Skip to main content

Advertisement

Log in

Airborne microplastic/nanoplastic research: a comprehensive Web of Science (WoS) data-driven bibliometric analysis

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This paper presents the landscape of research on airborne microplastics and nanoplastics (MPs/NPs) according to the bibliometric analysis of 147 documents issued between 2015 and 2021, extracted from the Web of Science database. The publications on airborne MPs/NPs have increased rapidly from 2015 onwards, which is largely due to the existence of funding support. Science of the Total Environment is one of the prominent journals in publishing related papers. China, England, the USA, and European Countries have produced a significant output of airborne MP/NP research works, which is associated with the availability of funding agencies regionally or nationally. The research hotspot on the topic ranges from the transport of airborne MPs/NPs to their deposition in the terrestrial or aquatic environments, along with the contamination of samples by indoor MPs/NPs. Most of the publications are either research or review papers related to MPs/NPs. It is crucial to share the understanding of global plastic pollution and its unfavorable effects on humankind by promoting awareness of the existence and impact of MPs/NPs. Funding agencies are vital in boosting the research development of airborne MPs/NPs. Some countries that are lacking funding support were able to publish research findings related to the field of interest, however, with lesser research output. Without sufficient fundings, some impactful publications may not be able to carry a substantial impact in sharing the findings and discoveries with the mass public.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Not applicable.

References

  • Allen S, Allen D, Moss K, Le Roux G, Phoenix VR, Sonke JE (2020) Examination of the ocean as a source for atmospheric microplastics. PLoS One 15:e0232746

    Article  CAS  Google Scholar 

  • Amato-Lourenco LF, Carvalho-Oliveira R, Ribeiro G, Galvao LD, Ando RA, Mauad T (2021) Presence of airborne microplastics in human lung tissue. J Hazard Mater 416:1–6

  • Amato-Lourenco LF, de Souza Xavier Costa N, Dantas KC, Dos Santos Galvao L, Moralles FN, Lombardi S, Junior AM, JAL L, Ando RA, Lima FG, Carvalho-Oliveira R, Mauad T (2022) Airborne microplastics and SARS-CoV-2 in total suspended particles in the area surrounding the largest medical centre in Latin America. Environ Pollut 292:118299

    Article  CAS  Google Scholar 

  • Beaurepaire M, Dris R, Gasperi J, Tassin B (2021) Microplastics in the atmospheric compartment: a comprehensive review on methods, results on their occurrence and determining factors. Curr Opin Food Sci 41:159–168

    Article  CAS  Google Scholar 

  • Blettler MC, Abrial E, Khan FR, Sivri N, Espinola LA (2018) Freshwater plastic pollution: recognizing research biases and identifying knowledge gaps. Water Res 143:416–424

    Article  CAS  Google Scholar 

  • Boakes LC, Patmore IR, Bancone CEP, Rose NL (2023) High temporal resolution records of outdoor and indoor airborne microplastics. Environ Sci Poll Res 30(13):39246–39257

  • Brahney J, Hallerud M, Heim E, Hahnenberger M, Sukumaran S (2020) Plastic rain in protected areas of the United States. Science 368:1257

    Article  CAS  Google Scholar 

  • Brydson JA (1999) Plastics materials. Elsevier

    Google Scholar 

  • Cai L, Wang J, Peng J, Tan Z, Zhan Z, Tan X, Chen Q (2017) Characteristic of microplastics in the atmospheric fallout from Dongguan city, China: preliminary research and first evidence. Environ Sci Pollut Res 24:24928–24935

    Article  Google Scholar 

  • Can-Güven E (2021) Microplastics as emerging atmospheric pollutants: a review and bibliometric analysis. Air Qual Atmos Health 14(2):203–215

  • Chen G, Feng Q, Wang J (2020) Mini-review of microplastics in the atmosphere and their risks to humans. Sci Total Environ 703:135504

