Skip to main content
Log in

The potential of zeolite nanocomposites in removing microplastics, ammonia, and trace metals from wastewater and their role in phytoremediation

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Nanocomposites are emerging as a new generation of materials that can be used to combat water pollution. Zeolite-based nanocomposites consisting of combinations of metals, metal oxides, carbon materials, and polymers are particularly effective for separating and adsorbing multiple contaminants from water. This review presents the potential of zeolite-based nanocomposites for eliminating a range of toxic organic and inorganic substances, dyes, heavy metals, microplastics, and ammonia from water. The review emphasizes that nanocomposites offer enhanced mechanical, catalytic, adsorptive, and porosity properties necessary for sustainable water purification techniques compared to individual composite materials. The adsorption potential of several zeolite-metal/metal oxide/polymer-based composites for heavy metals, anionic/cationic dyes, microplastics, ammonia, and other organic contaminants ranges between approximately 81 and over 99%. However, zeolite substrates or zeolite-amended soil have limited benefits for hyperaccumulators, which have been utilized for phytoremediation. Further research is needed to evaluate the potential of zeolite-based composites for phytoremediation. Additionally, the development of nanocomposites with enhanced adsorption capacity would be necessary for more effective removal of pollutants.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Abdel-Rahim MM (2017) Sustainable use of natural zeolites in aquaculture: a short review. Oceanography & Fisheries 2(4):1–5

    Google Scholar 

  • Abukhadra MR, Rabia M, Shaban M, Verpoort F (2018) Heulandite/polyaniline hybrid composite for efficient removal of acidic dye from water; kinetic, equilibrium studies and statistical optimization. Adv Powder Technol 29(10):2501–2511

    Article  CAS  Google Scholar 

  • Ahmed SF, Kumar PS, Rozbu MR, Chowdhury AT, Nuzhat S, Rafa N, Mofijur M (2022) Heavy metal toxicity, sources, and remediation techniques for contaminated water and soil. Environ Technol Innov 25:102114

    Article  CAS  Google Scholar 

  • Alcantara-Cobos A, Gutiérrez-Segura E, Solache-Ríos M, Amaya-Chávez A, Solís-Casados DJM, Materials M (2020) Tartrazine removal by ZnO nanoparticles and a zeolite-ZnO nanoparticles composite and the phytotoxicity of ZnO nanoparticles. Biocatal Agric Biotechnol 302:110212

  • Al-dahri T, AbdulRazak AA, Rohani S (2022) Preparation and characterization of Linde-type A zeolite (LTA) from coal fly ash by microwave-assisted synthesis method: its application as adsorbent for removal of anionic dyes. Int J Coal Preparation Utilization 42(7):2064–2077

    Article  CAS  Google Scholar 

  • Almeida AC, Santos HH, Bortolo DP, Lourente ER, Cortez JW, Oliveira FC (2018) Soil physical properties and yield of soybean and corn grown with wastewater. Revista Brasileira de Engenharia Agrícola e Ambiental 22:843–848

    Article  Google Scholar 

  • Alswat AA, Ahmad MB, Saleh TA, Hussein MZB, Ibrahim NA (2016) Effect of zinc oxide amounts on the properties and antibacterial activities of zeolite/zinc oxide nanocomposite. Materials Science and Engineering: C 68:505–511

    Article  CAS  Google Scholar 

  • Alswata AA, Ahmad MB, Al-Hada NM, Kamari HM, Hussein MZ, Ibrahim NA (2017) Preparation of zeolite/zinc oxide nanocomposites for toxic metals removal from water. Results in Physics 7:723–731

    Article  Google Scholar 

  • Alver E, Metin AÜ, Çiftçi H (2014) Synthesis and characterization of chitosan/polyvinylpyrrolidone/zeolite composite by solution blending method. J Inorg Organomet Polym Materials 24:1048–1054

    Article  CAS  Google Scholar 

  • Angaru GK, Choi YL, Lingamdinne LP, Choi JS, Kim DS, Koduru JR, Yang JK, Chang YY (2021) Facile synthesis of economical feasible fly ash–based zeolite–supported nano zerovalent iron and nickel bimetallic composite for the potential removal of heavy metals from industrial effluents. Chemosphere 267:128889

  • Antoniadis V, Zanni AA, Levizou E, Shaheen SM, Dimirkou A, Bolan N, Rinklebe J (2018) Modulation of hexavalent chromium toxicity on Οriganum vulgare in an acidic soil amended with peat, lime, and zeolite. Chemosphere 195:291–300

    Article  CAS  Google Scholar 

  • Arcibar-Orozco JA, Flores-Rojas AI, Rangel-Mendez JR, Díaz-Flores PE (2020) Synergistic effect of zeolite/chitosan in the removal of fluoride from aqueous solution. Environ Technol 41(12):1554–1567. https://doi.org/10.1080/09593330.2018.1542033

    Article  CAS  Google Scholar 

  • Arora R (2019) Adsorption of heavy metals–a review. Materials Today: Proceedings 18:4745–4750

    CAS  Google Scholar 

  • Arumugam V, Moodley KG, Dass A, Gengan RM, Ali D, Alarifi S, Gao Y (2021) Ionic liquid covered iron-oxide magnetic nanoparticles decorated zeolite nanocomposite for excellent catalytic reduction and degradation of environmental toxic organic pollutants and dyes. J Molecul Liquids 342:117492

    Article  CAS  Google Scholar 

  • Asere TG, Stevens CV, Du Laing G (2019) Use of (modified) natural adsorbents for arsenic remediation: a review. Sci Total Environment 676:706–720

    Article  CAS  Google Scholar 

  • Aysan H, Edebali S, Ozdemir C, Karakaya MC, Karakaya N (2016) Use of chabazite, a naturally abundant zeolite, for the investigation of the adsorption kinetics and mechanism of methylene blue dye. Microporous and Mesoporous Materials 235:78–86

    Article  CAS  Google Scholar 

  • Babu SOF, Hossain MB, Rahman MS, Rahman M, Ahmed AS, Hasan MM, . . . Simal-Gandara J (2021). Phytoremediation of toxic metals: a sustainable green solution for clean environment. Applied Sciences. 11(21):10348.

  • Baerlocher C, McCusker LB, Olson DH (2007) Atlas of zeolite framework types: Elsevier

  • Bagheria H, Honarvara B, Abbasib M, Esfandiaria N, Aboosadia ZA (2021) Experimental evaluation of Farashband gas refinery wastewater treatment through activated carbon and natural zeolite adsorption process. Desalination Water Treatment 225:190–202

    Article  Google Scholar 

  • Balkhair KS, Ashraf MA (2016) Field accumulation risks of heavy metals in soil and vegetable crop irrigated with sewage water in western region of Saudi Arabia. Saudi J Biol Sci 23(1):S32–S44

    Article  CAS  Google Scholar 

  • Bañón S, Miralles J, Ochoa J, Franco J, Sánchez-Blanco M (2011) Effects of diluted and undiluted treated wastewater on the growth, physiological aspects and visual quality of potted lantana and polygala plants. Scientia Horticulturae 129(4):869–876

    Article  Google Scholar 

  • Barac T, Taghavi S, Borremans B, Provoost A, Oeyen L, Colpaert JV, . . . van der Lelie D (2004) Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nature biotechnology. 22(5):583-588.

