^{*} = \frac{{12\theta^{2} - 34\theta + 3}}{{(2\theta - 3)^{2} - 8}} > 0\), \(d_{m1}^{*} - d_{m0}^{*} = - \frac{{4\theta^{2} - 6\theta + 1}}{{3[(2\theta - 3)^{2} - 8]}} > 0\). Hence, \(d_{m0}^{*} < d_{m1}^{*} < d_{m2}^{*}\) holds.

For R-led supply chain, when \(1 \le \theta < 1 + \frac{\sqrt 3 }{2}\), \(g_{r1}^{*} - g_{r2}^{*} = - \frac{{(2\theta - 1)^{2} + 2}}{{2(4\theta^{2} - 8\theta + 1)}} > 0\), thus \(g_{r0}^{*} = g_{r2}^{*} < g_{r1}^{*}\). When \(1 + \frac{\sqrt 3 }{2} \le \theta < 2\), \(d_{r1}^{*} - d_{r2}^{*} = \frac{1 - \theta }{{2(\theta - 2)}} > 0\), we have \(d_{r0}^{*} = d_{r2}^{*} < d_{r1}^{*}\).

The other proofs are similar to these, we will not repeat them here.

Proofs of proposition 4

When \(\frac{3}{2} < \theta < 2\),\(\frac{{\partial g_{m1}^{*} }}{\partial \theta } = \frac{8(\theta + 2)(\theta - 1) + 2}{{(4\theta^{2} - 12\theta + 1)^{2} }} > 0\), \(\frac{{\partial d_{m1}^{*} }}{\partial \theta } = \frac{{8\theta^{2} - 2}}{{(4\theta^{2} - 12\theta + 1)^{2} }} > 0\). When \(1 \le \theta < 1 + \frac{\sqrt 3 }{2}\), \(\frac{{\partial g_{r1}^{*} }}{\partial \theta } = \frac{{2[(2\theta^{2} + 1)^{2} - 6]}}{{(4\theta^{2} - 8\theta + 1)^{2} }} > 0\), \(\frac{{\partial d_{r1}^{*} }}{\partial \theta } = \frac{{8\theta^{2} - 2}}{{(4\theta^{2} - 8\theta + 1)^{2} }} > 0\). When \(1 + \frac{\sqrt 3 }{2} \le \theta < 2\), \(\frac{{\partial g_{r1}^{*} }}{\partial \theta } = \frac{1}{{2(\theta - 2)^{2} }} > 0\), \(\frac{{\partial d_{r1}^{*} }}{\partial \theta } = \frac{1}{{2(\theta - 2)^{2} }} > 0\).

Proofs of proposition 5

When \(\frac{3}{2} < \theta < 2\), \(\frac{{\partial \pi_{m1}^{M*} }}{\partial \theta } = \frac{{ - 4(12\theta^{3} - \theta - 3)}}{{(4\theta^{2} - 12\theta + 1)^{3} }} > 0\), \(\frac{{\partial \pi_{m1}^{R*} }}{\partial \theta } = \frac{{ - 8\theta (4\theta^{2} - 1)}}{{(4\theta^{2} - 12\theta + 1)^{3} }} > 0\). When \(1 \le \theta < \frac{1 + \sqrt 3 }{2}\), \(\frac{{\partial \pi_{r1}^{M*} }}{\partial \theta } = \frac{{ - 4(4\theta^{3} + \theta - 2)}}{{\left( {4\theta^{2} - 8\theta + 1} \right)^{3} }} > 0\), \(\frac{{\partial \pi_{r1}^{R*} }}{\partial \theta } = \frac{{ - 8\theta (4\theta^{2} + 1)}}{{(4\theta^{2} - 8\theta + 1)^{3} }} > 0\). When \(1 + \frac{\sqrt 3 }{2} \le \theta < 2\), \(\frac{{\partial \pi_{r1}^{R*} }}{\partial \theta } = \frac{1}{{2(2 - \theta )^{3} }} > 0\).

Proofs of proposition 6

According to the proofs of Proposition 4, we can know \(\frac{{\partial CS_{m1}^{*} }}{\partial \theta } > 0\) and \(\frac{{\partial CS_{r1}^{*} }}{\partial \theta } > 0\) hold.

When \(\frac{3}{2} < \theta < 2\), we have \(\frac{{\partial EB_{m1}^{*} }}{\partial \theta } = \frac{{8\theta (4\theta^{2} + 3\theta - 4) - 2}}{{ - (4\theta^{2} - 12\theta + 1)^{3} }}\). Let \(f(\theta ) = 4\theta^{2} + 3\theta - 4\), since \(f^{\prime}(\theta ) = 8\theta + 3 > 0\), \(f(\theta ) > f(\frac{3}{2}) = \frac{19}{2}\), we can easily know that \(8\theta (4\theta^{2} + 3\theta - 4) - 2 > 76\theta - 2 > 0\). We also know that \(- (4\theta^{2} - 12\theta + 1)^{3} > 0\), thus \(\frac{{\partial EB_{m1}^{*} }}{\partial \theta } > 0\) holds.