  • Choi H, Lee I, Kim H, Park J, Cho S, Oh S, Lee M, Kim H (2022) Comparison of microplastic characteristics in the indoor and outdoor air of urban areas of South Korea. Water Air Soil Pollut 233(5):169

  • Choi YR, Kim Y-N, Yoon J-H, Dickinson N, Kim K-H (2020) Plastic contamination of forest, urban, and agricultural soils: a case study of Yeoju City in the Republic of Korea. J Soils Sediments 21:1962–1973

    Article  Google Scholar 

  • Choudhury A, Simnani FZ, Singh D, Patel P, Sinha A, Nandi A, Ghosh A, Saha U, Kumari K, Jaganathan SK (2023) Atmospheric microplastic and nanoplastic: the toxicological paradigm on the cellular system. Ecotoxicol Environ Saf 259:115018

    Article  CAS  Google Scholar 

  • Donthu N, Kumar S, Pattnaik D (2020) Forty-five years of Journal of Business Research: a bibliometric analysis. J Bus Res 109:1–14

    Article  Google Scholar 

  • Dris R, Gasperi J, Rocher V, Saad M, Renault N, Tassin B (2015) Microplastic contamination in an urban area: a case study in Greater Paris. Environ Chem 12:592–599

    Article  CAS  Google Scholar 

  • Dris R, Gasperi J, Mirande C, Mandin C, Guerrouache M, Langlois V, Tassin B (2017) A first overview of textile fibers, including microplastics, in indoor and outdoor environments. Environ Pollut 221:453–458

    Article  CAS  Google Scholar 

  • Eerkes-Medrano D, Thompson RC, Aldridge DC (2015) Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Res 75:63–82

  • Evangeliou N, Grythe H, Klimont Z, Heyes C, Eckhardt S, Lopez-Aparicio S, Stohl A (2020) Atmospheric transport is a major pathway of microplastics to remote regions. Nat Commun 11(1):3381

  • Fan C, Huang Y-Z, Lin J-N, Li JJ (2021) Microplastic constituent identification from admixtures by Fourier-transform infrared (FTIR) spectroscopy: the use of polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC) and nylon (NY) as the model constituents. Environ Technol Innov 23:101798

    Article  CAS  Google Scholar 

  • Feldman D (2008) Polymer history. Des Monomers Polym 11(1):1–15

  • Feng Y, Tu C, Li R, Wu D, Yang J, Xia Y, ... Luo Y (2023) A systematic review of the impacts of exposure to micro-and nano-plastics on human tissue accumulation and health Eco-Environ Health

  • Fowler SD, Greenspan P (1985) Application of Nile red, a fluorescent hydrophobic probe, for the detection of neutral lipid deposits in tissue sections: comparison with oil red O. J Histochem Cytochem 33:833–836

    Article  CAS  Google Scholar 

  • Fu H-Z, Ho Y-S (2016) Highly cited Antarctic articles using Science Citation Index Expanded: a bibliometric analysis. Scientometrics 109:337–357

    Article  Google Scholar 

  • Gasperi J, Wright SL, Dris R, Collard F, Mandin C, Guerrouache M, Langlois V, Kelly FJ, Tassin B (2018) Microplastics in air: are we breathing it in? Curr Opin Environ Sci Health 1:1–5

  • Gaston E, Woo M, Steele C, Sukumaran S, Anderson SJ (2020) Microplastics differ between indoor and outdoor air masses: insights from multiple microscopy methodologies. Appl Spectrosc 74:1079–1098

    Article  CAS  Google Scholar 

  • Gies EA, LeNoble JL, Noël M, Etemadifar A, Bishay F, Hall ER, Ross PS (2018) Retention of microplastics in a major secondary wastewater treatment plant in Vancouver, Canada. Mar Pollut Bull 133:553–561