  • Belviso C, Satriani A, Lovelli S, Comegna A, Coppola A, Dragonetti G, Rivelli AR (2022) Impact of zeolite from coal fly ash on soil hydrophysical properties and plant growth. Agriculture 12(3):356

    Article  CAS  Google Scholar 

  • Berber MR (2020) Current advances of polymer composites for water treatment and desalination. J Chem 1–19

  • Beyene HD, Werkneh AA, Bezabh HK, Ambaye TG (2017) Synthesis paradigm and applications of silver nanoparticles (AgNPs), a review. Sustain Materials Technol 13:18–23

    Article  CAS  Google Scholar 

  • Beyene HD, Ambaye TG (2019) Application of sustainable nanocomposites for water purification process. In Sustainable polymer composites and nanocomposites. Springer, pp 387–412

  • Blasioli S, Martucci A, Paul G, Gigli L, Cossi M, Johnston CT, Marches L, Braschi I (2014) Removal of sulfamethoxazole sulfonamide antibiotic from water by high silica zeolites: a study of the involved host–guest interactions by a combined structural spectroscopic and computational approach. J Colloid Interface Sci 419:148–159. https://doi.org/10.1016/j.jcis.2013.12.039

    Article  CAS  Google Scholar 

  • Bogdanov B, Georgiev D, Angelova K, Yaneva K (2009) Natural zeolites: clinoptilolite. Review, Natural Mathematical Sci 4:6–11

    Google Scholar 

  • Boretti A, Rosa LJ (2019) Reassessing the projections of the world water development report. NPJ Clean Water 2(1):15

  • Boros-Lajszner E, Wyszkowska J, Kucharski J (2018) Use of zeolite to neutralise nickel in a soil environment. Environmental Monitoring Ass 190:1–13

    CAS  Google Scholar 

  • Boycheva S, Zgureva D, Miteva S, Marinov I, Behunová DM, Trendafilova I., . . . Václaviková M (2020) Studies on the potential of nonmodified and metal oxide-modified coal fly ash zeolites for adsorption of heavy metals and catalytic degradation of organics for waste water recovery. Processes, 8(7), 778.

  • Campos V, Morais LC, Buchler P (2007) Removal of chromate from aqueous solution using treated natural zeolite. Environmental Geol 52:1521–1525

    Article  CAS  Google Scholar 

  • Castaldi P, Santona L, Enzo S, Melis P (2008) Sorption processes and XRD analysis of a natural zeolite exchanged with Pb2+, Cd2+ and Zn2+ cations. J Hazard Materials 156(1–3):428–434

    Article  CAS  Google Scholar 

  • Castro CJ, Shyu HY, Xaba L, Bair R, Yeh DH (2021) Performance and onsite regeneration of natural zeolite for ammonium removal in a field-scale non-sewered sanitation system. Sci Total Environ 776

  • Chai WS, Cheun JY, Kumar PS, Mubashir M, Majeed Z, Banat F, . . . Show PL (2021) A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application. Journal of Cleaner Production, 296:126589.

  • Chanda R, Hosain M, Sumi SA, Sultana M, Islam S, Biswas BK (2022) Removal of chromium (VI) and lead (II) from aqueous solution using domestic rice husk ash-(RHA-) based zeolite faujasite. Adsorpt Sci Technol. https://doi.org/10.1155/2022/4544611

  • Chao H-P, Chen S-H (2012) Adsorption characteristics of both cationic and oxyanionic metal ions on hexadecyltrimethylammonium bromide-modified NaY zeolite. Chem Eng J 193:283–289

    Article  Google Scholar 

  • Chen Z, Fang J, Wei W, Ngo HH, Guo W, Ni BJ (2022) Emerging adsorbents for micro/nanoplastics removal from contaminated water: advances and perspectives. J Clean Prod. p 133676

  • Cheng D, Meng X (2022) Recent advances of beta zeolite in the volatile organic compounds (VOCs) elimination by the catalytic oxidations. Chem Res Chinese Universities 38(3):716–722

    Article  CAS  Google Scholar 

  • Cheriyamundath S, Vavilala SL (2021) Nanotechnology-based wastewater treatment. Water and Environment Journal 35(1):123–132

    Article  CAS  Google Scholar 

  • Chowdhary P, Bharagava RN, Mishra S, Khan N (2020) Role of industries in water scarcity and its adverse effects on environment and human health. In: Shukla V, Kumar N (eds) Environmental Concerns and Sustainable Development. Springer, Singapore. https://doi.org/10.1007/978-981-13-5889-0_12

  • Cieśla J, Franus W, Franus M, Kedziora K, Gluszczyk J, Szerement J, Jozefaciuk GJM (2019) Environmental-friendly modifications of zeolite to increase its sorption and anion exchange properties, physicochemical studies of the modified materials. Materials 12(19):3213

    Article  Google Scholar 

  • Cincotti A, Mameli A, Locci AM, Orrù R, Cao G (2006) Heavy metals uptake by Sardinian natural zeolites: experiment and modeling. Indust Eng Chem Res 45(3):1074–1084

    Article  CAS  Google Scholar 

  • Comino E, Fiorucci A, Menegatti S, Marocco C (2009) Preliminary test of arsenic and mercury uptake by Poa annua. Ecol Eng 35(3):343–350

    Article  Google Scholar 

  • Contin M, Miho L, Pellegrini E, Gjoka F, Shkurta E (2019) Effects of natural zeolites on ryegrass growth and bioavailability of Cd, Ni, Pb, and Zn in an Albanian contaminated soil. Journal of Soils and Sediments 19:4052–4062

    Article  CAS  Google Scholar 

  • Çoruh S, Ergun ON (2009) Ni2+ removal from aqueous solutions using conditioned clinoptilolites: kinetic and isotherm studies. Environmental Progress Sustain Energy 28(1):162–172

    Article  Google Scholar 

  • Dai X, Li X, Zhang M, Xie J, Wang XJ (2018) Zeolitic imidazole framework/graphene oxide hybrid functionalized poly (lactic acid) electrospun membranes: a promising environmentally friendly water treatment material. ACS Omega 3(6):6860–6866

    Article  CAS  Google Scholar 

  • Dal Bosco SM, Jimenez RS, Carvalho WA (2005) Removal of toxic metals from wastewater by Brazilian natural scolecite. J Coll Interface Sci 281(2):424–431

    Article  Google Scholar 

  • De Gennaro B, Aprea P, Liguori B, Galzerano B, Peluso A, Caputo D (2020) Zeolite-rich composite materials for environmental remediation: arsenic removal from water. Applied Sciences 10(19):6938

    Article  Google Scholar 

  • De Magalhães LF, da Silva GR, Peres AEC (2022) Zeolite application in wastewater treatment. Adsorption Science & Technology 2022:1–26

    Article  Google Scholar 

  • De Smedt C, Steppe K, Spanoghe P (2017) Beneficial effects of zeolites on plant photosynthesis. Adv Materials Sci 2(1):1–11

    Google Scholar 

  • Dionisiou N, Matsi T (2016) Natural and surfactant-modified zeolite for the removal of pollutants (mainly inorganic) from natural waters and wastewaters. In Environ Mater Waste. Elsevier. Academic Press, pp 591–606

  • Dutt MA, Hanif MA, Nadeem F, Bhatti HN (2020) A review of advances in engineered composite materials popular for wastewater treatment. J Environmental Chem Eng 8(5):104073

    Article  CAS  Google Scholar 

  • Eberle S, Börnick H, Stolte SJW (2022) Granular natural zeolites: cost-effective adsorbents for the removal of ammonium from drinking water. 14(6):939

  • Eljamal O, Eljamal R, Maamoun I, Khalil AM, Shubair T, Falyouna O, Sugihara Y (2022) Efficient treatment of ammonia-nitrogen contaminated waters by nano zero-valent iron/zeolite composite. Chemosphere 287:131990

    Article  CAS  Google Scholar 

  • Engwa GA, Ferdinand PU, Nwalo FN, Unachukwu MN (2019) Mechanism and health effects of heavy metal toxicity in humans. In Poisoning in the modern world-new tricks for an old dog. Intech Open 10:70–90 

