Skip to main content

Advertisement

Log in

Selenium alleviates modafinil-induced neurobehavioral toxicity in rat via PI3K/Akt/mTOR/GSK3B signaling pathway and suppression of oxidative stress and apoptosis: in vivo and in silico study

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Nonmedical use of modafinil (MOD) led to increased rates of overdose toxicity, road accidents, addiction, withdrawal, suicide, and mental illnesses. The current study aims to determine the probable MOD brain toxicity and elucidate the possible role of selenium (Se) in ameliorating the neurotoxicity in rat models. Fifty-four male Albino rats were randomly assigned into nine groups. The groups were G1 (control negative), G2 (Se0.1), G3 (Se0.2), G4 (MOD300), G5 (MOD600), G6 (Se0.1 + MOD300), G7 (Se0.2 + MOD300), G8 (Se0.1 + MOD600), and G9 (Se0.2 + MOD600). After finishing the experiment, blood and brain tissue were harvested for biochemical and histological investigation. Neurobehavior parameters were assessed. Tissue neurotransmitter levels and oxidative stress markers were assessed. Gene expression of PI3K/Akt/mTOR-GSK3B, orexin, and orexin receptor2 was measured by qRT-PCR. Histological and immunohistochemistry assessments, as well as molecular docking, were carried out. MOD-induced neurobehavioral toxicity exhibited by behavioral and cognitive function impairments, which are associated with decreased antioxidant activities, increased MDA levels, and decreases in neurotransmitter levels. Brain levels of mRNA expression of PI3K, Akt, and mTOR were decreased, while GS3K, orexin, and orexin receptors were significantly elevated. These disturbances were confirmed by histopathological brain changes with increased silver and Bax immunostaining and decreased crystal violet levels. MOD induced neurotoxic effects in a dose-dependent manner. Compared with the MOD groups, SE coadministration significantly attenuates MOD-induced toxic changes. Docking study shows the protective role of Se as an apoptosis inhibitor and inflammation inhibitor. In conclusion, Se could be used as a biologically effective antioxidant compound to protect from MOD neurobehavioral toxicity in Wistar rats by reversing behavioral alterations, inflammation, apoptosis, and oxidative injury.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 2

Similar content being viewed by others

Data availability

The datasets used during the current study are available on reasonable request.

Abbreviations

MOD :

Modafinil

Se :

Selenium

PCEs :

Pharmaceutical cognitive enhancers

WADA :

World Anti-Doping Agency

DA :

Dopamine

ROS :

Reactive oxygen species

NF-κB :

Nuclear factor-kappa B

Bax :

Bcl-2-associated X protein

LPO :

Lipid peroxidation

MDA :

Malondialdehyde

CAT :

Catalase

TAC :

Total antioxidant capacity

PI3K :

Phosphoinositide 3-kinase

Akt :

Protein kinase B

mTOR :

Mammalian target of rapamycin

GS3K :

Glycogen synthase kinase 3

References

  • Abbasi Y, Shabani R, Mousavizadeh K, Soleimani M, Mehdizadeh M (2019) Neuroprotective effect of ethanol and modafinil on focal cerebral ischemia in rats. Metab Brain Dis 34(3):805–819

    Article  CAS  Google Scholar 

  • Abbasi Y, Mousavizadeh K, Shabani R, Katebi M, Mehdizadeh M (2020) Behavioral changes in combination therapy of ethanol and modafinil on rats focal cerebral ischemia. Basic Clin Neurosci 11(3):269–278. https://doi.org/10.32598/bcn.11.3.269

    Article  CAS  Google Scholar 

  • Adebayo OL, Adenuga GA (2007) Protective effect of selenium on protein-undernutrition-induced brain damage in rats. Biol Trace Elem Res 116(2):227–234. https://doi.org/10.1007/BF02685933

    Article  CAS  Google Scholar 

  • Aebi H (1984) [13] Catalase in vitro. In Methods in enzymology (Vol. 105, pp. 121–126). Academic Press. https://doi.org/10.1016/S0076-6879(84)05016-3

  • Akça ÖF, Uzun N, Kılınç İ (2020) Orexin A in adolescents with anxiety disorders. Int J Psychiatry Clin Pract 24(2):127–134

    Article  Google Scholar 

  • Akhtar A, Dhaliwal J, Saroj P, Uniyal A, Bishnoi M, Sah SP (2020) Chromium picolinate attenuates cognitive deficit in ICV-STZ rat paradigm of sporadic Alzheimer’s-like dementia via targeting neuroinflammatory and IRS-1/PI3K/AKT/GSK-3β pathway. Inflammopharmacology 28(2):385–400