    Article  CAS  Google Scholar 

  • Gigault J, Ter Halle A, Baudrimont M, Pascal PY, Gauffre F, Phi TL, El Hadri H, Grassl B, Reynaud S (2018) Current opinion: what is a nanoplastic? Environ Pollut 235:1030–1034

    Article  CAS  Google Scholar 

  • Gilbert M (2017) Plastics materials: introduction and historical development, Brydson’s plastics materials. Elsevier, pp 1–18

    Google Scholar 

  • Gniadek M, Dąbrowska A (2019) The marine nano- and microplastics characterisation by SEM-EDX: the potential of the method in comparison with various physical and chemical approaches. Mar Pollut Bull 148:210–216

    Article  CAS  Google Scholar 

  • González-Pleiter M, Velázquez D, Edo C, Carretero O, Gago J, Barón-Sola Á, ... Fernández-Piñas F (2020) Fibers spreading worldwide: Microplastics and other anthropogenic litter in an Arctic freshwater lake. Sci Total Environ 722:137904

  • Han D, Currell MJ (2017) Persistent organic pollutants in China's surface water systems. Sci Total Environ 580:602–625

    Article  CAS  Google Scholar 

  • Hodoroaba V-D (2020) Energy-dispersive X-ray spectroscopy (EDS). In: Characterization of Nanoparticles. Elsevier, pp 397–417

    Chapter  Google Scholar 

  • Klein M, Fischer EK (2019) Microplastic abundance in atmospheric deposition within the Metropolitan area of Hamburg, Germany. Sci Total Environ 685:96–103

    Article  CAS  Google Scholar 

  • Kurniawan TA, Haider A, Ahmad HM, Mohyuddin A, Umer Aslam HM, Nadeem S, Javed M, Othman MHD, Goh HH, Chew KW (2023a) Source, occurrence, distribution, fate, and implications of microplastic pollutants in freshwater on environment: a critical review and way forward. Chemosphere 325:138367

    Article  CAS  Google Scholar 

  • Kurniawan TA, Haider A, Mohyuddin A, Fatima R, Salman M, Shaheen A, Ahmad HM, Al-Hazmi HE, Othman MHD, Aziz F, Anouzla A, Ali I (2023b) Tackling microplastics pollution in global environment through integration of applied technology, policy instruments, and legislation. J Environ Manag 346:118971

    Article  CAS  Google Scholar 

  • Lambert S, Wagner M (2016) Characterisation of nanoplastics during the degradation of polystyrene. Chemosphere 145:265–268

    Article  CAS  Google Scholar 

  • Le VG, Nguyen MK, Nguyen HL, Lin C, Hadi M, Hung NTQ, ... Bolan NS (2023) A comprehensive review of micro-and nano-plastics in the atmosphere: Occurrence, fate, toxicity, and strategies for risk reduction. Sci Total Environ 166649

  • Li P, Wang X, Su M, Zou X, Duan L, Zhang H (2021) Characteristics of plastic pollution in the environment: a review. Bull Environ Contam Toxicol 107:577–584

    Article  CAS  Google Scholar 

  • Li WC, Tse HF, Fok L (2016) Plastic waste in the marine environment: A review of sources, occurrence and effects. Sci Total Environ 566:333–349

    Article  Google Scholar 

  • Li Y, Shi T, Li X, Sun H, Xia X, Ji X, Zhang J, Liu M, Lin Y, Zhang R (2022) Inhaled tire-wear microplastic particles induced pulmonary fibrotic injury via epithelial cytoskeleton rearrangement. Environ Int 164:107257

    Article  CAS  Google Scholar 

  • Liao Z, Ji X, Ma Y, Lv B, Huang W, Zhu X, Fang M, Wang Q, Wang X, Dahlgren R, Shang X (2021) Airborne microplastics in indoor and outdoor environments of a coastal city in Eastern China. J Hazard Mater 417:126007