  • FAO (2007) Coping with water scarcity: challenge of the twenty-first century. UN Food and Agriculture Organization, Rome

    Google Scholar 

  • Farghali MA, Abo-Aly MM, Salaheldin TA (2021) Modified mesoporous zeolite-A/reduced graphene oxide nanocomposite for dual removal of methylene blue and Pb2+ ions from wastewater. Inorg Chem Comm 126:108487

    Article  CAS  Google Scholar 

  • Fu Q, Zhou S, Wu P, Hu J, Lou J, Du B, Luo J (2022) Regenerable zeolitic imidazolate frameworks@ agarose (ZIF-8@AG) composite for highly efficient adsorption of Pb (II) from water. J Solid State Chem 307:122823

  • Gao S, Peng H, Song B, Zhang J, Wu W, Vaughan J et al (2023) Synthesis of zeolites from low-cost feeds and its sustainable environmental applications. J Environ Chem Eng 11(1):108995

  • Garcia X, Pargament D (2015) Reusing wastewater to cope with water scarcity: economic, social and environmental considerations for decision-making. Res Conserv Recycling 101:154–166

    Article  Google Scholar 

  • Getahun YW, Gardea-Torresdey J, Manciu FS, Li X, El-Gendy AA (2022) Green synthesized superparamagnetic iron oxide nanoparticles for water treatment with alternative recyclability. J Molecular Liquids 356:118983

    Article  CAS  Google Scholar 

  • Ghasemi Z, Sourinejad I, Kazemian H, Rohani SJ (2018) Application of zeolites in aquaculture industry: a review. Reviews Aquaculture 10(1):75–95

    Article  Google Scholar 

  • Gray CS, Burns SE, Griffith JD (2012) The use of natural zeolites as a sorbent for treatment of dissolved heavy metals in stormwater runoff. In GeoCongress 2012: State of the Art and Practice in Geotechnical Engineering (pp. 3978-3987).

  • Grbic J, Nguyen B, Guo E, You JB, Sinton D, Rochman CMJES, Letters T (2019) Magnetic extraction of microplastics from environmental samples. Environ Sci Technol Lett 6(2):68–72

  • Guida S, Potter C, Jefferson B, Soares AJSR (2020) Preparation and evaluation of zeolites for ammonium removal from municipal wastewater through ion exchange process. Sci Rep 10(1):1–11

  • Guisnet M, a Ribeiro FR (2011) Deactivation and regeneration of zeolite catalysts.

  • Guisnet M, Gilson J-P (2002) Zeolites for cleaner technologies, vol 3. Imperial College Press London, p 388

  • Gupta SS, Bhattacharyya KG (2011) Kinetics of adsorption of metal ions on inorganic materials: a review. Adv coll Interface Sci 162(1–2):39–58

    Article  Google Scholar 

  • Gupta V, Sadegh H, Yari M, Shahryari GR, Maazinejad B, Chahardori M (2015). Removal of ammonium ions from wastewater a short review in development of efficient methods.

  • Hajihashemi S, Mbarki S, Skalicky M, Noedoost F, Raeisi M, Brestic M (2020) Effect of wastewater irrigation on photosynthesis, growth, and anatomical features of two wheat cultivars (Triticum aestivum L.). Water 12(2):607

    Article  Google Scholar 

  • Hao F, Yan X-P (2022) Nano-sized zeolite-like metal-organic frameworks induced hematological effects on red blood cell. J Hazard Mater 424:127353

  • Hasanabadi T, Shahram L, Modhej A, Ghafourian H, Alavifazel M, Ardakani MR (2019) Feasibility study on reducing lead and cadmium absorption by alfalfa (Medicago scutellata L) in a contaminated soil using nano-activated carbon and natural based nano-zeolite. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 47(4):1185–1193

    Article  CAS  Google Scholar 

  • Hashemi MSH, Eslami F, Karimzadeh R (2019) Organic contaminants removal from industrial wastewater by CTAB treated synthetic zeolite Y. J Environmental Management 233:785–792

    Article  Google Scholar 

  • Hassan F, Mushtaq R, Saghar S, Younas U, Pervaiz M, Muteb Aljuwayid A, Sillanpaa MJC (2022) Fabrication of graphene-oxide and zeolite loaded polyvinylidene fluoride reverse osmosis membrane for saltwater remediation. Chemosphere 307:136012

    Article  CAS  Google Scholar 

  • Hillock AM, Miller SJ, Koros WJ (2008) Crosslinked mixed matrix membranes for the purification of natural gas: effects of sieve surface modification. J memb Sci 314(1–2):193–199

  • Hong M, Yu L, Wang Y, Zhang J, Chen Z, Dong L, Li R (2019) Heavy metal adsorption with zeolites: the role of hierarchical pore architecture. Chem Eng J 359:363–372

    Article  CAS  Google Scholar 

  • Hu G, Yang J, Duan X, Farnood R, Yang C, Yang J, Liu QJ (2021) Recent developments and challenges in zeolite-based composite photocatalysts for environmental applications. Chem Eng J 417:129209

  • Huang T, Yan M, He K, Huang Z, Zeng G, Chen A (2019) Efficient removal of methylene blue from aqueous solutions using magnetic graphene oxide modified zeolite. J Colloid Interface Sci 543:43–51

    Article  CAS  Google Scholar 

  • Huibers FP, Van Lier JB (2005) Use of wastewater in agriculture: the water chain approach. Irrigation Drainage 54(S1):S3–S9

    Article  Google Scholar 

  • Imtiaz M, Rizwan MS, Xiong S, Li H, Ashraf M, Shahzad SM, Tu S (2015) Vanadium, recent advancements and research prospects: a review. Environment International 80:79–88

    Article  CAS  Google Scholar 

  • Iqbal M, Nauman S, Ghafari M, Parnianifard A, Gomes A, Gomes C (2021) Treatment of wastewater for agricultural applications in regions of water scarcity. Significance 16:17

    Google Scholar 

  • Irannajad M, Kamran Haghighi H (2021) Removal of heavy metals from polluted solutions by zeolitic adsorbents: a review. Environmental Processes 8:7–35

    Article  CAS  Google Scholar 

  • Italiya G, Ahmed MH, Subramanian S (2022) Titanium oxide bonded zeolite and bentonite composites for adsorptive removal of phosphate. Environ Nanotechnol Monitoring Management 17:100649

    Article  CAS  Google Scholar 

  • Jaramillo-Fierro X, González S, Montesdeoca-Mendoza F, Medina F (2021) Structuring of zntio3/tio2 adsorbents for the removal of methylene blue, using zeolite precursor clays as natural additives. Nanomaterials 11(4):898

    Article  CAS  Google Scholar 

  • Jaymand M (2014) Conductive polymers/zeolite (nano-) composites: under-exploited materials. RSC Adv 4(64):33935–33954

    Article  CAS  Google Scholar 

  • Jevremović A, Bober P, Mičušík M, Kuliček J, Acharya U, Pfleger J, Stejskal J (2019) Synthesis and characterization of polyaniline/BEA zeolite composites and their application in nicosulfuron adsorption. Microporous Mesoporous Materials 287:234–245

    Article  Google Scholar 

  • Jiang N, Shang R, Heijman SG, Rietveld LC (2018) High-silica zeolites for adsorption of organic micro-pollutants in water treatment: a review. Water Res 144:145–161

  • Jiménez-Reyes M, Almazán-Sánchez P, Solache-Ríos M (2021) Radioactive waste treatments by using zeolites A short review. J Environmental Radioact 233:106610

    Article  Google Scholar 

  • Kalaji HM, Jajoo A, Oukarroum A, Brestic M, Zivcak M, Samborska IA, Ladle RJ (2016) Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiologiae Plantarum 38:1–11

    Article  CAS  Google Scholar 

  • Kallo D (2001) Applications of natural zeolites in water and wastewater treatment. Rev Mineral Geochem 45(1):519–550

  • Kanwar VS, Sharma A, Srivastav AL, Rani L (2020) Phytoremediation of toxic metals present in soil and water environment: a critical review. Environ Sci Poll Res 27:44835–44860

    Article  CAS  Google Scholar 

  • Kapoor D, Singh MP (2021). Heavy metal contamination in water and its possible sources. In Heavy metals in the environment (pp. 179-189): Elsevier.