Similarly, we have \(\frac{{\partial SW_{m1}^{*} }}{\partial \theta } = \frac{{8\theta (8\theta^{2} + 18\theta - 21)}}{{ - (4\theta^{2} - 12\theta + 1)^{3} }} > 0\). When \(1 \le \theta < 1 + \frac{\sqrt 3 }{2}\), \(\frac{{\partial EB_{r1}^{*} }}{\partial \theta } = \frac{{8\theta (4\theta^{2} + 3\theta - 3) - 2}}{{ - (4\theta^{2} - 8\theta + 1)^{3} }} > 0\), \(\frac{{\partial SW_{r1}^{*} }}{\partial \theta } = \frac{{8\theta (4\theta^{2} + 12\theta - 10)}}{{ - (4\theta^{2} - 8\theta + 1)^{3} }} > 0\). When \(1 + \frac{\sqrt 3 }{2} \le \theta < 2\), \(\frac{{\partial EB_{r1}^{*} }}{\partial \theta } = \frac{1}{{2(2 - \theta )^{3} }} > 0\), \(\frac{{\partial SW_{r1}^{*} }}{\partial \theta } = \frac{{\theta^{2} + 3\theta - 2}}{{2\theta^{2} (2 - \theta )^{3} }} > 0\).

Proofs of proposition 7

When \(\frac{3}{2} < \theta < 2\), \(\frac{{\partial s_{m1}^{*} }}{\partial \theta } = \frac{4(2\theta - 3)}{{(4\theta^{2} - 12\theta + 1)^{2} }} > 0\), \(\frac{{\partial f_{m1}^{*} }}{\partial \theta } = \frac{{(4\theta - 6)^{2} + 32}}{{(4\theta^{2} - 12\theta + 1)^{2} }} > 0\). We have \(\frac{{\partial S_{m1}^{*} }}{\partial \theta } = \frac{{8\theta \left( {8\theta^{2} - 15\theta + 15} \right) - 14}}{{ - (4\theta^{2} - 12\theta + 1)^{3} }}\). Let \(f(\theta ) = 8\theta^{2} - 15\theta + 15\), since \(f^{\prime}(\theta ) = 16\theta - 15 > 0\), \(f(\theta ) > f\left( \frac{3}{2} \right) = \frac{21}{2}\), we can easily know that \(8\theta \left( {8\theta^{2} - 15\theta + 15} \right) - 14 > 84\theta - 14 > 0\). We also know that \(- (4\theta^{2} - 12\theta + 1)^{3} > 0\), thus \(\frac{{\partial S_{m1}^{*} }}{\partial \theta } > 0\) holds.

When \(1 \le \theta < 1 + \frac{\sqrt 3 }{2}\), \(\frac{{\partial s_{r1}^{*} }}{\partial \theta } = \frac{8(\theta - 1)}{{(4\theta^{2} - 8\theta + 1)^{2} }} > 0\), \(\frac{{\partial f_{r1}^{*} }}{\partial \theta } = \frac{{4(2\theta - 2)^{2} + 12}}{{(4\theta^{2} - 8\theta + 1)^{2} }} > 0\). We have \(\frac{{\partial S_{r1}^{*} }}{\partial \theta } = \frac{{8\theta (8\theta^{2} - 9\theta + 6) - 10}}{{ - (4\theta^{2} - 8\theta + 1)^{3} }}\). Let \(f(\theta ) = 8\theta^{2} - 9\theta + 6\), since \(f^{\prime}(\theta ) = 16\theta - 9 > 0\), \(f(\theta ) > f(1) = 5\), we can easily know that \(8\theta (8\theta^{2} - 9\theta + 6) - 10 > 40\theta - 10 > 0\). We also know that \(- (4\theta^{2} - 12\theta + 1)^{3} > 0\), thus \(\frac{{\partial S_{r1}^{*} }}{\partial \theta } > 0\) holds. When \(1 + \frac{\sqrt 3 }{2} \le \theta < 2\), \(\frac{{\partial f_{r1}^{*} }}{\partial \theta } = \frac{{(\theta - 1)^{2} + 1}}{{\theta^{2} (\theta - 2)^{2} }} > 0\), \(\frac{{\partial S_{r1}^{*} }}{\partial \theta } = \frac{2\theta (\theta - 1) + 2 - \theta }{{2\theta^{2} (2 - \theta )^{3} }} > 0\).