    Article  CAS  Google Scholar 

  • Lin L, Zuo LZ, Peng JP, Cai LQ, Fok L, Yan Y, Li HX, Xu XR (2018) Occurrence and distribution of microplastics in an urban river: a case study in the Pearl River along Guangzhou City, China. Sci Total Environ 644:375–381

    Article  CAS  Google Scholar 

  • Liu K, Wang X, Fang T, Xu P, Zhu L, Li D (2019a) Source and potential risk assessment of suspended atmospheric microplastics in Shanghai. Sci Total Environ 675:462–471

    Article  CAS  Google Scholar 

  • Liu K, Wang X, Wei N, Song Z, Li D (2019b) Accurate quantification and transport estimation of suspended atmospheric microplastics in megacities: implications for human health. Environ Int 132:105127

    Article  CAS  Google Scholar 

  • Liu K, Wu T, Wang X, Song Z, Zong C, Wei N, Li D (2019c) Consistent transport of terrestrial microplastics to the ocean through atmosphere. Environ Sci Technol 53:10612–10619

    Article  CAS  Google Scholar 

  • Liu K, Wang X, Song Z, Wei N, Li D (2020) Terrestrial plants as a potential temporary sink of atmospheric microplastics during transport. Sci Total Environ 742:140523

    Article  CAS  Google Scholar 

  • Liu Q, Patel AA, Liu L (2014) Superhydrophilic and underwater superoleophobic poly (sulfobetaine methacrylate)-grafted glass fiber filters for oil–water separation. ACS Appl Mater Interfaces 6(12):8996–9003

    Article  CAS  Google Scholar 

  • Lots FA, Behrens P, Vijver MG, Horton AA, Bosker T (2017) A large-scale investigation of microplastic contamination: abundance and characteristics of microplastics in European beach sediment. Mar Pollut Bull 123(1-2):219–226

    Article  CAS  Google Scholar 

  • Lu K, Lai KP, Stoeger T, Ji S, Lin Z, Lin X, ... Wang L (2021) Detrimental effects of microplastic exposure on normal and asthmatic pulmonary physiology. J Hazard Mater 416:126069

  • Lu K, Zhan D, Fang Y, Li L, Chen G, Chen S, Wang L (2022) Microplastics, potential threat to patients with lung diseases. Front Toxicol 4:958414

    Article  Google Scholar 

  • Luo Y, Shi H, Tu C, Zhou Q, Ji R, Pan X, Xu X, Wu C, An L, Sun X, He D, Li Y, Ma Y, Li L (2020) Research progresses and prospects of microplasticsin the environment. Chin Sci Bull 66:1547–1562

    Article  Google Scholar 

  • Maes T, Jessop R, Wellner N, Haupt K, Mayes AG (2017) A rapid-screening approach to detect and quantify microplastics based on fluorescent tagging with Nile Red. Sci Rep 7(1):44501

    Article  CAS  Google Scholar 

  • Md Khudzari J, Kurian J, Tartakovsky B, Raghavan GSV (2018) Bibliometric analysis of global research trends on microbial fuel cells using Scopus database. Biochem Eng J 136:51–60

    Article  CAS  Google Scholar 

  • Mehrabani M, Mohammadyar S, Rajizadeh MA, Bejeshk MA, Ahmadi B, Nematollahi MH, Goki MM, Juybari KB, Amirkhosravi A (2023) Boosting therapeutic efficacy of mesenchymal stem cells in pulmonary fibrosis: the role of genetic modification and preconditioning strategies Iran. J Basic Med Sci 26:1001

    Google Scholar 

  • Mintenig SM, Löder MG, Primpke S, Gerdts G (2019) Low numbers of microplastics detected in drinking water from ground water sources. Sci Total Environ 648:631–635

    Article  CAS  Google Scholar 

  • Naji A, Esmaili Z, Mason SA, Dick Vethaak A (2017) The occurrence of microplastic contamination in littoral sediments of the Persian Gulf Iran. Environ Sci Pollut Res Int 24:20459–20468