  • Karimzadeh L, Heilmeier H, Merkel BJ (2012) Effect of microbial siderophore DFO-B on Cd accumulation by Thlaspi caerulescens hyperaccumulator in the presence of zeolite. Chemosphere 88(6):683–687

    Article  CAS  Google Scholar 

  • Karri RR, Sahu JN, Chimmiri V (2018) Critical review of abatement of ammonia from wastewater. J Molecular Liquids 261:21–31

    Article  CAS  Google Scholar 

  • Katsou E, Malamis S, Tzanoudaki M, Haralambous KJ, Loizidou M (2011) Regeneration of natural zeolite polluted by lead and zinc in wastewater treatment systems. J Hazardous Mater 189(3):773–786

  • Khaleque A, Alam MM, Hoque M, Mondal S, Haider JB, Xu B, Ahmed MB (2020) Zeolite synthesis from low-cost materials and environmental applications: a review. Environmental Adv 2:100019

    Article  Google Scholar 

  • Khan NA, Khan SU, Ahmed S, Farooqi IH, Dhingra A, Hussain A, Changani F (2019) Applications of nanotechnology in water and wastewater treatment: a review. Asian J Water, Environ Poll 16(4):81–86

    Article  Google Scholar 

  • Khanday W, Asif M, Hameed B (2017) Cross-linked beads of activated oil palm ash zeolite/chitosan composite as a bio-adsorbent for the removal of methylene blue and acid blue 29 dyes. Int J Biol Macromolecules 95:895–902

    Article  CAS  Google Scholar 

  • Kianfar E, Mahler A (2020) Zeolites: properties, applications, modification and selectivity. Zeolites: advances in research and applications, 1

  • Kim K-R, Kim J-G, Park J-S, Kim M-S, Owens G, Youn G-H, Lee J-S (2012) Immobilizer-assisted management of metal-contaminated agricultural soils for safer food production. J Environ Management 102:88–95

    Article  CAS  Google Scholar 

  • Kokotailo G, Lawton S, Olson D, Meier W (1978) Structure of synthetic zeolite ZSM-5. Nature 272(5652):437–438

    Article  CAS  Google Scholar 

  • Konale RA, Mahale NK, Ingle ST (2020) Nano-zeolite-graphene oxide composite for calcium hardness removal: isotherm and kinetic study. Water Practice and Technol 15(4):1011–1031

    Article  Google Scholar 

  • Kong S, Wang Y, Hu Q, Olusegun AK (2014) Magnetic nanoscale Fe–Mn binary oxides loaded zeolite for arsenic removal from synthetic groundwater. Colloids Surfaces A: Physicochem Eng Aspects 457:220–227

    Article  CAS  Google Scholar 

  • Kong F, Zhang Y, Wang H, Tang J, Li Y, Wang SJC (2020) Removal of Cr (VI) from wastewater by artificial zeolite spheres loaded with nano Fe–Al bimetallic oxide in constructed wetland. Chemosphere 257:127224

    Article  CAS  Google Scholar 

  • Kore R, Srivastava R, Satpati B (2015) Synthesis of industrially important aromatic and heterocyclic ketones using hierarchical ZSM-5 and Beta zeolites. Appl Catal A Gen 493:129–141

  • Koshy N, Singh D (2016) Fly ash zeolites for water treatment applications. J Environmental Chem Eng 4(2):1460–1472

    Article  CAS  Google Scholar 

  • Kosiorek M, Wyszkowski M (2020) Remediation of cobalt-contaminated soil using manure, clay, charcoal, zeolite, calcium oxide, main crop (Hordeum vulgare L.), and after-crop (Synapis alba L.). Minerals 10(5):429

    Article  CAS  Google Scholar 

  • Koukouzas N, Vasilatos C, Itskos G, Mitsis I, Moutsatsou A (2010) Removal of heavy metals from wastewater using CFB-coal fly ash zeolitic materials. J Hazardous Mat 173(1–3):581–588

    Article  CAS  Google Scholar 

  • Kragović M, Pašalić S, Marković M, Petrović M, Nedeljković B, Momčilović M, Stojmenović MJM (2018) Natural and modified zeolite—alginate composites. App Removal Heavy Metal Cations Contaminated Water Sol 8(1):11

    Google Scholar 

  • Kulawong S, Chanlek N, Osakoo N (2020) Facile synthesis of hierarchical structure of NaY zeolite using silica from cogon grass for acid blue 185 removal from water. J Experimental Botany 8(5):104114

    CAS  Google Scholar 

  • Küpper H, Küpper F, Spiller M (1996) Environmental relevance of heavy metal-substituted chlorophylls using the example of water plants. J Experimental Botany 47(2):259–266

    Article  Google Scholar 

  • Lai T, Cao A, Zucca A, Carucci A (2012) Use of natural zeolites charged with ammonium or carbon dioxide in phytoremediation of lead-and zinc-contaminated soils. J Chem Technol Biotechnol 87(9):1342–1348

    Article  CAS  Google Scholar 

  • Lakherwal D (2014) Adsorption of heavy metals: a review. Int J Environ Res Develop 4(1):41–48

    Google Scholar 

  • Lefevre I, Vogel-Mikuš K, Jeromel L, Vavpetič P, Planchon S, Arčon I, Renaut J (2014) Differential cadmium and zinc distribution in relation to their physiological impact in the leaves of the accumulating Z ygophyllum fabago L. Plant Cell Environment 37(6):1299–1320

    Article  CAS  Google Scholar 

  • Leggo PJ, Ledésert B, Christie G (2006) The role of clinoptilolite in organo-zeolitic-soil systems used for phytoremediation. Sci Total Environ 363(1–3):1–10

    Article  CAS  Google Scholar 

  • Lehman SE, Larsen SC (2014) Zeolite and mesoporous silica nanomaterials: greener syntheses, environmental applications and biological toxicity. Environmental Sci : Nano 1(3):200–213

    CAS  Google Scholar 

  • Li H, Shi W-Y, Shao H-B, Shao M-A (2009) The remediation of the lead-polluted garden soil by natural zeolite. J Hazardous Mat 169(1–3):1106–1111

    Article  CAS  Google Scholar 

  • Li H, Zheng F, Wang J, Zhou J, Huang X, Chen L, Bashir S (2020) Facile preparation of zeolite-activated carbon composite from coal gangue with enhanced adsorption performance. 390, 12451

  • Li M, Jia X, Wang L, Gao G, Feng X, Li C (2022) Research on modified carbon nanotubes in wastewater treatment. Catalysts 12(10):1103

    Article  Google Scholar 

  • Lin H, Liu Q-L, Dong Y-B, He Y-H, Wang L (2015) Physicochemical properties and mechanism study of clinoptilolite modified by NaOH. Microporous Mesoporous Materials 218:174–179

    Article  CAS  Google Scholar 

  • Lin L, Yang H, Xu X (2022) Effects of water pollution on human health and disease heterogeneity: a review. Frontiers in Environmental Science. 975.