Proofs of proposition 8

When \(\frac{3}{2} < \theta \le 2\), we have \(\frac{{\partial \Lambda_{m1}^{*} }}{\partial \theta } = \frac{{8\{ (\theta - 1)[\theta (32\theta^{3} - 124\theta^{2} + 124\theta - 15) + 12] + 8\} }}{{ - 9(8\theta^{2} - 10\theta + 1)^{2} }}\). Let \(f(\theta ) = 32\theta^{3} - 124\theta^{2} + 124\theta - 15\), then \(f^{\prime}(\theta ) = 96\theta^{2} - 248\theta + 124 < 0\). When \(\frac{3}{2} < \theta \le \frac{{31 + \sqrt {217} }}{24}\), \(f^{\prime}(\theta ) < 0\); when \(\frac{{31 + \sqrt {217} }}{24} < \theta \le 2\), \(f^{\prime}(\theta ) > 0\), thus \(f(\theta ) \ge f\left( {\frac{{31 + \sqrt {217} }}{24}} \right) > - 8\), we can obtain \((\theta - 1)[\theta (32\theta^{3} - 124\theta^{2} + 124\theta - 15) + 12] + 8 > - 8\theta^{2} + 20\theta - 4 > 0\). Thus \(\frac{{\partial \Lambda^{*}_{m1} }}{\partial \theta } < 0\) holds. Similarly, when \(1 \le \theta < 1 + \frac{\sqrt 3 }{2}\), \(\frac{{\partial \Lambda^{*}_{r1} }}{\partial \theta } = \frac{{8(16\theta^{5} - 50\theta^{4} + 52\theta^{3} - 21\theta^{2} + 6\theta ) - 9}}{{ - 2(8\theta^{2} - 6\theta + 1)^{2} }} < 0\) holds. When \(1 + \frac{\sqrt 3 }{2} \le \theta \le 2\), \(\frac{{\partial \Lambda^{*}_{r1} }}{\partial \theta } = \frac{3}{2} - \theta < 0\).

When \(\frac{3}{2} < \theta \le 2\), we have \(\frac{{\partial \Omega_{m1}^{*} }}{\partial \theta } = \frac{834\theta + 265}{{72(8\theta^{2} - 10\theta + 1)^{2} }} + \frac{185}{{72(8\theta^{2} - 10\theta + 1)}} + \frac{95}{{36}} - \frac{10\theta }{9}\), we can easily know that \(\frac{10\theta }{9} \le \frac{20}{9} < \frac{95}{{36}}\), \(\frac{95}{{36}} - \frac{10\theta }{9} > \frac{95}{{36}} - \frac{20}{9} > 0\), \(8\theta^{2} - 10\theta + 1 > 0\), thus \(\frac{{\partial \Omega_{m1}^{*} }}{\partial \theta } > 0\) holds. When \(1 \le \theta < 1 + \frac{\sqrt 3 }{2}\), \(\frac{{\partial \Omega^{*}_{r1} }}{\partial \theta } = \frac{{ - 384\theta^{5} + 1200\theta^{4} - 1248\theta^{3} + 600\theta^{2} - 176\theta + 27}}{{4(8\theta^{2} - 6\theta + 1)^{2} }}\), let \(\mathop \theta \limits^{ \wedge }\) meets \(- 384\theta^{5} + 1200\theta^{4} - 1248\theta^{3} + 600\theta^{2} - 176\theta + 27 = 0\), when \(1 \le \theta < \mathop \theta \limits^{ \wedge }\), \(\frac{{\partial \Omega^{*}_{r1} }}{\partial \theta } \ge \frac{19}{{36}} > 0\), when \(\mathop \theta \limits^{ \wedge } \le \theta < 1 + \frac{\sqrt 3 }{2}\), \(\frac{{\partial \Omega^{*}_{r1} }}{\partial \theta } < 0\). When \(1 + \frac{\sqrt 3 }{2} \le \theta \le 2\), \(\frac{{\partial \Omega^{*}_{r1} }}{\partial \theta } = \frac{9 - 6\theta }{4} < 0\) (Tables 9, 10, 11, 12, 13, 14, and 15).

Table 9 The optimal strategies and profits without subsidy considering consumer green preference
Table 10 The optimal strategies and profits under the environmental benefit goal considering consumer green preference

Where \(\hat{\theta } = \frac{{8 - 3k^{2} - k + 2\sqrt {(4 - k^{2} )(4 - 2k^{2} - k)} }}{{(k + 1)^{2} }}\).

Table 11 The optimal strategies and profits under the social welfare goal considering consumer green preference

Where \(\Psi = (k^{2} - 8)^{2} - 48\) and \(\Upsilon = 2 - k^{2}\).

Table 12 The performance of M-led supply chain under different subsidy scenarios considering consumer green preference
Table 13 The performance of R-led supply chain under different subsidy scenarios considering consumer green preference
Table 14 Comparison results under different scenarios considering consumer green preference
Table 15 The price transfer and demand difference with and without R&D subsidy

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, S., Du, B., Chen, Z. et al. The government subsidy design considering the reference price effect in a green supply chain. Environ Sci Pollut Res 31, 22645–22662 (2024). https://doi.org/10.1007/s11356-024-32488-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-024-32488-7

Keywords

Navigation