    Article  CAS  Google Scholar 

  • Ostle C, Thompson RC, Broughton D, Gregory L, Wootton M, Johns DG (2019) The rise in ocean plastics evidenced from a 60-year time series. Nat Commun 10:1–6

    Article  CAS  Google Scholar 

  • Peng J, Wang J, Cai L (2017) Current understanding of microplastics in the environment: occurrence, fate, risks, and what we should do. Integr Environ Assess Manag 13:476–482

  • Phinyocheep P (2014) Chemical modification of natural rubber (NR) for improved performance. In: Chemistry, manufacture and applications of natural rubber. Woodhead Publishing, pp 68–118

    Chapter  Google Scholar 

  • Pivokonsky M, Cermakova L, Novotna K, Peer P, Cajthaml T, Janda V (2018) Occurrence of microplastics in raw and treated drinking water. Sci Total Environ 643:1644–1651

    Article  CAS  Google Scholar 

  • Prasad R (2023) Engineering materials, atomic structure and bounding, physics and technology for engineers: understanding materials and sustainability. Springer, pp 1–60

    Google Scholar 

  • Prata JC (2018) Airborne microplastics: consequences to human health? Environ Pollut 234:115–126

  • Prata JC, Castro JL, da Costa JP, Duarte AC, Rocha-Santos T, Cerqueira M (2020a) The importance of contamination control in airborne fibers and microplastic sampling: experiences from indoor and outdoor air sampling in Aveiro. Port Mar Pollut Bull 159:111522

    Article  CAS  Google Scholar 

  • Prata JC, da Costa JP, Lopes I, Duarte AC, Rocha-Santos T (2020b) Environmental exposure to microplastics: An overview on possible human health effects. Sci Total Environ 702:134455

    Article  CAS  Google Scholar 

  • Railo S, Talvitie J, Setala O, Koistinen A, Lehtiniemi M (2018) Application of an enzyme digestion method reveals microlitter in Mytilus trossulus at a wastewater discharge area. Mar Pollut Bull 130:206–214

    Article  CAS  Google Scholar 

  • Raju S, Carbery M, Kuttykattil A, Senathirajah K, Subashchandrabose SR, Evans G, Thavamani P (2018) Transport and fate of microplastics in wastewater treatment plants: implications to environmental health. Rev Environ Sci Biotechnol 17:637–653

    Article  CAS  Google Scholar 

  • Reisser J, Shaw J, Hallegraeff G, Proietti M, Barnes DK, Thums M, Wilcox C, Hardesty BD, Pattiaratchi C (2014) Millimeter-sized marine plastics: a new pelagic habitat for microorganisms and invertebrates. PLoS One 9(6):e100289

    Article  Google Scholar 

  • Reuters T (2021) Annual report 2020. Retrieved from: https://www.thomsonreuters.com/2020annualreport

  • Rezania S, Park J, Din MFM, Taib SM, Talaiekhozani A, Yadav KK, Kamyab H (2018) Microplastics pollution in different aquatic environments and biota: A review of recent studies. Mar Pollut Bull 133:191–208

    Article  CAS  Google Scholar 

  • Rist S, Almroth BC, Hartmann NB, Karlsson TM (2018) A critical perspective on early communications concerning human health aspects of microplastics. Sci Total Environ 626:720–726

    Article  CAS  Google Scholar 

  • Schirinzi GF, Peda C, Battaglia P, Laface F, Galli M, Baini M, Consoli P, Scotti G, Esposito V, Faggio C, Farre M, Barcelo D, Fossi MC, Andaloro F, Romeo T (2020) A new digestion approach for the extraction of microplastics from gastrointestinal tracts (GITs) of the common dolphinfish (Coryphaena hippurus) from the western Mediterranean Sea. J Hazard Mater 397:8