    Article  CAS  Google Scholar 

  • Alam N, Choudhary K (2018) Haloperidol attenuates methylphenidate and modafinil induced behavioural sensitization and cognitive enhancement. Metab Brain Dis 33(3):893–906. https://doi.org/10.1007/s11011-018-0190-x

    Article  CAS  Google Scholar 

  • Albeely AM, Williams OO, Perreault ML (2022) GSK-3β disrupts neuronal oscillatory function to inhibit learning and memory in male rats. Cell Mol Neurobiol 42(5):1341–1353

    Article  CAS  Google Scholar 

  • Ali HFH, El-Sayed NM, Khodeer DM, Ahmed AAM, Hanna PA, Moustafa YMA (2020) Nano selenium ameliorates oxidative stress and inflammatory response associated with cypermethrin-induced neurotoxicity in rats. Ecotoxicol Environ Saf 195:110479. https://doi.org/10.1016/j.ecoenv.2020.110479

    Article  CAS  Google Scholar 

  • Andersen ML, Kessler E, Murnane KS, McClung JC, Tufik S, Howell LL (2010) Dopamine transporter-related effects of modafinil in rhesus monkeys. Psychopharmacology 210(3):439–448. https://doi.org/10.1007/s00213-010-1839-2

    Article  CAS  Google Scholar 

  • Ansari MA, Ahmad AS, Ahmad M, Salim S, Yousuf S, Ishrat T, Islam F (2004a) Selenium protects cerebral ischemia in rat brain mitochondria. Biol Trace Elem Res 101(1):73–86

    Article  CAS  Google Scholar 

  • Ballon JS, Feifel D (2006) A systematic review of modafinil: potential clinical uses and mechanisms of action. J Clin Psychiatry 67(4):554–566

    Article  CAS  Google Scholar 

  • Bampi SR, Casaril AM, Sabedra Sousa FS, Pesarico AP, Vieira B, Lenardão EJ, Savegnago L (2019) Repeated administration of a selenium-containing indolyl compound attenuates behavioural alterations by streptozotocin through modulation of oxidative stress in mice. Pharmacol Biochem Behav 183:46–55. https://doi.org/10.1016/j.pbb.2019.06.006

    Article  CAS  Google Scholar 

  • Bancroft JD, Gamble M (2008) Theory and practice of histological techniques, 6th edn. (Churchill Livingstone, Edinburgh)

  • Barnes CA (1979) Memory deficits associated with senescence: a neurophysiological and behavioral study in the rat. J Comp Physiol Psychol 93(1):74

    Article  CAS  Google Scholar 

  • Baselt RC, Cravey RH (1982) Disposition of toxic drugs and chemicals in man, vol 33. Biomedical Publications, Davis, CA

  • Baum M, Sattler S, Reimann M (2021) Towards an understanding of how stress and resources affect the nonmedical use of prescription drugs for performance enhancement among employees. Curr Psychol. https://doi.org/10.1007/s12144-021-01873-7

    Article  Google Scholar 

  • Berman SM, Kuczenski R, McCracken JT, London ED (2009) Potential adverse effects of amphetamine treatment on brain and behavior: a review. Mol Psychiatry 14(2):2. https://doi.org/10.1038/mp.2008.90

    Article  CAS  Google Scholar 

  • Blundell J, Kouser M, Powell CM (2008) Systemic inhibition of mammalian target of rapamycin inhibits fear memory reconsolidation. Neurobiol Learn Mem 90(1):28–35

    Article  CAS  Google Scholar 

  • Boorman GA, Suttie AW, Eustis SL, Elwell MR, MacKenzie WF, Leininger JR, Bradley AE (2017) Boorman’s pathology of the rat: reference and atlas. Academic Press

    Google Scholar 

  • Borumand MR, Motaghinejad M, Motevalian M, Gholami M (2019) Duloxetine by modulating the Akt/GSK3 signaling pathways has neuroprotective effects against methamphetamine-induced neurodegeneration and cognition impairment in rats. Iran J Med Sci 44(2):146

    Google Scholar 

  • Bové J, Martínez-Vicente M, Vila M (2011) Fighting neurodegeneration with rapamycin: Mechanistic insights. Nat Rev Neurosci 12(8):437–452

    Article  Google Scholar 

  • Brookshire BR, Jones SR (2012) Chronic methylphenidate administration in mice produces depressive-like behaviors and altered responses to fluoxetine. Synapse (New York, N.Y.), 66(9):844–847. https://doi.org/10.1002/syn.21569

  • Canyurt D, Tanriverdi LH, Ozhan O, Cansel M, Parlakpinar H, Vardi N, Cigremis Y, Yildiz A, Karaca Y, Yasar S, Acet A (2022) Dose-dependent subacute cardiovascular effects of modafinil in rats. Drug Chem Toxicol 45(3):1044–1053. https://doi.org/10.1080/01480545.2020.1803906