  • Liphadzi M, Kirkham M, Paulsen G (2006) Auxin-enhanced root growth for phytoremediation of sewage-sludge amended soil. Environ Technol 27(6):695–704

    Article  CAS  Google Scholar 

  • Liu J, Cheng X, Zhang Y, Wang X, Zou Q, Fu L (2017) Zeolite modification for adsorptive removal of nitrite from aqueous solutions. Microporous and Mesoporous Mat 252:179–187

    Article  CAS  Google Scholar 

  • Liu X, Liu Y, Lu S, Guo W, Xi B (2018) Performance and mechanism into TiO2/zeolite composites for sulfadiazine adsorption and photodegradation. Chem Eng J 350:131–147

    Article  CAS  Google Scholar 

  • Liu J, Yuan Z, Yuan M, Yan G, Xie T (2022) Research on the removal of heavy metal ions in water by magnetically modified zeolite. J Mat Sci: Mat Electronics 33(30):23542–23554

    CAS  Google Scholar 

  • Liu X, Wang X, Jiang W, Zhang C-R, Zhang L, Liang R-P, Qiu J-D (2022) Covalent organic framework modified carbon nanotubes for removal of uranium (VI) from mining wastewater. Chem Eng J 450:138062

  • Loiola A, Andrade J, Sasaki J, Da Silva L (2012) Structural analysis of zeolite NaA synthesized by a cost-effective hydrothermal method using kaolin and its use as water softener. J Colloid Interface Sci 367(1):34–39

  • Loiola AR, Bessa RA, Oliveira CP, Freitas AD, Soares SA, Bohn F, Pergher SB (2022) Magnetic zeolite composites: classification, synthesis routes, and technological applications. J Magn Magn Mater 560:169651

  • Lung I, Stan M, Opris O, Soran M-L, Senila M, Stefan M (2018) Removal of lead (II), cadmium (II), and arsenic (III) from aqueous solution using magnetite nanoparticles prepared by green synthesis with Box-Behnken design. Anal Lett 51(16):2519–2531

    Article  Google Scholar 

  • Lusher A (2015) Microplastics in the marine environment: distribution, interactions and effects. Marine anthropogenic litter, pp 245–307

  • Ma B, Xue W, Hu C, Liu H, Qu J, Li L (2019) Characteristics of microplastic removal via coagulation and ultrafiltration during drinking water treatment. Chem Eng J 359:159–167

    Article  CAS  Google Scholar 

  • Madhura L, Singh S, Kanchi S, Sabela M, Bisetty K, Inamuddin. (2019) Nanotechnology-based water quality management for wastewater treatment. Environmental Chem Lett 17:65–121

    Article  CAS  Google Scholar 

  • Madima N, Mishra S, Inamuddin I, Mishra AJECL (2020) Carbon-based nanomaterials for remediation of organic and inorganic pollutants from wastewater. A review. 18(4):1169–1191

    CAS  Google Scholar 

  • Maghami M, Abdelrasoul A (2018) Zeolite mixed matrix membranes (zeolite-Mmms) for sustainable engineering. Zeolites and Their Applications 27:115

  • Mahajan R, Koros WJ (2002) Mixed matrix membrane materials with glassy polymers. Part 1. Polym Eng Sci 42(7):1420–1431

  • Maharana M, Sen S (2021) Magnetic zeolite: a green reusable adsorbent in wastewater treatment. Materials today: proceedings 47:1490–1495

  • Mahmoodi NM, Saffar-Dastgerdi MH (2020) Clean Laccase immobilized nanobiocatalysts (graphene oxide-zeolite nanocomposites): from production to detailed biocatalytic degradation of organic pollutant. Applied Catalysis B: Environmental 268:118443

    Article  CAS  Google Scholar 

  • Mahurpawar M (2015) Effects of heavy metals on human health. Int J Res Granthaalayah 530:1–7

    Article  Google Scholar 

  • Mancosu N, Snyder RL, Kyriakakis G, Spano D (2015) Water scarcity and future challenges for food production. Water 7(3):975–992

    Article  Google Scholar 

  • Margeta K, Logar NZ, Šiljeg M, Farkaš A (2013) Natural zeolites in water treatment–how effective is their use. Water treatment 5:81–112

    Google Scholar 

  • Marković M, Daković A, Rottinghaus GE, Petković A, Kragović M, Krajišnik D, Milić J (2017) Ochratoxin a and zearalenone adsorption by the natural zeolite treated with benzalkonium chloride. Colloids Surf A: Physicochem Eng 529:7–17

  • Martinez-Boubeta C, Simeonidis K (2019). Magnetic nanoparticles for water purification. Nanoscale materials in water purification, 521-552.

  • McCormick AR, Hoellein TJ, London MG, Hittie J, Scott JW, Kelly JJ (2016) Microplastic in surface waters of urban rivers: concentration, sources, and associated bacterial assemblages. Ecosphere 7(11):01556

    Article  Google Scholar 

  • Medvidović NV, Perić J, Trgo M (2006) Column performance in lead removal from aqueous solutions by fixed bed of natural zeolite–clinoptilolite. Sep Purif Technol 49(3):237–244

  • Medykowska M, Wiśniewska M, Szewczuk-Karpisz K, Panek R (2022) Interaction mechanism of heavy metal ions with the nanostructured zeolites surface–adsorption, electrokinetic and XPS studies. J Molecular Liquids 357:119144

    Article  CAS  Google Scholar 

  • Mendoza LMR, Vargas DL, Balcer M (2021) Microplastics occurrence and fate in the environment. Current Opinion Green Sustainable Chem 32:100523

    Article  Google Scholar 

  • Miao F, Liu Y, Gao M, Yu X, Xiao P, Wang M., . . . Wang X (2020). Degradation of polyvinyl chloride microplastics via an electro-Fenton-like system with a TiO2/graphite cathode. Journal of Hazardous Materials, 399, 123023.

  • Milojević-Rakić M, Janošević A, Krstić J, Vasiljević BN, Dondur V, Ćirić-Marjanović G (2013) Polyaniline and its composites with zeolite ZSM-5 for efficient removal of glyphosate from aqueous solution. Microporous Mesoporous Materials 180:141–155

    Article  Google Scholar 

  • Milojević-Rakić M, Bajuk-Bogdanović D, Vasiljević BN, Rakić A, Škrivanj S, Ignjatović L., . . . Materials M (2018). Polyaniline/FeZSM-5 composites–synthesis, characterization and their high catalytic activity for the oxidative degradation of herbicide glyphosate. 267, 68-79.

  • Mirzaei D, Zabardasti A, Mansourpanah Y, Sadeghi M, Farhadi S, Polymers O (2020) Efficacy of novel NaX/MgO–TiO2 zeolite nanocomposite for the adsorption of methyl orange (MO) dye: isotherm, kinetic and thermodynamic studies. J Inorg Organomet Polym Materials 30(6):2067–2080

    Article  CAS  Google Scholar 

  • Misra A, Zambrzycki C, Kloker G, Kotyrba A, Anjass MH, Franco Castillo I., . . . Streb C (2020). Water purification and microplastics removal using magnetic polyoxometalate‐supported ionic liquid phases (magPOM‐SILPs). Angewandte Chemie International Edition, 59(4), 1601-1605.