    Article  Google Scholar 

  • Stock F, Kochleus C, Bänsch-Baltruschat B, Brennholt N, Reifferscheid G (2019) Sampling techniques and preparation methods for microplastic analyses in the aquatic environment–A review. TrAC Trends Anal Chem 113:84–92

    Article  CAS  Google Scholar 

  • Taha ZD, Amin RM, Anuar ST, Nasser AAA, Sohaimi ES (2021) Microplastics in seawater and zooplankton: a case study from Terengganu estuary and offshore waters Malaysia. Sci Total Environ 786:147466

    Article  CAS  Google Scholar 

  • Talvitie J, Mikola A, Setälä O, Heinonen M, Koistinen A (2017) How well is microlitter purified from wastewater?–A detailed study on the stepwise removal of microlitter in a tertiary level wastewater treatment plant. Water Res 109:164–172

    Article  CAS  Google Scholar 

  • Ter Halle A, Jeanneau L, Martignac M, Jardé E, Pedrono B, Brach L, Gigault J (2017) Nanoplastic in the North Atlantic subtropical gyre. Environ Sci Technol 51(23):13689–13697

    Article  Google Scholar 

  • Thompson RC, Olsen Y, Mitchell RP, Davis A, Rowland SJ, John AW, McGonigle D, Russell AE (2004) Lost at sea: where is all the plastic? Science 304(5672):838

    Article  CAS  Google Scholar 

  • Tian W, Song P, Zhang H, Duan X, Wei Y, Wang H, Wang S (2023) Microplastic materials in the environment: problem and strategical solutions. Prog Mater Sci 132:101035

  • Torre M, Digka N, Anastasopoulou A, Tsangaris C, Mytilineou C (2016) Anthropogenic microfibres pollution in marine biota. A new and simple methodology to minimize airborne contamination. Mar Pollut Bull 113:55–61

    Article  Google Scholar 

  • Truchet DM, Lopez AF, Ardusso MG, Rimondino GN, Buzzi NS, Malanca FE, Spetter CV, Severini MF (2021) Microplastics in bivalves, water and sediments from a touristic sandy beach of Argentina. Mar Pollut Bull 173:113023

    Article  CAS  Google Scholar 

  • Van Eck NJ, Waltman L (2007) VOS: a new method for visualizing similarities between objects, Advances in data analysis. Springer, pp 299–306

    Google Scholar 

  • Varnava CK, Patrickios CS (2021) Polymer networks one hundred years after the macromolecular hypothesis: A tutorial review. Polymer 215:123322

    Article  CAS  Google Scholar 

  • Vianello A, Jensen RL, Liu L, Vollertsen J (2019) Simulating human exposure to indoor airborne microplastics using a Breathing Thermal Manikin. Sci Rep 9(1):8670

    Article  Google Scholar 

  • Waller CL, Griffiths HJ, Waluda CM, Thorpe SE, Loaiza I, Moreno B, Pacherres CO, Hughes KA (2017) Microplastics in the Antarctic marine system: an emerging area of research. Sci Total Environ 598:220–227

    Article  CAS  Google Scholar 

  • Wang L, Zhang J, Hou S, Sun H (2017a) A simple method for quantifying polycarbonate and polyethylene terephthalate microplastics in environmental samples by liquid chromatography–tandem mass spectrometry. Environ Sci Technol Lett 4:530–534

    Article  CAS  Google Scholar 

  • Wang Z-M, Wagner J, Ghosal S, Bedi G, Wall S (2017b) SEM/EDS and optical microscopy analyses of microplastics in ocean trawl and fish guts. Sci Total Environ 603-604:616–626

    Article  CAS  Google Scholar 

  • Wang W, Wang J (2018) Comparative evaluation of sorption kinetics and isotherms of pyrene onto microplastics. Chemosphere 193:567–573

    Article  CAS  Google Scholar 

  • Wang X, Li C, Liu K, Zhu L, Song Z, Li D (2020) Atmospheric microplastic over the South China Sea and East Indian Ocean: abundance, distribution and source. J Hazard Mater 389:121846