    Article  CAS  Google Scholar 

  • Cao Y, Li Q, Liu L, Wu H, Huang F, Wang C, Lan Y, Zheng F, Xing F, Zhou Q (2019) Modafinil protects hippocampal neurons by suppressing excessive autophagy and apoptosis in mice with sleep deprivation. Br J Pharmacol 176(9):1282–1297

    Article  CAS  Google Scholar 

  • Cardoso BR, Roberts BR, Bush AL, Hare DJ (2015) Selenium, selenoproteins and neurodegenerative diseases. Metallomics: Integr Biometal Sci 7(8):1213–1228. https://doi.org/10.1039/c5mt00075k

    Article  CAS  Google Scholar 

  • Carstairs SD, Urquhart A, Hoffman J, Clark RF, Cantrell FL (2010) A retrospective review of supratherapeutic modafinil exposures. J Med Toxicol 6(3):307–310

    Article  CAS  Google Scholar 

  • Chauhan R, Awasthi S, Srivastava S, Dwivedi S, Pilon-Smits EA, Dhankher OP, Tripathi RD (2019) Understanding selenium metabolism in plants and its role as a beneficial element. Crit Rev Environ Sci Technol 49(21):1937–1958

    Article  CAS  Google Scholar 

  • Cid-Jofré V, Gárate-Pérez M, Clark PJ, Valero-Jara V, España RA, Sotomayor-Zárate R, Cruz G, Renard GM (2021) Chronic modafinil administration to preadolescent rats impairs social play behavior and dopaminergic system. Neuropharmacology 183:108404. https://doi.org/10.1016/j.neuropharm.2020.108404

    Article  CAS  Google Scholar 

  • da-Rosa DD, Valvassori SS, Steckert AV, Arent CO, Ferreira CL, Lopes-Borges J, Varela RB, Mariot E, Dal-Pizzol F, Andersen ML (2012) Differences between dextroamphetamine and methamphetamine: behavioral changes and oxidative damage in brain of Wistar rats. J Neural Transm 119(1):31–38

    Article  CAS  Google Scholar 

  • Deventer K, Roels K, Delbeke F, Van Eenoo P (2011) Prevalence of legal and illegal stimulating agents in sports. Anal Bioanal Chem 401(2):421–432

    Article  CAS  Google Scholar 

  • Dopheide MM, Morgan RE, Rodvelt KR, Schachtman TR, Miller DK (2007) Modafinil evokes striatal [3H]dopamine release and alters the subjective properties of stimulants. Eur J Pharmacol 568(1):112–123. https://doi.org/10.1016/j.ejphar.2007.03.044

    Article  CAS  Google Scholar 

  • Elsevier – Drug Monograph│Modafinil (2023) Retrieved 18 April 2023, from https://elsevier.health/en-US/preview/modafinil

  • Erbil G, Ozbal S, Sonmez U, Pekcetin C, Tugyan K, Bagriyanik A, Ozogul C (2008) Neuroprotective effects of selenium and ginkgo biloba extract (EGb761) against ischemia and reperfusion injury in rat brain. Neurosciences (riyadh, Saudi Arabia) 13(3):233–238

    Google Scholar 

  • Fararh M, Farid S, Abdalla A, Algharib S (2016) Antioxidant effect of selenium and its nano form on oxidative stress induced by iron overload. Benha Vet Med J 31(1):96–102. https://doi.org/10.21608/bvmj.2016.31228

    Article  Google Scholar 

  • Ferraro L, Antonelli T, O’Connor WT, Tanganelli S, Rambert F, Fuxe K (1997) The antinarcoleptic drug modafinil increases glutamate release in thalamic areas and hippocampus. NeuroReport 8(13):2883–2887

    Article  CAS  Google Scholar 

  • Ferraro L, Fuxe K, Agnati L, Tanganelli S, Tomasini MC, Antonelli T (2005) Modafinil enhances the increase of extracellular serotonin levels induced by the antidepressant drugs fluoxetine and imipramine: a dual probe microdialysis study in awake rat. Synapse 55(4):230–241. https://doi.org/10.1002/syn.20111

    Article  CAS  Google Scholar 

  • Fish R, Danneman PJ, Brown M, Karas A (2011) Anesthesia and analgesia in laboratory animals, 2nd edn. Academic Press, New York

  • Floyd RA (1999) Antioxidants, oxidative stress, and degenerative neurological disorders. Proc Soc Exp Biol Med 222(3):236–245