  • Mitchell S, Pinar AB, Kenvin J, Crivelli P, Kärger J, Pérez-Ramírez J (2015) Structural analysis of hierarchically organized zeolites. Nature Communications 6(1):8633

    Article  CAS  Google Scholar 

  • Mo Z, Tai D, Zhang H, Shahab A (2022) A comprehensive review on the adsorption of heavy metals by zeolite imidazole framework (ZIF-8) based nanocomposite in water. Chem Eng J 443:136320

    Article  CAS  Google Scholar 

  • Mojiri A, Ziyang L, Tajuddin RM, Farraji H, Alifar N (2016) Co-treatment of landfill leachate and municipal wastewater using the ZELIAC/zeolite constructed wetland system. J Environmental Management 166:124–130

    Article  CAS  Google Scholar 

  • Mokhtari T, Bagheri A, Alipour M (2012) Benefits and risks of wastewater use in agriculture. Paper presented at the Proceedings of the 1st international and the 4th National congress on recycling of organic waste in agriculture

  • Morante-Carballo F, Montalván-Burbano N, Carrión-Mero P, Espinoza-Santos N (2021) Cation exchange of natural zeolites: worldwide research. Sustainability 13(14):7751

  • Mosanefi S, Alavi N, Eslami A, Saadani M, Ghavami A (2021) Ammonium removal from landfill fresh leachate using zeolite as adsorbent. J Material Cycles Waste Management 23:1383–1393

    Article  CAS  Google Scholar 

  • Muscarella SM, Badalucco L, Cano B, Laudicina VA, Mannina GJBT (2021) Ammonium adsorption, desorption and recovery by acid and alkaline treated zeolite. Bioresource Technol 341:125812

    Article  CAS  Google Scholar 

  • Muthusaravanan S, Sivarajasekar N, Vivek J, Paramasivan, T, Naushad, M., Prakashmaran J, . . . Al-Duaij OK (2018). Phytoremediation of heavy metals: mechanisms, methods and enhancements. Environmental Chemistry Letters. 16:1339-1359.

  • Nations U (2018) World Water Development Report 2018

  • Neag E, Török AI, Tanaselia C, Aschilean I, Senila MJW (2020) Kinetics and equilibrium studies for the removal of Mn and Fe from binary metal solution systems using a Romanian thermally activated natural zeolite. 12(6):1614

  • NESCO (2021) The United Nations world water development report 2021: valuing water: United Nations

  • Nguyen TD Nguyen TMP, Van HT, Nguyen LH. NguyenTD, Nguyen THV, Innovation. (2022). Adsorption removal of ammonium from aqueous solution using Mg/Al layered double hydroxides-zeolite composite. 25, 102244.

  • Nizamuddin S, Siddiqui M, Mubarak N, Baloch HA, Abdullah E., Mazari SA, Tanksale A (2019). Iron oxide nanomaterials for the removal of heavy metals and dyes from wastewater. 447-472.

  • Nogueira HP, Toma SH, Silveira AT Jr, Araki K (2020) Zeolite-SPION nanocomposite for ammonium and heavy metals removal from wastewater. J Brazilian Chem Soc 31:2342–2350

    CAS  Google Scholar 

  • Noviello M, Gattullo CE, Faccia M, Paradiso VM, Gambacorta G (2021) Application of natural and synthetic zeolites in the oenological field. Food Res Int 150:110737

  • Nyankson E, Adjasoo J, Efavi JK, Amedalor R, Yaya A, Manu GP, Amartey NA (2019) Characterization and evaluation of zeolite a/Fe 3 O 4 nanocomposite as a potential adsorbent for removal of organic molecules from wastewater. J Chem. https://doi.org/10.1155/2019/8090756

  • Ojuederie OB, Babalola OO (2017) Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review. Int J Environmental Res Public Health 14(12):1504

    Article  Google Scholar 

  • Olad A, Khatamian M, Naseri B (2011) Removal of toxic hexavalent chromium by polyaniline modified clinoptilolite nanoparticles. J Iran Chem Soc 8:S141–S151

    Article  CAS  Google Scholar 

  • Omanović-Mikličanin E, Badnjević A, Kazlagić A, Hajlovac MJ (2020) Nanocomposites: a brief review. Health Technol 10(1):51–59

    Article  Google Scholar 

  • Pandey R, Vengavasi K, Hawkesford MJ (2021) Plant adaptation to nutrient stress. Plant Physiol Rep 26(2):583–586

  • Pasanen F, Fuller RO, Maya FJ (2022) Fast and simultaneous removal of microplastics and plastic-derived endocrine disruptors using a magnetic ZIF-8 nanocomposite. Chem Eng J 140405

  • Petrus R, Warchoł JJM, Materials M (2003) Ion exchange equilibria between clinoptilolite and aqueous solutions of Na+/Cu2+, Na+/Cd2+ and Na+/Pb2+. Microporous Mesoporous Materials 61(3):137–146

    Article  CAS  Google Scholar 

  • Piaskowski K, Zarzycki PK (2020) Carbon-based nanomaterials as promising material for wastewater treatment processes. Int J Environmental Res Public Health 17(16):5862

    Article  CAS  Google Scholar 

  • Pimraksa K, Setthaya N, Thala M, Chindaprasirt P, Murayama M (2020) Geopolymer/zeolite composite materials with adsorptive and photocatalytic properties for dye removal. PLoS One 15(10):e0241603

  • Pizarro C, Escudey M, Bravo C, Gacitua M, Pavez LJ M (2021) Sulfate kinetics and adsorption studies on a zeolite/polyammonium cation composite for environmental remediation. 11(2):180

  • Postel SL (2000) Entering an era of water scarcity: the challenges ahead. Ecological applications 10(4):941–948

    Article  Google Scholar 

  • Prajapati M, Shah M, Soni B (2021) A review of geothermal integrated desalination: a sustainable solution to overcome potential freshwater shortages. J Cleaner Product 326:129412

    Article  CAS  Google Scholar 

  • Qasem NA, Mohammed RH, Lawal DU (2021) Removal of heavy metal ions from wastewater: a comprehensive and critical review. Npj Clean Water 4(1):36

    Article  CAS  Google Scholar 

  • Rad LR, Anbia M (2021) Zeolite-based composites for the adsorption of toxic matters from water: a review. J Environ Chem Eng 9(5):106088

    Article  Google Scholar 

  • Rajic N, Stojakovic D, Jovanovic M, Logar NZ, Mazaj M, Kaucic V (2010) Removal of nickel (II) ions from aqueous solutions using the natural clinoptilolite and preparation of nano-NiO on the exhausted clinoptilolite. App Surface Sci 257(5):1524–1532

    Article  CAS  Google Scholar 

  • Rashid R, Shafiq I, Akhter P, Iqbal MJ, Hussain M (2021) A state-of-the-art review on wastewater treatment techniques: the effectiveness of adsorption method. Environmental Sci Poll Res 28:9050–9066

    Article  CAS  Google Scholar 

  • Ren H, Jiang J, Wu D, Gao Z, Sun Y, Luo C (2016) Selective adsorption of Pb (II) and Cr (VI) by surfactant-modified and unmodified natural zeolites: a comparative study on kinetics, equilibrium, and mechanism. Water, Air, & Soil Pollution 227:1–11

    Article  CAS  Google Scholar 

  • Rodríguez-Iznaga I, Rodríguez-Fuentes G, Petranovskii V (2018) Ammonium modified natural clinoptilolite to remove manganese, cobalt and nickel ions from wastewater: Favorable conditions to the modification and selectivity to the cations. Microporous and Mesoporous Materials, 255, 200–210. Rożek, P., Król, M., & Mozgawa, W. (2019). Geopolymer-zeolite composites: A review. J Cleaner Production 230:557–579

    Google Scholar 

  • Rożek P, Król M, Mozgawa W (2019) Geopolymer-zeolite composites: a review. J Clean Prod 230:557–579

  • Sacco O, Vaiano V, Matarangolo M (2018) ZnO supported on zeolite pellets as efficient catalytic system for the removal of caffeine by adsorption and photocatalysis. Separation Purification Technol 193:303–310