  • Wong SL, Nyakuma BB, Wong KY, Lee CT, Lee TH, Lee CH (2020) Microplastics and nanoplastics in global food webs: a bibliometric analysis (2009–2019). Mar Pollut Bull 158:111432

    Article  CAS  Google Scholar 

  • Wright SL, Kelly FJ (2017) Plastic and human health: a micro issue? Environ Sci Technol 51(12):6634–6647

    Article  CAS  Google Scholar 

  • Wright SL, Ulke J, Font A, Chan KLA, Kelly FJ (2020) Atmospheric microplastic deposition in an urban environment and an evaluation of transport. Environ Int 136:105411

    Article  CAS  Google Scholar 

  • Wu N, Zhang Y, Zhao Z, He J, Li W, Li J, Ma Y, Niu Z (2020) Colonization characteristics of bacterial communities on microplastics compared with ambient environments (water and sediment) in Haihe Estuary. Sci Total Environ 15(708):134876

    Article  Google Scholar 

  • Yang J, Monnot M, Sun Y, Asia L, Wong-Wah-Chung P, Doumenq P, Moulin P (2023) Microplastics in different water samples (seawater, freshwater, and wastewater): removal efficiency of membrane treatment processes. Water Res 232:119673

    Article  CAS  Google Scholar 

  • Yuan Z, Nag R, Cummins E (2022) Human health concerns regarding microplastics in the aquatic environment - from marine to food systems. Sci Total Environ 823:153730

    Article  CAS  Google Scholar 

  • Zhang K, Shi H, Peng J, Wang Y, Xiong X, Wu C, Lam PK (2018) Microplastic pollution in China’s inland water systems: a review of findings, methods, characteristics, effects, and management. Sci Total Environ 630:1641–1653

    Article  CAS  Google Scholar 

  • Zhou Q, Tian C, Luo Y (2017) Various forms and deposition fluxes of microplastics identified in the coastal urban atmosphere. Chin Sci Bull 62:3902–3909

    Article  Google Scholar 

  • Zhu X, Huang W, Fang M, Liao Z, Wang Y, Xu L, Mu Q, Shi C, Lu C, Deng H, Dahlgren R (2021) Airborne microplastic concentrations in five megacities of northern and southeast China. Environ Sci Technol 55(19):12871–12881

    CAS  Google Scholar 

  • Ziajahromi S, Neale PA, Rintoul L, Leusch FD (2017) Wastewater treatment plants as a pathway for microplastics: development of a new approach to sample wastewater-based microplastics. Water Res 112:93–99

    Article  CAS  Google Scholar 

Download references

Funding

The authors would like to acknowledge the financial support from Universiti Teknologi Malaysia under UTM Zamalah Grant (Q.J130000.4551.00N04) and the Institution of Mechanical Engineers (IMechE) Malaysia Branch for the funding under the Mini Research Grant (R.J130000.7651.4C587).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, methodology, funding acquisition, and writing of original draft: KYW; conceptualization, methodology, and writing of original draft: HT, GRM, RAW, and MCC; methodology and reviewing: HYK, AFAR, NHAW, and KQL; writing, review, and editing: SLW, BBN, MHDO, DDCVS, and CHL.

Corresponding author

Correspondence to Keng Yinn Wong.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Scientific production on airborne micro-/nanoplastics in the atmosphere is analyzed.

• An emerging trend on this topic since 2015 is observed based on 147 publications.

• China, England, the USA, and European Countries are the top productive countries.

Supplementary information

ESM 1

(XLSX 14.6 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, ., Mong, G.R., Wong, S.L. et al. Airborne microplastic/nanoplastic research: a comprehensive Web of Science (WoS) data-driven bibliometric analysis. Environ Sci Pollut Res 31, 109–126 (2024). https://doi.org/10.1007/s11356-023-31228-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-31228-7

Keywords

Navigation