    Article  CAS  Google Scholar 

  • Gawel K, Gibula E, Marszalek-Grabska M, Filarowska J, Kotlinska JH (2019) Assessment of spatial learning and memory in the Barnes maze task in rodents—methodological consideration. Naunyn-Schmiedeberg’s Arch Pharmacol 392(1):1–18. https://doi.org/10.1007/s00210-018-1589-y

    Article  CAS  Google Scholar 

  • Gomes KM, Petronilho FC, Mantovani M, Garbelotto T, Boeck CR, Dal-Pizzol F, Quevedo J (2008) Antioxidant enzyme activities following acute or chronic methylphenidate treatment in young rats. Neurochem Res 33(6):1024–1027

    Article  CAS  Google Scholar 

  • Gomes KM, Inácio CG, Valvassori SS, Réus GZ, Boeck CR, Dal-Pizzol F, Quevedo J (2009) Superoxide production after acute and chronic treatment with methylphenidate in young and adult rats. Neurosci Lett 465(1):95–98

    Article  CAS  Google Scholar 

  • Gonçalves FM, Neis VB, Rieger DK, Peres TV, Lopes MW, Heinrich IA, Costa AP, Rodrigues ALS, Kaster MP, Leal RB (2017) Glutamatergic system and mTOR-signaling pathway participate in the antidepressant-like effect of inosine in the tail suspension test. J Neural Transm 124(10):1227–1237

    Article  Google Scholar 

  • Han D, Shi Y, Han F (2022) The effects of orexin-A and orexin receptors on anxiety-and depression-related behaviors in a male rat model of post-traumatic stress disorder. J Comp Neurol 530(3):592–606

    Article  CAS  Google Scholar 

  • Hui KK, Tanaka M (2019) Autophagy links MTOR and GABA signaling in the brain. Autophagy 15(10):1848–1849

    Article  Google Scholar 

  • Ibrahim WW, Abdelkader NF, Ismail HM, Khattab MM (2019) Escitalopram ameliorates cognitive impairment in D-galactose-injected ovariectomized rats: modulation of JNK, GSK-3β, and ERK signalling pathways. Sci Rep 9(1):1–14

    Article  Google Scholar 

  • Jacobson L, Zhang R, Elliffe D, Chen K-F, Mathai S, McCarthy D, Waldvogel H, Guan J (2008) Correlation of cellular changes and spatial memory during aging in rats. Exp Gerontol 43(10):929–938. https://doi.org/10.1016/j.exger.2008.08.002

    Article  CAS  Google Scholar 

  • Jaworski T (2020) Control of neuronal excitability by GSK-3beta: epilepsy and beyond. Biochim Biophys Acta (BBA)-Mol Cell Res 1867(9):118745

    Article  CAS  Google Scholar 

  • Jing S, Ying L, Zhang HF, Qiao N (2016) The RAS/PI3K pathway is involved in the impairment of long-term potentiation induced by acute aluminum treatment in rats. Biomed Environ Sci 29(11):782–789

    Google Scholar 

  • Keshavarzi S, Kermanshahi S, Karami L, Motaghinejad M, Motevalian M, Sadr S (2019) Protective role of metformin against methamphetamine induced anxiety, depression, cognition impairment and neurodegeneration in rat: the role of CREB/BDNF and Akt/GSK3 signaling pathways. Neurotoxicology 72:74–84

    Article  CAS  Google Scholar 

  • Kritis AA, Stamoula EG, Paniskaki KA, Vavilis TD (2015) Researching glutamate–induced cytotoxicity in different cell lines: a comparative/collective analysis/study. Front Cell Neurosci 9:91

    Article  Google Scholar 

  • Lezak KR, Missig G, Carlezon WA Jr (2017) Behavioral methods to study anxiety in rodents. Dialogues Clin Neurosci 19(2):181–191

    Article  Google Scholar 

  • Li H, Xue X, Li L, Li Y, Wang Y, Huang T, Wang Y, Meng H, Pan B, Niu Q (2020) Aluminum-induced synaptic plasticity impairment via PI3K-Akt-mTOR signaling pathway. Neurotox Res 37(4):996–1008

    Article  CAS  Google Scholar 

  • Li L-X, Chu J-H, Chen X-W, Gao P-C, Wang Z-Y, Liu C, Fan R-F (2022) Selenium ameliorates mercuric chloride-induced brain damage through activating BDNF/TrKB/PI3K/AKT and inhibiting NF-κB signaling pathways. J Inorg Biochem 229:111716

    Article  CAS  Google Scholar 

  • Liu J, Sun L, Zhang H, Shi M, Dahlgren RA, Wang X, Wang H (2018) Response mechanisms to joint exposure of triclosan and its chlorinated derivatives on zebrafish (Danio rerio) behavior. Chemosphere 193:820–832