    Article  CAS  Google Scholar 

  • Saeed Z, Naveed M, Imran M, Bashir MA, Sattar A, Mustafa A, Xu M (2019) Combined use of Enterobacter sp. MN17 and zeolite reverts the adverse effects of cadmium on growth, physiology and antioxidant activity of Brassica napus. Plos One 14(3):0213016

    Article  Google Scholar 

  • Saharudin MS, Atif R, Shyha I, Inam F (2016) The degradation of mechanical properties in polymer nano-composites exposed to liquid media–a review. RSC Adv 6(2):1076–1089

  • Sannino D, Rizzo L, Vaiano V (2017) Progress in nanomaterials applications for water purification. In Nanotechnologies for environmental remediation. Springer, pp 1–24

  • Sayan B, Indranil S, Aniruddha M, Dhrubajyoti C, Uday C, Debashis C (2013) Role of nanotechnology in water treatment and purification: potential applications and implications. Int J Chem Sci Technol 3(3):59

    Google Scholar 

  • Shahadat M, Isamil S (2018) Regeneration performance of clay-based adsorbents for the removal of industrial dyes: a review. RSC Adv 8(43):24571–24587

  • Shao DD, Fan QH, Li JX, Niu ZW, Wu WS, Chen YX, Wang XK (2009) Removal of Eu (III) from aqueous solution using ZSM-5 zeolite. Microporous Mesoporous Mater 123(1–3):1–9

  • Senguttuvan S, Janaki V, Senthilkumar P, Kamala-Kannan S (2022) Polypyrrole/zeolite composite–a nanoadsorbent for reactive dyes removal from synthetic solution. Chemosphere 287:132164

    Article  CAS  Google Scholar 

  • Senguttuvan S, Janaki V, Senthilkumar P Kamala-Kannan S (2022b) Biocompatible polypyrrole/zeolite composite for chromate removal and detoxification. 308:131290

  • Shanableh A, Kharabsheh A (1996) Stabilization of Cd, Ni and Pb in soil using natural zeolite. J Hazardous Materials 45(2–3):207–217

    Article  CAS  Google Scholar 

  • Sharma RK, Agrawal M (2005) Biological effects of heavy metals: an overview. J Environmental Biol 26(2):301–313

    CAS  Google Scholar 

  • Shen M, Hu T, Huang W, Song B, Zeng G, Zhang Y (2021) Removal of microplastics from wastewater with aluminosilicate filter media and their surfactant-modified products: performance, mechanism and utilization. Chem Eng J 421:129918

    Article  CAS  Google Scholar 

  • Shirzadi H, Nezamzadeh-Ejhieh A (2017) An efficient modified zeolite for simultaneous removal of Pb (II) and Hg (II) from aqueous solution. J Molecul Liquids 230:221–229

    Article  CAS  Google Scholar 

  • Simeonidis K, Martinez-Boubeta C, Zamora-Pérez P, Rivera-Gil P, Kaprara E, Kokkinos E, Mitrakas M (2019) Implementing nanoparticles for competitive drinking water purification. Environmental Chem Lett 17:705–719

    Article  CAS  Google Scholar 

  • Singh NJ, Wareppam B, Kumar A, Singh KP, Garg V, Oliveira A, Singh LH (2022) Zeolite incorporated iron oxide nanoparticle composites for enhanced congo red dye removal. J Mater Res 1–13

  • Skaf DW, Punzi VL, Rolle JT, Kleinberg KA (2020) Removal of micron-sized microplastic particles from simulated drinking water via alum coagulation. Chem Eng J 386:123807

    Article  CAS  Google Scholar 

  • Sodha V, Shahabuddin S, Gaur R, Ahmad I, Bandyopadhyay R, Sridewi NJN (2022) Comprehensive review on zeolite-based nanocomposites for treatment of effluents from wastewater. Nanomaterials 12(18):3199

  • Song W, Shi T, Yang D, Ye J, Zhou Y, Feng Y (2015) Pretreatment effects on the sorption of Cr (VI) onto surfactant-modified zeolite: mechanism analysis. J Environmental Management 162:96–101

    Article  CAS  Google Scholar 

  • Sotiriou V, Michas G, Xiong L, Drosos M, Vlachostergios D, Papadaki M, Salachas G (2023) Effects of heavy metal ions on white clover (Trifolium repens L.) growth in Cd, Pb and Zn contaminated soils using zeolite. Soil Sci Environ 12(18):3199

  • Steduto P, Faurès J-M, Hoogeveen J, Winpenny J, Burke J (2012) Coping with water scarcity: an action framework for agriculture and food security. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Sultanbayeva GS, Holze R, Chernyakova R, Jussipbekov UZ (2013) Removal of Fe2+-, Cu2+-, Al3+-and Pb2+-ions from phosphoric acid by sorption on carbonate-modified natural zeolite and its mixture with bentonite. Microporous and Mesoporous Materials 170:173–180

    Article  CAS  Google Scholar 

  • Sun Y, Wu Q-T, Lee CC, Li B, Long X (2014) Cadmium sorption characteristics of soil amendments and its relationship with the cadmium uptake by hyperaccumulator and normal plants in amended soils. Int J Phytoremed 16(5):496–508

    Article  CAS  Google Scholar 

  • Sytar O, Ghosh S, Malinska H, Zivcak M, Brestic M (2021) Physiological and molecular mechanisms of metal accumulation in hyperaccumulator plants. Physiologia Plantarum 173(1):148–166

    CAS  Google Scholar 

  • Tahraoui Z, Nouali H, Marichal C, Forler P, Klein J, Daou TJ (2021) Zeolite-polymer composite materials as water scavenger. Molecules 26(16):4815

  • Talvitie J, Mikola A, Koistinen A, Setälä O (2017) Solutions to microplastic pollution–Removal of microplastics from wastewater effluent with advanced wastewater treatment technologies. Water Research 123:401–407

    Article  CAS  Google Scholar 

  • Tang Y, Zhang S, Su Y, Wu D, Zhao Y, Xie B (2021) Removal of microplastics from aqueous solutions by magnetic carbon nanotubes. Chem Eng J 406:126804

  • Tatlier M, Atalay-Oral C, Bayrak A, Maraş T, Erdem A (2022) Impact of ion exchange on zeolite hydrophilicity/hydrophobicity monitored by water capacity using thermal analysis. Thermochim Acta 713:179240

  • Tran NBT, Duong NB, Le NL (2021). Synthesis and characterization of magnetic Fe3O4/zeolite NaA nanocomposite for the adsorption removal of methylene blue potential in wastewater treatment. 2021.

  • Tulod AM, Castillo AS, Carandang WM, Pampolina NM (2012) Growth performance and phytoremediation potential of Pongamia pinnata (L.) Pierre, Samanea saman (Jacq.) Merr. and Vitex parviflora Juss in copper-contaminated soil amended with zeolite and VAM. Asia Life Sci 21(2):499–522

    Google Scholar 

  • Ulmanu M, Anger I (2012) Physical and chemical properties in: Handbook of natural zeolites, V. Bentham Science ebooks, pp 70–72

  • Ungureanu N, Vlăduț V, Voicu G (2020) Water scarcity and wastewater reuse in crop irrigation. Sustainability 12(21):9055

    Article  CAS  Google Scholar 

  • UNEP, U. D. FAO (2012) SIDS-FOCUSED green economy: an analysis of challenges and opportunities. www.unep.org/greeneconomy and www.unep.org/regionalseas

  • UNICEF W, UNICEF J (2017) Progress on drinking water, sanitation and hygiene, p 9–10

  • Wan H, Wang J, Sheng X, Yan J, Zhang W, Xu Y (2022) Removal of polystyrene microplastics from aqueous solution using the metal–organic framework material of ZIF-67. Toxics 10(2):70