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  Google Scholar 

  • Machalova A, Slais K, Vrskova D, Sulcova A (2012) Differential effects of modafinil, methamphetamine, and MDMA on agonistic behavior in male mice. Pharmacol Biochem Behav 102(2):215–223. https://doi.org/10.1016/j.pbb.2012.04.013

    Article  CAS  Google Scholar 

  • Mahmoud YK, Ali AA, Abdelrazek HMA, Aldayel TS, Abdel-Daim MM, El-Menyawy MAI (2021) Neurotoxic effect of fipronil in male Wistar rats: ameliorative effect of L-arginine and L-carnitine. Biology 10(7):7. https://doi.org/10.3390/biology10070682

    Article  CAS  Google Scholar 

  • Malík M, Tlustoš P (2022) Nootropics as cognitive enhancers: types, dosage and side effects of smart drugs. Nutrients 14(16):16. https://doi.org/10.3390/nu14163367

    Article  CAS  Google Scholar 

  • Martini M, De Santis MC, Braccini L, Gulluni F, Hirsch E (2014) PI3K/AKT signaling pathway and cancer: an updated review. Ann Med 46(6):372–383

    Article  CAS  Google Scholar 

  • Mazarati, A. M. (2017). Behavioral and cognitive testing procedures in animal models of epilepsy. In Models of seizures and epilepsy (pp. 181–196). Elsevier. https://doi.org/10.1016/B978-0-12-804066-9.00013-4

  • Mehrjerdi FZ, Aboutaleb N, Habibey R, Ajami M, Soleimani M, Arabian M, Niknazar S, Davoodi SH, Pazoki-Toroudi H (2013) Increased phosphorylation of mTOR is involved in remote ischemic preconditioning of hippocampus in mice. Brain Res 1526:94–101

    Article  Google Scholar 

  • Mereu M, Bonci A, Newman AH, Tanda G (2013) The neurobiology of modafinil as an enhancer of cognitive performance and a potential treatment for substance use disorders. Psychopharmacology 229(3):415–434

    Article  CAS  Google Scholar 

  • Mereu M, Chun LE, Prisinzano TE, Newman AH, Katz JL, Tanda G (2017) The unique psychostimulant profile of (±)-modafinil: Investigation of behavioral and neurochemical effects in mice. Eur J Neurosci 45(1):167–174

    Article  Google Scholar 

  • Minzenberg MJ, Carter CS (2008) Modafinil: a review of neurochemical actions and effects on cognition. Neuropsychopharmacology 33(7):7. https://doi.org/10.1038/sj.npp.1301534

    Article  CAS  Google Scholar 

  • Mirbolouk B, Rohampour K, Rostampour M, Jafari A, Khakpour-Taleghani B (2023) Chronic orexin-1 receptor blockage attenuates depressive behaviors and provokes PSD-95 expression in a rat model of depression. Behav Brain Res 437:114123. https://doi.org/10.1016/j.bbr.2022.114123

  • Motaghinejad M, Motevalian M (2022) Neuroprotective properties of minocycline against methylphenidate-induced neurodegeneration: possible role of CREB/BDNF and Akt/GSK3 signaling pathways in rat hippocampus. Neurotox Res. https://doi.org/10.1007/s12640-021-00454-7

    Article  Google Scholar 

  • Murphy HM, Ekstrand D, Tarchick M, Wideman CH (2015) Modafinil as a cognitive enhancer of spatial working memory in rats. Physiol Behav 142:126–130. https://doi.org/10.1016/j.physbeh.2015.02.003

    Article  CAS  Google Scholar 

  • Musik I, Kiełczykowska M, Kocot J (2013) Oxidant balance in brain of rats receiving different compounds of selenium. Biometals 26(5):763–771. https://doi.org/10.1007/s10534-013-9654-y

    Article  CAS  Google Scholar 

  • Nafie MS, Tantawy MA, Elmgeed GA (2019) Screening of different drug design tools to predict the mode of action of steroidal derivatives as anti-cancer agents. Steroids 152:108485. https://doi.org/10.1016/j.steroids.2019.108485

    Article  CAS  Google Scholar 

  • Napoletano F, Schifano F, Corkery JM, Guirguis A, Arillotta D, Zangani C, Vento A (2020) The psychonauts’ world of cognitive enhancers. Front Psych 11:546796

    Article  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358

    Article  CAS  Google Scholar 

  • Ornell F, Valvassori SS, Steckert AV, Deroza PF, Resende WR, Varela RB, Quevedo J (2014) Modafinil effects on behavior and oxidative damage parameters in brain of Wistar rats. Behav Neurol 2014:e917246. https://doi.org/10.1155/2014/917246

    Article  Google Scholar 

  • Özkan-Yilmaz F, Özlüer-Hunt A, Gündüz SG, Berköz M, Yalin S (2014) Effects of dietary selenium of organic form against lead toxicity on the antioxidant system in Cyprinus carpio. Fish Physiol Biochem 40(2):355–363. https://doi.org/10.1007/s10695-013-9848-9

    Article  CAS  Google Scholar 

  • Penney D, Powers J, Frank M, Willis C, Churukian C (2002) Analysis and testing of biological stains—the Biological Stain Commission procedures. Biotech Histochem 77(5–6):237–275

    Article  CAS  Google Scholar 

  • Radünz L, Reuter H, Andresen-Streichert H (2018) Modafinil in forensic and clinical toxicology—case reports, analytics and literature. J Anal Toxicol 42(5):353–359. https://doi.org/10.1093/jat/bky008

    Article  CAS  Google Scholar 

  • Rajasekar N, Nath C, Hanif K, Shukla R (2017) Intranasal insulin administration ameliorates streptozotocin (ICV)-induced insulin receptor dysfunction, neuroinflammation, amyloidogenesis, and memory impairment in rats. Mol Neurobiol 54(8):6507–6522

    Article  CAS  Google Scholar 

  • Regenthal R, Krueger M, Koeppel C, Preiss R (1999) Drug levels: therapeutic and toxic serum/plasma concentrations of common drugs. J Clin Monit Comput 15(7):529–544

    Article  CAS  Google Scholar 

  • Robins MT, Blaine AT, Ha JE, Brewster AL, Van Rijn RM (2019) Repeated use of the psychoactive substance ethylphenidate impacts neurochemistry and reward learning in adolescent male and female mice. Front Neurosci 13:124

    Article  Google Scholar 

  • Russell JL, Spiller HA (2019) Retrospective assessment of toxicity following exposure to orexin pathway modulators modafinil and suvorexant. Toxicology Communications 3(1):33–36. https://doi.org/10.1080/24734306.2019.1577535

    Article  Google Scholar 

  • Sajjadi SS, Foshati S, Haddadian-Khouzani S, Rouhani MH (2022) The role of selenium in depression: a systematic review and meta-analysis of human observational and interventional studies. Sci Rep 12(1):1. https://doi.org/10.1038/s41598-022-05078-1

    Article  CAS  Google Scholar 

  • Schwartz JRL, Hirshkowitz M, Erman MK, Schmidt-Nowara W (2003) Modafinil as adjunct therapy for daytime sleepiness in obstructive sleep apnea: a 12-week, open-label study. Chest 124(6):2192–2199. https://doi.org/10.1378/chest.124.6.2192

    Article  CAS  Google Scholar 

  • Shang N, Zhang P, Wang S, Chen J, Fan R, Chen J, Huang T, Wang Y, Duncan J, Zhang L (2020) Aluminum-induced cognitive impairment and PI3K/Akt/mTOR signaling pathway involvement in occupational aluminum workers. Neurotox Res 38(2):344–358

    Article  CAS  Google Scholar 

  • Sharif S, Guirguis A, Fergus S, Schifano F (2021) The use and impact of cognitive enhancers among university students: a systematic review. Brain Sci 11(3):3. https://doi.org/10.3390/brainsci11030355

    Article  CAS  Google Scholar 

  • Shu Y, Zhang H, Kang T, Zhang J, Yang Y, Liu H, Zhang L (2013) PI3K/Akt signal pathway involved in the cognitive impairment caused by chronic cerebral hypoperfusion in rats. PLoS One 8(12):e81901

    Article  Google Scholar 

  • Singh I, Bard I, Jackson J (2014) Robust resilience and substantial interest: a survey of pharmacological cognitive enhancement among university students in the UK and Ireland. PLoS One 9(10):e105969

    Article  Google Scholar 

  • Solovyev ND (2015) Importance of selenium and selenoprotein for brain function: from antioxidant protection to neuronal signalling. J Inorg Biochem 153:1–12

    Article  CAS  Google Scholar 

  • Spiller HA, Borys D, Griffith JR, Klein-Schwartz W, Aleguas A, Sollee D, Anderson DA, Sawyer TS (2009) Toxicity from modafinil ingestion. Clin Toxicol 47(2):153–156

    Article  CAS  Google Scholar 

  • Sun H, Liu M, Sun T, Chen Y, Lan Z, Lian B, Zhao C, Liu Z, Zhang J, Liu Y (2019) Age-related changes in hippocampal AD pathology, actin remodeling proteins and spatial memory behavior of male APP/PS1 mice. Behav Brain Res 376:112182. https://doi.org/10.1016/j.bbr.2019.112182