    Article  CAS  Google Scholar 

  • Wang H, Xu R, Jin Y, Zhang R (2019) Zeolite structure effects on cu active center, SCR performance and stability of Cuzeolite catalysts. Catal Today 327:295–307

  • Wang J, Li Y, Huang J, Yan T, Sun T (2017a) Growing water scarcity, food security and government responses in China. Global Food Security 14:9–17

  • Wang S, Peng Y (2010) Natural zeolites as effective adsorbents in water and wastewater treatment. Chem Eng J 156(1):11–24

  • Wang L, Shi C, Pan L, Zhang X, Zou J-J (2020a) Rational design, synthesis, adsorption principles and applications of metal oxide adsorbents: a review. Nanoscale 12(8):4790–4815

  • Wang Z, Lin T, Chen W (2020b) Occurrence and removal of microplastics in an advanced drinking water treatment plant (ADWTP). Sci Total Environment 700:134520

  • Wang Z, Sedighi M, Lea-Langton A (2020c) Filtration of microplastic spheres by biochar: removal efficiency and immobilisation mechanisms. Water Res 184:116165

  • Wang J, Sun C, Huang Q-X, Chi Y, Yan J-H (2021a) Adsorption and thermal degradation of microplastics from aqueous solutions by Mg/Zn modified magnetic biochars. J Hazardous Materials 419:126486

  • Wang H-J, Jingjing W, Xiaohua Y (2022) Wastewater irrigation and crop yield: a meta-analysis. J Integrative Agriculture 21(4):1215–1224

    Article  Google Scholar 

  • Wang W, Qiao Y, Li T, Liu S, Zhou J, Yao H, Xu M (2017b) Improved removal of Cr (VI) from aqueous solution using zeolite synthesized from coal fly ash via mechano‐chemical treatment. Asia‐Pacific J Chem Eng12(2):259–267

  • Wang W, Lu T, Liu L, Yang X, Sun X, Qiu G, Hua D, Zhou D (2021b) Zeolite-supported manganese oxides decrease the Cd uptake of wheat plants in Cd-contaminated weakly alkaline arable soils. J Hazard Mater 419:126464.

  • Wei Y, Parmentier TE, de Jong KP, Zečević J (2015) Tailoring and visualizing the pore architecture of hierarchical zeolites. Chem Soc Rev 44(20):7234–7261

    Article  CAS  Google Scholar 

  • Wingenfelder U, Hansen C, Furrer G, Schulin R (2005) Removal of heavy metals from mine waters by natural zeolites. Environmental Sci Technol 39(12):4606–4613

    Article  CAS  Google Scholar 

  • Winpenny J, Heinz I, Koo-Oshima S, Salgot M, Collado J, Hernandez F, Torricelli R (2010) The wealth of waste: the economics of wastewater use in agriculture. Water Reports (35):129

  • Xu Y, Yu Y, Yang Y, Sun T, Dong S, Yang H., . . . (2021). Improved separation performance of carbon nanotube hollow fiber membrane by peroxydisulfate activation. 276:119328.

  • Yan A, Wang Y, Tan SN, Mohd Yusof ML, Ghosh S, Chen Z (2020) Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Frontiers Plant Sci 11:359

    Article  Google Scholar 

  • Yang S, Yang L, Xiong P, Qian X, Nagasaka T (2022) Ammonium continuous removal by zeolite P synthesized using fly ash combined with bacteria in aqueous solution. Environ Sci Pollut Res 29(54):81892–81908

    Article  CAS  Google Scholar 

  • Yin T, Meng X, Wang S, Yao X, Liu N, Shi LJS (2022) Study on the adsorption of low-concentration VOCs on zeolite composites based on chemisorption of metal-oxides under dry and wet conditions. Sep Purif Technol 280:119634

  • Yong HH, Park HC, Kang YS, Won J, Kim WN (2001) Zeolite-filled polyimide membrane containing 2, 4, 6-triaminopyrimidine. J Membr Sci 188(2):151–163

  • Yuan M, Xie T, Yan G, Chen Q, Wang L (2018) Effective removal of Pb2+ from aqueous solutions by magnetically modified zeolite. Powder Technol 332:234–241

    Article  CAS  Google Scholar 

  • Yuna Z (2016) Review of the natural, modified, and synthetic zeolites for heavy metals removal from wastewater. Environmental Eng Sci 33(7):443–454

    Article  Google Scholar 

  • Zapata PA, Faria J, Ruiz MP, Jentoft RE, Resasco DE (2012) Hydrophobic zeolites for biofuel upgrading reactions at the liquid–liquid interface in water/oil emulsions. J Am Chem Soc 134(20):8570–8578

  • Zarzycki PK (2020) Pure and functionalized carbon based nanomaterials: analytical, biomedical, civil and environmental engineering applications: CRC Press. Taylor and Francis group

  • Zhang G, Song A, Duan Y, Zheng S (2018) Enhanced photocatalytic activity of TiO2/zeolite composite for abatement of pollutants. Microp Mesop Mater 255:61–68

  • Zhang Y, Liu J, Zhou Y, Gong T, Wang J, Ge Y (2013) Enhanced phytoremediation of mixed heavy metal (mercury)–organic pollutants (trichloroethylene) with transgenic alfalfa co-expressing glutathione S-transferase and human P450 2E1. J Hazardous Materials 260:1100–1107

    Article  CAS  Google Scholar 

  • Zhang Y, Zhou L, Chen L, Guo Y, Guo F, Wu J, Dai B (2021) Synthesis of zeolite Na-P1 from coal fly ash produced by gasification and its application as adsorbent for removal of Cr (VI) from water. Frontiers Chem Sci Eng 15:518–527

    Article  CAS  Google Scholar 

  • Zhao M, Ma X, Chen D, Liao YJ (2022) Preparation of honeycomb-structured activated carbon–zeolite composites from modified fly ash and the adsorptive removal of Pb (II). ACS Omega 7(11):9684–9689

    Article  CAS  Google Scholar 

  • Zhao H, Wu J, Su F, He XJH, Journal, ER (2022). Removal of polystyrene nanoplastics from aqueous solutions by a novel magnetic zeolite adsorbent. 1-20.

  • Ziajahromi S, Neale PA, Rintoul L, Leusch FD (2017) Wastewater treatment plants as a pathway for microplastics: development of a new approach to sample wastewater-based microplastics. Water Research 112:93–99

    Article  CAS  Google Scholar 

Download references

Funding

The authors would like to thank Fundação para a Ciência e a Tecnologia (FCT) for funding MARE—Marine and Environmental Sciences Centre (UIDB/04292/2020 and UIDP/04292/2020) and ARNET—Aquatic Research Network Associated Laboratory (LA/P/0069/2020) and to the Project NanoBioMitig (2022.06149.PTDC). B. Duarte was supported by an investigation contract (2022.01746.CEECIND).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed to the study conception and design. Material preparation, search, and collection of relevant articles and reviews were performed by NM, AJ, and ZA. BD, AEK, HJ, and MSS thoroughly checked the first draft and improved the manuscript critically. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Zainul Abideen.

Ethics declarations

Declarations

The present study work was not conducted on human or experimental animals where national or international guidelines are used for the protection of human subjects and animal welfare.

Ethics approval

Not applicable.

Consent for publication

We confirm that the manuscript has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed. We further confirm that all the authors listed in the manuscript have been approved.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Guilherme Luiz Dotto

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Munir, N., Javaid, A., Abideen, Z. et al. The potential of zeolite nanocomposites in removing microplastics, ammonia, and trace metals from wastewater and their role in phytoremediation. Environ Sci Pollut Res 31, 1695–1718 (2024). https://doi.org/10.1007/s11356-023-31185-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-31185-1

Keywords

Navigation