    Article  CAS  Google Scholar 

  • Suvarna KS, Layton C, Bancroft JD (2018) Bancroft’s theory and practice of histological techniques, 8th edn, E-Book. Elsevier Health Sci

  • Taneja I, Haman K, Shelton RC, Robertson D (2007) A randomized, double-blind, crossover trial of modafinil on mood. J Clin Psychopharmacol 27(1):76–78. https://doi.org/10.1097/jcp.0b013e31802eb7ea

    Article  CAS  Google Scholar 

  • Tanganelli S, Ferraro L, Bianchi C, Fuxe K (1994) 6-Hydroxy-dopamine treatment counteracts the reduction of cortical GABA release produced by the vigilance promoting drug modafinil in the awake freely moving guinea-pig. Neurosci Lett 171(1–2):201–204

    Article  CAS  Google Scholar 

  • Thevis M, Kuuranne T, Geyer H (2021) Annual banned-substance review: analytical approaches in human sports drug testing 2019/2020. Drug Test Anal 13(1):8–35

    Article  CAS  Google Scholar 

  • Tomažič T, Čelofiga AK (2022) The role of different behavioral and psychosocial factors in the context of pharmaceutical cognitive enhancers’ misuse. Healthcare 10(6):6. https://doi.org/10.3390/healthcare10060972

    Article  Google Scholar 

  • Tzeng C-Y, Lee W-S, Liu K-F, Tsou H-K, Chen C-J, Peng W-H, Tsai J-C (2022) Allantoin ameliorates amyloid β-peptide-induced memory impairment by regulating the PI3K/Akt/GSK-3β signaling pathway in rats. Biomed Pharmacother 153:113389

    Article  CAS  Google Scholar 

  • US Modafinil in Narcolepsy Multicenter Study Group (1998) Randomized trial of modafinil for the treatment of pathological somnolence in narcolepsy. Ann Neurol 43(1):88–97

    Article  Google Scholar 

  • Valladolid-Acebes I, Fole A, Martín M, Morales L, Victoria Cano M, Ruiz-Gayo M, Olmo ND (2013) Spatial memory impairment and changes in hippocampal morphology are triggered by high-fat diets in adolescent mice. Is there a role of leptin? Neurobiol Learn Mem 106:18–25. https://doi.org/10.1016/j.nlm.2013.06.012

    Article  CAS  Google Scholar 

  • van Vliet SAM, Jongsma MJ, Vanwersch RAP, Olivier B, Philippens IHCHM (2006) Behavioral effects of modafinil in marmoset monkeys. Psychopharmacology 185(4):433–440. https://doi.org/10.1007/s00213-006-0340-4

    Article  CAS  Google Scholar 

  • Vertes RP (2006) Interactions among the medial prefrontal cortex, hippocampus and midline thalamus in emotional and cognitive processing in the rat. Neuroscience 142(1):1–20. https://doi.org/10.1016/j.neuroscience.2006.06.027

    Article  CAS  Google Scholar 

  • Volkow ND, Fowler JS, Logan J, Alexoff D, Zhu W, Telang F, Wang G-J, Jayne M, Hooker JM, Wong C, Hubbard B, Carter P, Warner D, King P, Shea C, Xu Y, Muench L, Apelskog-Torres K (2009) Effects of modafinil on dopamine and dopamine transporters in the male human brain: clinical implications. JAMA 301(11):1148–1154. https://doi.org/10.1001/jama.2009.351

    Article  CAS  Google Scholar 

  • Volkow ND, Wise RA, Baler R (2017) The dopamine motive system: implications for drug and food addiction. Nat Rev Neurosci 18(12):741–752

    Article  CAS  Google Scholar 

  • Wadhwa M, Chauhan G, Roy K, Sahu S, Deep S, Jain V, Kishore K, Ray K, Thakur L, Panjwani U (2018) Caffeine and modafinil ameliorate the neuroinflammation and anxious behavior in rats during sleep deprivation by inhibiting the microglia activation. Front Cell Neurosci 12:49. https://www.frontiersin.org/articles/10.3389/fncel.2018.00049/full

  • Wang C, Wang Q, Ji B, Pan Y, Xu C, Cheng B, Bai B, Chen J (2018) The orexin/receptor system: molecular mechanism and therapeutic potential for neurological diseases. Front Mol Neurosci 11:220

    Article  Google Scholar 

  • Wilms W, Woźniak-Karczewska M, Corvini PF-X, Chrzanowski Ł (2019) Nootropic drugs: methylphenidate, modafinil and piracetam – population use trends, occurrence in the environment, ecotoxicity and removal methods – a review. Chemosphere 233:771–785. https://doi.org/10.1016/j.chemosphere.2019.06.016

    Article  CAS  Google Scholar 

  • Xu C, Wang J, Wu P, Xue Y, Zhu W, Li Q, Zhai H, Shi J, Lu L (2011) Glycogen synthase kinase 3β in the nucleus accumbens core is critical for methamphetamine-induced behavioral sensitization. J Neurochem 118(1):126–139

    Article  CAS  Google Scholar 

  • Yamamoto M (2022) Pharmacological cognitive enhancement: current situation and perspectives. Yakugaku Zasshi 142(5):521–526. https://doi.org/10.1248/yakushi.21-00195

    Article  CAS  Google Scholar 

  • Yan Y-D, Chen Y-Q, Wang C-Y, Ye C-B, Hu Z-Z, Behnisch T, Huang Z-L, Yang S-R (2021) Chronic modafinil therapy ameliorates depressive-like behavior, spatial memory and hippocampal plasticity impairments, and sleep-wake changes in a surgical mouse model of menopause. Transl Psychiatr 11(1):1. https://doi.org/10.1038/s41398-021-01229-6

    Article  CAS  Google Scholar 

  • Yang B, Li Y, Ma Y, Zhang X, Yang L, Shen X, Zhang J, Jing L (2021) Selenium attenuates ischemia/reperfusion injury-induced damage to the blood-brain barrier in hyperglycemia through PI3K/AKT/mTOR pathway-mediated autophagy inhibition. Int J Mol Med 48(3):1–13

    Article  CAS  Google Scholar 

  • Young JW, Kooistra K, Geyer MA (2011) Dopamine receptor mediation of the exploratory/hyperactivity effects of modafinil. Neuropsychopharmacology 36(7):7. https://doi.org/10.1038/npp.2011.23

    Article  CAS  Google Scholar 

  • Yue D, Zeng C, Okyere SK, Chen Z, Hu Y (2021) Glycine nano-selenium prevents brain oxidative stress and neurobehavioral abnormalities caused by MPTP in rats. J Trace Elem Med Biol 64:126680. https://doi.org/10.1016/j.jtemb.2020.126680

    Article  CAS  Google Scholar 

  • Zhang Y, Bhavnani BR (2006) Glutamate-induced apoptosis in neuronal cells is mediated via caspase-dependent and independent mechanisms involving calpain and caspase-3 proteases as well as apoptosis inducing factor (AIF) and this process is inhibited by equine estrogens. BMC Neurosci 7(1):1–22

    Article  Google Scholar 

  • Zheng R, Zhang Z-H, Chen C, Chen Y, Jia S-Z, Liu Q, Ni J-Z, Song G-L (2017) Selenomethionine promoted hippocampal neurogenesis via the PI3K-Akt-GSK3β-Wnt pathway in a mouse model of Alzheimer’s disease. Biochem Biophys Res Commun 485(1):6–15

    Article  CAS  Google Scholar 

  • Zhong H, Rong J, Yang Y, Liang M, Li Y, Zhou R (2022) Neonatal inflammation via persistent TGF-β1 downregulation decreases GABAAR expression in basolateral amygdala leading to the imbalance of the local excitation-inhibition circuits and anxiety-like phenotype in adult mice. Neurobiol Dis 169:105745. https://doi.org/10.1016/j.nbd.2022.105745

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SAS: conceptualization, methodology, investigation, resources, project administration, and writing–original draft preparation. EK: conceptualization, methodology, investigation, and writing–original draft preparation. DAA: conceptualization, methodology, investigation, and writing–original draft preparation. SAM: conceptualization, methodology, investigation, and writing–original draft preparation. HEK: methodology, investigation, and writing–original draft preparation. MAI: conceptualization, project administration, supervision, writing, review, and editing. MSN: investigation, formal analysis, and data curation. SHA: data curation, visualization, writing, review, and editing. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Mahrous A. Ibrahim.

Ethics declarations

Ethical consideration

All the experiment procedures performed on animals were in accordance with protocols and International Guidelines for Care and Use of Laboratory Animals in research and approved by the Research Ethical Committee of the Faculty of Medicine, Suez Canal University, according to referenced authority acceptance number (Research 4614#).

Consent to participate

Not applicable.

Consent for publication

All the authors allow the publication of the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Mohamed M. Abdel-Daim

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shehata, S.A., Kolieb, E., Ali, D.A. et al. Selenium alleviates modafinil-induced neurobehavioral toxicity in rat via PI3K/Akt/mTOR/GSK3B signaling pathway and suppression of oxidative stress and apoptosis: in vivo and in silico study. Environ Sci Pollut Res 31, 458–480 (2024). https://doi.org/10.1007/s11356-023-31093-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-31093-4

Keywords

Navigation